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ABSTRACT 
In recent years, the widespread of GPS devices produce huge 
amount of urban trajectories. Due to the complex structure of road 
network in urban area, many issues are not addressed in existing 
work, such as high volume of road network, diverse 
functionalities of roads, and high variance of road dynamics. In 
this paper, we propose a novel modularity-based map-matching 
algorithm called Urban Map-Matching (UrbMatch) utilizing urban 
GPS trajectories. UrbMatch considers (1) the spatial-temporal 
betweenness and (2) the marginal velocity of each road segment, 
to improve the accuracy of map-matching. Based on the results of 
spatial-temporal mining, a road network is decomposed into 
several sub-networks such that the map-matching task can be 
divided into several smaller sub-tasks and run in parallel. 
Accordingly, the running time can be reduced. We compare 
UrbMatch with an existing global map-matching algorithm using 
real-world dataset. The results show that our proposed approach 
not only are faster than state-of-the-art global map-matching 
method over 100 times but also outperforms other map matching 
techniques in terms of accuracy.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining, Spatial Databases and GIS 

General Terms 
Algorithms, Experimentation. 

Keywords 
Map Matching; Road Network Analysis; Trajectory Analysis; 
Centrality Mining 

1. INTRODUCTION 
With the rapid development of the global positioning system 

(GPS), driving GPS trajectories have become more and more 
accessible. These trajectories are useful for understanding users’ 
moving behavior which is important for many applications such 
as location-based service, urban planning, and traffic management. 
However, due to the inherent errors of GPS data, it is essential to 
perform data cleansing on GPS trajectory traces before using it for 
any further analysis.  The map matching technique, which 
matches all GPS points of trajectories onto road segments of a 
certain road network, has been widely used for such a data 
cleansing step.   

To analyze the relationship between road segments and GPS 
trajectories, many existing map matching methods adopt the 
measurements of similarity between curves [1][2], geometric 
distance [3] [10], and similarity of vehicle velocity [14]. For 
example, Fréchet Distance [1][2] was originally proposed to 

measure how close two polygonal curves are. It is also able to 
measure the closeness of a GPS trajectory to a road segment. 
However, the above metrics are limited due to it’s design for the 
matching of  a single road segment at a certain point of time. Due 
to the complex structure of road network in the urban area, the 
dynamics of different road segments in a road network could 
affect each other [23]. For example, a serious traffic accident on a 
road segment could result in traffic jam in near-by road segments.  
Unfortunately, existing traditional map matching methods do not 
address the properties in the urban area including:   
• Diverse functionalities. The functionality of different road 

segments might be various. For example, some road 
segments are used to bridge two areas (e.g. highways). 
Drivers commuting between these two areas would have a 
high probability of using these road segments. However, 
the traditional map matching methods do not consider the 
functionalities of different road segments and hence can not 
work well for the urban area. 

• High Volume. The number of road segments in the urban 
area could be potentially large and therefore, given a GPS 
point, many possible road segments can be matched. 
However, the traditional map matching methods tend to 
perform the matching for the whole road network, which 
leads to significant running time when dealing with urban 
road networks. 

• Changing Velocity. The dynamics of a road network in the 
urban area might changes significantly over time. For 
example, the marginal speeds of vehicles could change 
every hour. Nevertheless, traditional map matching 
methods generally either ignore the effect of vehicle 
velocitiesor using the same setting for a road segment over 
time (i.e., without considering temporal changes) for 
matching a trajectory onto the road network. 
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Figure 1. An Example of Road Network and GPS Trajectory 



Intuitively, centrality analysis of road traffic dynamics could 
be useful for dealing with issues caused by “Diverse 
functionalities” of urban road networks [5] [8].  Take Figure 1 as 
an instance; the trajectory could be matched onto two possible 
road segments, <7, 9> and <8, 9>. If we focus only on the 
geometric distance, we should match the trajectory onto the road 
segment <8, 9>. However, according to the principle of centrality 
analysis, vehicles are more likely to pass along the road segment 
<7, 9> if they origin from road segment <1, 2> and destine to road 
segment <12, 15>. Although the centrality analysis has been 
discussed in many prior studies [5] [8], none of them considered 
both spatial and temporal factors of a road network.  

Furthermore, to speed up the map-matching process, we 
proposed to divide whole road network into several smaller sub-
network to parallel the map-matching tasks. For example, we can 
divide a road network into several sub-networks as shown in 
Figure 1, in which different sub-networks are represented by 
different colors. We can see that the road segment <9, 11> is only 
one way that connects the yellow and red sub-networks. Therefore,  
we can directly match the trajectory onto the road segment <9, 
11> and parallel the matching task into two sub-tasks: matching 
the red sub-network and matching other sub-networks. Inherently, 
modularity optimization [15] provides a good solution for divide a 
network in to several sub-networks. The traditional modularity 
optimization, however, focuses only on the network structure, i.e., 
degree of vertex. In a real road network, many vehicles might not 
pass the vertexes with a high degree. Accordingly, the spatial-
temporal centrality of road segments should be considered for 
modularity optimization for dividing a road network.  

