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Abstract

When an application reads private / sensitive infor-
mation and subsequently communicates on an output
channel such as a public file or a network connection,
how can we ensure that the data written is free of private
information? In this paper, we address this question in a
practical setting through the use of a technique that we
call “data sandboxing” . Essentially, data sandboxing is
implemented using the popular technique of system call
interposition to mediate output channels used by a pro-
gram. To distinguish between private and public data,
the program is partitioned into two: one that contains
all the instructions that handle sensitive data and the
other containing the rest of the instructions. This parti-
tioning is performed based on techniques from program
slicing. When run together, these two programs collec-
tively replace the original program. To address confi-
dentiality, these programs are sandboxed with different
system call interposition based policies. We discuss the
design and implementation of a tool that enforces con-
fidentiality policies on C programs using this technique.
We also report our experiences in using our tool over
several programs that handle confidential data.

1 Introduction

Sandboxing (or run-time monitoring) is a powerful and
practical technique to protect an application that receives
input from external sources. Often, these sources are not
trustworthy and may send input that may victimize these
programs. By monitoring the code for adherence to a
specific policy, sandboxing prevents these attacks from
being successful.

The two most common methods of implementing
sandboxing are in-line reference monitoring (where
code that implements the monitor is embedded in the
same application) and interface interposition (where the

monitor code is implemented to run at a specific inter-
face boundary). Inline reference monitoring can tech-
nically enforce a richer set of policies when compared
to interface interposition, as policies for inline monitors
can specify constraints about internal variables of a pro-
gram. An example of such a policy constraint is “the
variable numfiles representing the number of files cur-
rently opened by a program never becomes more than
50”.

For C programs, system call interposition, an in-
stance of interface interposition, is the preferred ap