Finally, to understand dynamics of each road segment over 
time, the average speed of vehicles on the road can provide useful 
insights for dividing a road networks. With the advance of 
Geographic Information System (GIS), many digital map services 
can be accessed and utilized for route planning [6]. For example, 
the routes provided by Google Maps1 are annotated with the 
traveling time which can be used to infer the current road speed 
for estimating the dynamics of a road network.  

In this paper, we propose a novel map matching approach 
which is able to deal with  issues caused by the complex structure 
of road networks in urban area. The core idea of  our map-
matching approach is to decompose a road network based on 
spatial-temporal information. To support our spatial-temporal 
based road network decomposition algorithm, we propose several 
metrics for representing both the spatial-temporal centrality and 
the real-time dynamic of each road segment. As mention earlier, 
the centrality of a road segment can be utilized for improving the 
accuracy of matching a GPS point onto the corresponding road 
segment. Owning to the lack of spatial-temporal information, 
traditional centrality can not be directly applied to measure the 
probability of matching a GPS point onto the road segment. Here 
we propose two kind of spatial-temporal centrality metrics, named 
Spatial-temporal Betweenness (ST-Betweenness) and Spatial-
temporal Betweenness Correlation (ST-Correlation). Furthermore, 
a real-time vehicle speed estimator is proposed for evaluating the 
real-time dynamic of each road segment. The real-time vehicle 
speed estimator is developed based on the estimated time 
provided by Google Maps.  

In summary, in this study we have a number of contributions 
as follows: 

                                                                    
1 https://support.google.com/maps/answer/2549020?hl=en  

• We propose a novel two-phase map-matching method 
named Urban Map-matching (UrbMatch) for matching 
GPS trajectories onto a certain road network in the urban 
area.  

• We define two new spatial-temporal metrics, called ST-
Betweenness and ST-Correlation, to represent spatial-
temporal relations among road segments in terms of 
betweenness centrality and closeness centrality. In addition, 
to consider real-time dynamics of road segments, we 
propose a metric based on Google Map API for measuring 
the marginal velocity of vehicles on each road segment 
across a day. 

• We develop a spatial-temporal based road network 
decomposition algorithm, called ST-Decomposition, to 
decompose the whole road network based on the spatial-
temporal information and marginal velocity.  

• We use a  map of Shanghai collected from Open Street map 
[25] and a real-world trajectory dataset obtained from 
WnSN, SJTU [28] to evaluate the performance of our 
proposal. The results show that our proposed approach not 
only are faster than state-of-the-art global map-matching 
method, ST-Matching [14], over 100 times but also 
outperforms other map matching techniques in terms of 
accuracy. 

For the rest of this paper, we first briefly review the related 
work, and then describe our proposed Urban Map Matching 
system. Next, we present algorithms for spatial-temporal 
information mining, spatial-temporal based road network 
decomposition, and propose a two-phase map-matching models. 
Finally, we evaluate the performance of different components of 
our map-matching system and compare our approach with the 
existing map-matching method.  

2. RELATED WORKS 
In fact, map matching could be classified into three 

categories:  a) local map matching [4] [7] [13] [19], b) global map 
matching [1] [2] [3] [14] [18] [20] [22], and c) multi-track map 
matching [9] [10] [11] [16] [17]. 

2.1 Local Map Matching  
The local methods try to find partial match of geometries and 

combine all partial match as the result of map matching. To 
efficiently match trajectory onto a road network, Chawathe et al. 
proposes a segment-based matching method [4]. Meanwhile, a 
confidence measure is defined and assigned for different sampling 
points. To match the sampling points to the road segments, the 
sampling points with high confidence will be processed first, and 
then match trajectory segments with low confidence according to 
previously matched edges. The local map matching in [7] uses 
two closeness metrics to estimate the possibility of matching a 
GPS point onto a road segment. Meanwhile, one metric is to 
evaluate geographic distance, and the other is to evaluate 
orientation similarity. The combined value of metrics is computed 
as the total score for estimating the possibility of matching the 
GPS trajectory to the roads. Since all of GPS points of trajectory 
is examined for only one time, the time complexity is 𝑂(𝑛), where 
𝑛 is the number of GPS points of the trajectory. To deal with the 
complexity and inaccurate information, Liu et al. [13] propose a 
novel weighting method to describe likelihoods of candidate roads, 
using a distance forgetting factor for history accumulation. In [19], 
Wenk et al. proposed an adaptive clipping method by using 
Dijkstra algorithm to connect two partial matching results in 
shortest path manner. Accordingly, The time complexity of this 



method is O(mn log m) (i.e., O(n) × O(m log m)), where m and n 
are number of edges in the road network and number of GPS 
points respectively. General speaking, a local map matching only 
considers a small portion of the trajectory to match road segments. 
It can deal with the simple road network structure. However, as 
the complexity of road network structure increasing in urban area, 
the candidate road segments might be crowded, causing 
significant damages of accuracy. By contrast, with reasonable 
scarcity of efficiency, our map-matching algorithm is more 
effective to the urban area. 

2.2 Global Map Matching 
The goal of global map matching is to match the entire 

trajectory with the road network. Most of existing works [1] [2] [3] 
are based on Fréchet distance which considers the continuity of 
curves. As the results, Fréchet distance is inherently suitable for 
measuring closeness between roads and trajectories. In [1] and [2], 
Alt et al. formula the map matching problem as a decision 
problem. First, all critical values could be detected by a 
parametric search algorithm. Then, the minimum Fréchet distance 
is determined by finding a monotone path in the free space from 
the lower left corner to the upper right corner. It runs in O(mn log2 
mn) time, where m and n are the number of edges and number of 
nodes in the road network respectively. Brakatsoulas et al. [3] 
extend Alt et al.’s work [1] by using average Fréchet distance to 
reduce the effect of outliers. Moreover, a variant Fréchet distance, 
called weak Fréchet distance, is proposed to speed-up Fréchet 
distance determine such that the complexity is reduced to O(mn 
log mn) time. In [20], the edit distance is adopted to measure the 
closeness between trajectory and matched road segments. 
Raymond et al. [18] proposed a simplification of the more-
complex HMM-based method that maintains its capabilities to 
cope with the noises and sparsity of the raw GPS data. To deal 
with low sample rate problem, Lou et al. [14] propose several 
spatial-temporal metrics for improving the accuracy of map 
matching. Based on Lou et al.’s work [14], Yuan et al. proposed 
an interactive-voting based map-matching algorithm [22] to 
improve accuracy of the matching results. Global map matching 
aims either to search minimum Fréchet distance between the 
trajectory and the matched road segments or to formula map 
matching problem as optimization problem. However as the 
complexity of road network structure increasing in urban area, the 
missing of dead reckoning becomes more serious, causing 
significant damages of accuracy. 

2.3 Multi-track Map Matching 
The aim of multi-track map matching is to recover the 

regularity patterns among the input trajectories, and to preserve 
the regularity in the matched paths. Usually, multi-track map 
matching adopts data-driven techniques to improve the matching 
result using historical trajectories. In [17], Bayesian classifier that 
combines a Hidden Markov Model is utilized to model 
topological constraints of the road network for improving 
accuracy of map matching. Another general application [11] [16] 
is to utilize machine-learning techniques for training the 
parameters of the statistical models or the weight function. This 
approach makes it easier to tune the model, but it also has the 
tendency of over-fitting the predefined model. In [10], historical 
trajectories are directly processed into reference routes that can be 
queried to generate new routes. The algorithm is able to complete 
the matching even with very sparse data. However, as the 
generated path is solely based on a fairly accurate reference route 
database, it may fail at the case when a trajectory is sampled from 
a path not in the database.  

3. OVERVIEW OF URBMATCH 
With the notion of spatial-temporal information, we propose 

a novel Urban Map-matching framework, namely, UrbMatch, 
based on both the centrality and marginal velocity of road network.  
The proposed approach works for match a GPS trajectory onto an 
urban road network of which structure is very complex, e.g., 
Shanghai City. The UrbMatch framework consists of 1) an offline 
mining module and 2) an online matching module. Figure 2 shows 
the framework and its flow of data processing.   The idea is to 
explore the spatial-temporal information of vehicles, captured in 
GPS trajectories, to improve accuracy of map-matching method. 
As shown, the mining module includes three models. The first 
model, called Spatial-temporal Centrality Estimation model, 
measures spatial-temporal betweenness of each road segment 
based on both the road network structure and the crawled GPS 
trajectories. The second model, called Marginal Velocity 
Estimation model, extracts each road segment’s possible 
velocities from Google Maps. The third model, called Road 
Network Decomposition model, groups the road segments based 
on their dynamic. In the online module, we propose a two-phase 
method to evaluate the goodness for matching a trajectory onto a 
path in a road network. Here, we consider not only spatial-
temporal information but also association information. First, we 
calculate the spatial-temporal score and derive several candidate 
paths. Then, the association score of each candidate path is 
evaluated. Finally, we compute a weighted average of geographic 
score and semantic score for each candidate path to select the 
most probable path for matching the trajectory over the road 
network. 

4. ST-MINER 
To our best knowledge, existing road network analysis 

metrics do not take into account the effect of spatial-temporal 
dynamic. Besides, all of graph theoretical metrics show fluctuate 
values in different districts (see section of Analysis of Shanghai 
Road Network). That means there are some potential effects 
related to spatial-temporal information. Therefore, it is necessary 
to provide some metrics which can reflect the effect of spatial-
temporal information for improving accuracy of map-matching 
task. To compactly represent spatial-temporal information of each 
road segment, we propose three novel metrics, called marginal 
velocity (M-Velocity), spatial-temporal betweenness (ST-
Betweenness) and spatial-temporal betweenness correlation (ST-
Correlation). The M-Velocity can reflect the each road segment’s 
velocity which is influenced by the dynamic of road segment. The 

Sequence of 
Road

GPS 
trajectory

OutputInput

Module 
Matching

Inner-Module 
Map Matching

Road Network

ST-Miner

Spatial-Temporal 
Road Network 
Decomposition

Spatial-Temporal 
Centrality Mining

Road Groups

ST-BetweennessGPS 
trajectory set

set

Marginal Velocity 
Estimation

GIS Data (Google 
Map)

M-Velocity 

Map Matching Algorithm

Two-phase Matching  
Figure 2. Framework of Urban Map Matching 



ST-Betweenness and the ST-Correlation can represent each road 
segment’s spatial-temporal centrality and relation between each 
pair of road segments, respectively. Based on extracted spatial-
temporal dynamic (i.e., M-Velocity, ST-Betweenness, and ST-
Correlation), we group road segments for decompose the whole 
road network. Accordingly, this mining module consists of 1) 
Marginal Velocity Estimation, 2) Spatial-temporal Centrality 
Estimation, and 3) Road Network Decomposition. 

4.1 Marginal Velocity Estimation 
To our best knowledge, existing map-matching methods 

always consider the speed limitation of road for measuring the 
probability of matching a trajectory to a road segment. However, 
people always do not drive so fast that the velocities of most 
vehicles could not achieve the speed limitation of road. Besides, 
Accordingly, the traditional map-matching methods probably 
match a low speed vehicle’s GPS point to a low speed street 
although the vehicle runs along a highway. In other word, the 
traditional map-matching methods cannot work well based on the 
metrics from the speed limitation of road. Therefore, we propose a 
novel velocity estimation instead of the road segment’s speed 
limitation. To reasonably estimate the road segment’s speed, the 
dynamic of road segment is necessary to be considered. 
Fortunately, the real-time traffic time of each path is easily 
crawled from Google Maps. As a result, in this section, a real-time 
vehicle speed metric is proposed based on the traffic time 
provided by Google Maps. 

Before introducing the real-time vehicle speed metric, we 
first describe the formal definitions for illustrating the real-time 
speed metric: 

Definition 1. (Road Segment) Given a road network G, the road 
network G could be represented by a directed graph (i.e., G = (V, 
E)), and a vertex v ∈ V represents an intersection point of a road 
or a corner of a road. A road segment is an edge e ∈ E. Each edge 
is assigned two real number vectors for representing the dynamics 
of road segment. 

Definition 2. (Google Traffic Time) Given a certain timestamp ct 
and a road segment e, the temporal condition tc, the predecessor p 
∈ V, and the successor s ∈ V is utilize as the input (i.e., start point 
and destination) of routing service of Google Maps. Under 
temporal condition tc, the road segment e’s Google Traffic Time 
GT-Time(e, ct) is the traffic time which is provided by the routing 
service. 

Definition 3. (Marginal Google Traffic Time) Given a road 
segment e and a time slot ts of a day, such as 17:00~19:00, the 
Marginal Google Traffic Time of Weekdays (denoted as MGTW(e , 
ts)) is the minimum of Google Traffic Time of the time slot ts 
during weekdays, and the Marginal Google Traffic Time of 
Holidays (denoted as MGTH(e,  ts)) is the minimum of Google 
Traffic Time of the time slot ts during holidays or a weekends.  

Table 1 shows an example of crawled google traffic time of a 
road segment e. We can observe that we separate one day into 
three time slots, 0:00 to 8:00, 8:00 to 16:00, and 16:00 to 24:00. 
According to the Table 1, the MGTW(e , 0:00 ~ 8:00) = 110 (sec.), 
because the minimum of Google Traffic Time of the first time slot, 
0:00 ~ 8:00, during weekdays is 110 seconds. According to 
Marginal Google Traffic Time under different time slots, we can 
easily estimate the possible maximal velocity of vehicles running 
along the given road segment. As mention in the section of 
Introduction, Google Maps crawled many vehicles’ GPS logs and 
use the GPS logs to estimate the current traffic so that the traffic 
time could be viewed as a margin of the road segment’s traffic 

time. In other word, most vehicles runs along the road segment 
would be slower than or approach to the speed, called Marginal 
Velocity (M-Velocity). Given a road segment e and a time slot k, 
the M-Velocity is formally defined as follows: 

M -Velocity(e,  k) =

length of  e
MGTW (e,  k)

, if the day is weekday

length of  e
MGTH (e,  k)

,  otherwise

!

"
##

$
#
#

 (1) 

 
Table 1. Crawled Google Traffic Time of a Road Segment 

Date 0:00 ~ 8:00 8:00 ~ 16:00  16:00 ~ 24:00 

2014/1/4 (Sat.) 110 (sec.) 147 (sec.) 160 (sec.) 
2014/1/5 (Sun.) 184 (sec.) 101 (sec.) 200 (sec.) 
2014/1/6 (Mon.) 134 (sec.) 64 (sec.) 91 (sec.) 
2014/1/7 (Tue.) 120 (sec.) 48 (sec.) 206 (sec.) 
2014/1/8 (Wed.) 77 (sec.) 61 (sec.) 197 (sec.) 
2014/1/9 (Thur.) 115 (sec.) 58 (sec.) 209 (sec.) 
2014/1/10 (Fri.) 111 (sec.) 90 (sec.) 105 (sec.) 

 
We believe that the vehicles’ speed can reflect some 

dynamics of a road segment. As mentioned earlier, the dynamics 
of road segments could be considered an important factor which 
influence each driver’s decision of driving route. Therefore, we 
can use the vehicles’ speed to improve accuracy map-matching 
methods. As a result, one of vectors of dynamic could be filled 
with the value of M-Velocity. 

4.2 Spatial-temporal Centrality Mining 
In this section, we propose and extract two kinds of 

centrality-based metric, including spatial-temporal betweenness 
(ST-Betweenness) and spatial-temporal betweenness correlation 
(ST-Correlation). Among them, the ST-Betweenness is used to 
understand the proportion of their common bridge road segments 
and the ST-Correlation is for measuring the correlation of each 
pair of road segments based on the ST-Betweenness. 

4.2.1 Spatial-temporal Betweenness 
Before introducing the ST-Betweenness, we first describe the 

conventional betweenness centrality. The betweenness centrality 
measures the degree of connectivity of a node (i.e., an intersection 
of roads in this paper) in a network.  Given a graph G = (V, E), 
the betweenness centrality of v∈ V is formally defined as follows: 

Betweenness(v) = #of shortest path from s to t  through v
#of shortest path from s to t

s≠v≠t∈V

∑  (2) 

As mentioned earlier, the spatial-temporal property should be 
considered for analyzing road network. Moreover, the shortest 
path may not be a fast or popular path. When we consider the 
spatial-temporal property for analyzing dynamic of road segment, 
the inherent modification is to replace shortest path by taxis’ 
trajectory. As argued by Yuan et al. [21], taxi drivers could be 
viewed as experienced drivers. As the result, the taxi trajectory 
can bring the real dynamics of road segment into our analysis task. 
Therefore, we could modify the traditional betweenness centrality 
as spatial-temporal betweenness (ST-Betweenness). 

Before introducing the real-time vehicle speed metric, we 
first describe the formal definitions for illustrating the real-time 
speed metric: 

Definition 4. (Trajectory Set with Spatial Constraint) Given 
three road segments e1,  e2 and e3, the Trajectory with Spatial-



temporal Constraint (denoted as STr(e1, e2, e3)) is the set of 
trajectory which is from e1 to e2 via e3. 
Take Figure 3 as an example. We can observe that the road 
segment B is passed by Trajectory1 form road segment D to road 
segment A. Both Trajectory2 and Trajectory3 pass along the road 
segment C form road segment D to road segment A. Accordingly, 
STr(D, A, B) is {Trajectoy1}, and STr(D, A, C) is {Trajectory2, 
Trajectory3}. 

Definition 5. (Trajectory Set with Temporal Constraint) Given 
a time slot ts of a day, such as 17:00~19:00, the Trajectory Set 
with Temporal Constraint (denoted as TTr(ts)) is the set of 
trajectory of which timestamp of start point belongs to ts. 

Take Table 2 and Figure 3 as an example. Table 2 shows the 
timestamp of start point of each trajectory in Figure 3. 
Accordingly, TTr(6:00 ~ 8:00) is {Trajectoy2}, and 
TTr(17:00~19:00) is {Trajectory1, Trajectory3}. 

 
Table 2. Timestamp of start point of each trajectory 

Trajectory Timestamp of start point 
Trajectory1 17:23:51 
Trajectory2 07:28:16 
Trajectory3 18:41:23 

 
According to trajectory set with spatial constraint and 

temporal constraint, we can easily determine the spatial-temporal 
centrality of a given road segment. As mentioned earlier, most 
taxi driver is very experienced such that they would try to avoid a 
bridge road segment in their route. Here, the bridge road segment 
is the road segment which connects two disconnected sub road 
networks. Therefore, their routes can reflect the best cases of 
dynamic of road segment. In other word, the bridge road segment 
which is passed by the route must be necessary for connecting the 
source and destination of the route.  Accordingly, we utilize taxi 
trajectory for estimating Spatial-temporal centrality, called 
Spatial-temporal Betweenness (ST-Betweenness). Given a road 
segment e and a time slot k, the ST-Betweenness is formally 
defined as follows: 

ST -Betweenness(e,  k) =
STr(s, t,e)

s≠e≠t∈E
∪ ∩TTr(k)

TTr(k)
 (3) 

Based on our proposed spatial-temporal betweenness, every 
road segment could be evaluated the betweenness centrality in 
spatial-temporal way. Then we could utilize the temporal 
condition for analyzing the road segment dynamics. 

4.2.2 Spatial-temporal Betweenness Correlation 
Since a path of a route is composed by many road segments, 

the relation among the dynamics of road segments plays a crucial 
role for map-matching task. As the result, relation of dynamic of 
each pair of road segments could be utilized for improving the 
map-matching method. To do so, we can use the correlation of the 
ST-Betweenness of each pair of road segments for representing 
their relation of dynamic. As mentioned earlier, our proposed ST-
Betweenness is sufficiently able to reflect the dynamic of road 
segment. Thus, considering the ST-Betweenness correlation is 
sufficiently able to reflect the relation of dynamic of road segment. 
The ST-Betweenness correlation (ST-Correlation) is formally 
defined as follows: 
ST -Correlation(e,  e ') =

n X(e)•X(e ')( )− X(e) 1 X(e ') 1

(n−1) X(e) 2( )
2
− X(e) 1( )

2
(n−1) X(e ') 2( )

2
− X(e ') 1( )

2
,
 (4) 

where X(e) = <ST-Betweenness(e, 0:00~1:00), …, ST-
Betweenness(e, 23:00~24:00)> which indicates the vector of ST-
Betweenness of e, n indicates number of dimensions of the vector 
of ST-Betweenness, and ||x||p indicates the p-norm [26] of e. 

4.3 Modular Road Network Detection 
As mentioned earlier, modularity optimization [15] provides 

a good solution for divide a network in to several sub-networks 
according to the strength of division of the network into the sub-
networks. In other word, the traditional modularity optimization 
trends to divide a network such that all sub-network are highly 
connected, and connectivity between each pair of sub-network is 
as low as possible. Therefore, estimation of connectivity plays 
crucial role in the modularity optimization. Accordingly, the 
traditional modularity optimization is always given an objective 
function Q shown as formula (5) which is utilized to address the 
quality of modularity structures.  

[ ],),()(
2
1
∑ ×−=
ij

jiijij CCPA
m

Q δ
 

(5) 

where the sum runs over all pairs of vertices, A is the adjacency 
matrix, m is the total number of edges of the graph, and the 
δ(Ci,Cj) is an indicator function which indicates whether i and j 
are in the same module. The Pij represents the excepted number of 
edges between vertices i and j in the null model. Here, the null 
model is a probabilistic model for estimating the expectation of 
number of edge(s) which links i and j.  In other word, the Pij can 
reflect the how strong the two vertices trend to be connected. 
Furthermore, the matrix P also can influence the result of 
modularity optimization.  

As mentioned in the section of Introduction, the spatial-
temporal dynamic of each road segment play important role for 
decomposing road network. In addition, the ST-Betweenness can 
reflect the spatial-temporal centrality of each road segment, and 
the M-Velocity is able to reflect the margin of the road segment’s 
traffic time. Therefore, we can utilize both the ST-Betweenness 
and the M-Velocity to estimate the null model of modularity 
optimization task. Before introducing the definition of the spatial-
temporal dynamic based on our proposed ST-Betweenness and M-
Velocity, we first describe the formal definitions for illustrating 

 
Figure 3. An Example of Trajectory Set 



the spatial-temporal dynamic based on our proposed ST-
Betweenness and M-Velocity: 

Definition 6. (Average M-Velocity) Suppose we divide a day 
into n time slots {ts1, ts2, ts3, …, tsn} (i.e., the dimension of the 
dynamic vector is n). Given a road segment e, the Average M-
Velocity is formally defined as follows: 

Average M -Velocity(e) = 1
n

M -Velocity(e,  tsk )
k=1

n

∑
 

(6) 

Definition 7. (Average ST-Betweenness) Suppose we divide a 
day into n time slots {ts1, ts2, ts3, …, tsn} (i.e., the dimension of 
the dynamic vector is n). Given a road segment e, the Average 
ST-Betweenness is formally defined as follows: 

1
n

ST -Betweenness(e,  tsk )
k=1

n

∑
 

(7) 

Accordingly, we formally define the spatial-temporal 
dynamic based on our proposed ST-Betweenness and M-Velocity. 
Given a road network G = (V, E), the spatial-temporal dynamic 
matrix (D|V|×|V|) is shown as follows: 

D[i, j]= (Average M -Velocity(ei, j ))
Average  ST -Betweenness(ei, j ),  (8) 

where the ei,j is the edge which indicates the vertex vi link to vj. As 
mentioned earlier, the spatial-temporal dynamic of each road 
segment can be utilized for decomposing road network. As the 
result, we can treat the spatial-temporal dynamic matrix as the 
matrix P shown in the formula (5). To decompose the whole road 
network, we perform the modularity optimization algorithm [15]. 
As the result, the whole road network can be decomposed into 
several small road networks. The road segments that connect 
different sub-networks are called outer-module road segments, 
and others are called inner-module road segments. 

5. THE TWO-PHASE MAP MATCHING 
With the spatial-temporal metrics and modularity of road 

network, we are able to describe our two-phase map-matching 
method. The first phase, called module-matching phase, is to 
divide the GPS trajectory into several sub-trajectories according to 
the result of decomposition of road network. The second phase, 

called inner-module map-matching phase, is to match each sub-
trajectory onto the road in each small road network as shown in 
Figure 4. 

5.1 Module-Matching Phase 
 In the module-matching phase, we focus only on the outer-

module road segments. We try to match the input trajectory onto 
the outer-module road segments. Since the network size of outer-
module road segments should be relatively small compared with 
that of whole network, the density of the network of outer-module 
road segments should be much lower. Therefore, we can use 
straightforward method for dealing with this task, such as the 
geometric-distance-based matching. For each GPS point of the 
input trajectory, we match it onto the nearest intersection of road, 
i.e., we directly match a GPS point on the nearest vertex which is 
predecessor or successor of an outer-module road segment. As 
shown in Figure 4(b), the GPS points of the trajectory should be 
matched on the vertices 2, 7, 9, 11, 16, and 23. 

5.2 Inner-Module Map-Matching Phase 
After module-matching phase, we perform a global map-

matching algorithm, proposed by Lou et al. [14], on a sub-
network and use the part of the GPS trajectory which belong to 
the sub-network as the input of the algorithm as shown in Figure 
4(c). In the map-matching algorithm, the core idea is to define a 
matching score which can represent the goodness of matching the 
GPS trajectory onto a candidate path. In [14],  the top k nearest 
road segments of a GPS point is selected to form candidate set of 
GPS point. Accordingly, a candidate graph G’ (V’, E’) is able to 
be generated for input trajectory. Given a trajectory T: p1 → …→ 
pn. V’ is a set of candidate points for each GPS point, and E’ is a 
set of edges representing the shortest paths between any two 
neighboring candidate points, as shown in Figure 5.  As the result, 
map-matching problem can be formulated as the maximum score 
path searching proem, and the definition of matching score can be 
estimated by the sum of the score of edge of path. 

As mentioned earlier, the road dynamic can fully be 
considered only if using our proposed spatial-temporal metrics, 
i.e., ST-Betweenness, ST-Correlation and M-Velocity. Thus, with 
the spatial and temporal mining above, we are ready to modify the 
matching score of Lou et al.’s map-matching algorithm used in 
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the result matching component. For each edge x→y of the 
candidate graph, our scoring function is defined as follows:  

F(x→ y) =GeoScore(y)×CorrScore(x, y),  (9) 

where the GeoScore(y) represents the how geographically close 
between the GPS point and its candidate road segment y, and the 
CorrScore(x, y) indicates how similar between the two candidate 
road segments, x and y. Accordingly, we formally define the 
GeoScore(y) and the CorrScore(x, y) based on ST-Betweenness, 
ST-Correlation and M-Velocity, respectively. 

Before introducing the GeoScore, we first describe the 
formal definitions for illustrating the GeoScore: 

Definition 8. (Reference GPS Point of a Candidate Road 
Segment) Given a Candidate Road Segment y, the Reference GPS 
point of y denoted as Gp(y) is the GPS point of which candidate 
set contain the road segment y.  

Based on the definition of reference GPS point of a candidate 
road segment, the GeoScore is formally defined as follows: 

GeoScore(y) = 1
S(y) 2π

e
−
1
2

x
S(y)
"

#
$

%

&
'
2

dx
r

∞

∫ ,  (10) 

where r is the Euclidean distance between the GPS point and its 
candidate road segment y, and the S(y) indicates the dynamic error 
of GPS. We believe that the GPS error is proportional to the road 
segment’s betweenness and marginal speed. Formally, we define 
the dynamic error s(y) as follows:  

S(y) =M -Velocity(y,k)ST -Betweenness(y,k ),  (11) 

where k is the time slot determined by the Gp(y).  

The core idea of GeoScore is to estimate the how 
geographically close between the GPS point and its candidate 
road segment y by normal distribution with 0 mean and S(y) 
standard deviation. We use the probability P[X > r] of a normal 
distribution to determine the GeoScore. 

Before introducing the CorrScore, we first describe the 
formal definitions for illustrating the CorrScore: 

Definition 9. (M-Velocity of a Path) Given a path from the road 
segment x to the road segment y, the M-Velocity of the Path is 
formally defined as follows: 

µ(x, y) = 1
n

M -Velocity(ek,  ts)
k=1

n

∑ ,  (12) 

Definition 10. (Variance of M-Velocity of a Path) Given a path 
from the road segment x to the road segment y, the variance of M-

Velocity of the Path is formally defined as follows: 

σ 2 (x, y) = 1
n

M -Velocity(ek,  ts)−Path M -Velocity(x, y)( )2

k=1

n

∑ ,  (13) 

Definition 11. (Sampling Average Velocity of a Path) Given a 
path from the road segment x to the road segment y, the Sampling 
Average Velocity of the Path is formally defined as follows: 

sv(x, y) = dist(Gp(x),Gp(y))
Δt(Gp(x),Gp(y))

 (14) 

where the dist(*,*) indicates the Euclidean distance and Δt(*,*) 
indicates the time interval between the two GPS points. 
Definition 12. (Standard difference between Sampling 
Velocity and M-Velocity) Given a path from the road segment x 
to the road segment y, the Standard difference between Sampling 
Velocity and M-Velocity is formally defined as follows: 

d(x, y) = sv(x, y)−µ(x, y)
σ 2 (x, y)

n

,  
(15) 

where the path x→y = {x=e1, e2, e3,…,en=y}. 
Based on the above definitions, the CorrScore is formally 

defined as follows: 

CorrScore(x, y) = 1

nB(1
2
, n
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(16) 

where n is the length of the shortest path from x to y, and B(*,*) is 
the beta function [24]. The core idea of CorrScore is to estimate 
the how similar between the two candidate road segments, x and y, 
in spatial-temporal way. We believe that the similarity between 
two candidate road segments is proportional to the deference 
between the Sampling Average Velocity and M-Velocity of the 
shortest path communicating the two candidate road segments. 
Thus, we adopt the one-sample t-test to evaluate the theoretical 
deference between the Sampling Average Velocity and M-
Velocity of the Path. The physical mean of the radix part is the p-
value of the one-sample t-test [27]. Besides, we utilize the ST-
Correlation to control the power of the p-value. Since the p-value 
is probability, it belongs to the interval from 0 to 1. Thus, the 
power part of the CorrScore is set as –ST-Correlation.  

According to GeoScore and CorrScore, our scoring function 
of each edge of the candidate graph is well defined. As mentioned 
earlier, the score of a path in the candidate graph is the summation 
of all the scores of edges of the path. Therefore, the map-matching 
result can be computed by searching a path with maximum score 
in the candidate graph. To search the path with maximum score, 
we perform the FindMatchedSequence algorithm that is proposed 
by Lou et al. [14]. 

6. EXPERIMENTS 
In this section, we conduct a series of experiments to 

evaluate the performance for the proposed UrbMatch using the 
real road network of Shanghai collected from Open Street map 
[25] and a real trajectory set obtained from WnSN, SJTU [28]. All 
the experiments are implemented in Java JDK 1.6 on an Intel 
Xeon CPU W3520 2.67GHz machine with 24GB of memory 
running Microsoft Windows win7. We first describe the data 
preparation on the real road network of Shanghai collected from 
Open Street map [25] and a real trajectory set obtained from  

Figure 5. An Example of Candidate Graph 



WnSN, SJTU [28]. Then, we introduce the evaluation 
methodology. Finally, we show our experimental results for 
following discussions. 

6.1 Evaluation Dataset and Methodology 
The road network of Shanghai collected from Open Street 

map [25]. The road network consists of 65,882 road segments and 
48,838 intersections. That is, if we use a directed graph G(V,E) to 
represent it, the size of vertex set V is 48,838, and the size of edge 
set E is 65,882. We use the trajectory data from GPS-equipped 
taxis of Shanghai city, which were collected by Wireless and 
Sensor networks Lab (WnSN), Shanghai Jiao Tong University 
[28]. However, the trajectories are not labeled true path, i.e., there 
is no ground truth for map-matching task. Thus, the trajectory data 
from GPS-equipped taxis of Shanghai city is only used for ST-
Miner. As the result, we use a vehicle movement simulation 
model [12] to form the testing dataset of trajectory. 

The follows are the main measurements for the experimental 
evaluations. The Accuracy by Number (AN) and Accuracy by 
Length (AL) are defined as Equations (17) and (18).  

trajectorytheofsegmentsroadall
segmentsroadmatchedcorrectlyAN
      #
    #

=  (17) 

AL = total  length of  correctly matched  road  segments
total  length of  all  road  segments of  the trajectory

 (18) 

6.2 Experimental Results 
We divide the experiment into two parts: 1) Impact of Road 

Network Decomposition and 3) Comparison of Existing Map-
Matching Method. We examine the impact of Road Network 
Decomposition in terms of running time, Accuracy by Number 
and Accuracy by Length. For the comparison of existing map-
matching method, we compare our method with ST-Matching [14] 
in terms of Accuracy by Number and Accuracy by Length.  

6.2.1 Impact of Road Network Decomposition 
Figure 6 (a) shows the Accuracy by Number and Accuracy 

by Length of our map-matching method with/without road 
network decomposition under various sizes of candidate set. We 
can observe that all results of our map-matching method without 
road network decomposition are slightly accurate than that with 
road network decomposition. The reason is that the method 
without road network decomposition consider whole road network 
for map-matching task. Therefore, it would be more accurate. 
However, it just achieves about 5% accuracy higher than the 
method with road network decomposition. But, if we consider the 
running time shown in Figure 6(b), we can find that such tiny 
accuracy gain would cost about 6 times as much running time. 
Accordingly, our road network decomposition is still a useful and 
necessary component in urban map-matching.  

 
Figure 6. Impact of Road Network Decomposition under 

Various Sizes of Candidate Set 

Besides, we also can see that the size of candidate set would 
not affect our method. The reason is that our spatial-temporal 

information is mined from historical trajectory dataset. It can 
easily distinguish the true path form the candidate set. 

6.2.2 Comparison of Existing Map-Matching Method 
Figure 7 (b) shows the Accuracy by Number and Accuracy 

by Length of our map-matching method and several state-of-the-
art map-matching methods, Liu et al.’s Finite-State-Machine-
based Map-matching method [13], Lou et al.’s ST-Matching [14] 
and  Raymond et al.’s Hidden-Markov-Model-based Map-
matching method [18], under various sizes of candidate set. We 
can observe that all results of our map-matching method are 
slightly accurate than ST-Matching. The reason is that the all 
these state-of-the-art map-matching methods partially consider 
spatial-temporal information to help improve accuracy of map-
matching task. Our map-matching method fully and deeply 
addresses spatial-temporal information mining for improving 
accuracy of map-matching task. Therefore, our method would be 
more accurate than ST-Matching which is one of state-the-art 
global map-matching mehtod.  

 
Figure 7. Comparison of Existing Map-Matching Methods 

Besides, as shown in Figure 7(a), we can find that our 
method is eleven times faster than Finite-State-Machine-based 
Map-matching method [13] which is state-of-the-art local map-
matching method. Although the local map-matching methods are 
efficiency-oriented, our UrbMatch significantly outperforms the 
Finite-State-Machine-based Map-matching method [13]. The 
reason is that our method involves the road network 
decomposition component. 

7. CONCLUSIONS & FUTURE WORK 
In this paper, we propose a new multi-track map-matching 

algorithm called Urban Map-Matching (UrbMatch) to match 
urban GPS data onto a digital map of a city. The map-matching 
method fully and deeply addresses spatial-temporal information 
mining for improving accuracy of map-matching task. Based on 
mined spatial-temporal information, we decompose the whole 
road network for speeding up the map-matching task. We propose 
a two-phase map-matching algorithm which employs decomposed 
road network and mined spatial-temporal information to generate 
a candidate graph, from which a sequence of matched results with 
highest sum of score is identified as the matching result. The 
experiment results demonstrate that our UrbMatch significantly 
outperforms state-of-the-art map-matching method, ST-Matching 
[21], in terms of accuracy and running time. In our future work, 
we plan to deal with the problem that multi-track map-matching 
algorithm is sensitive to the GPS sampling rate. 
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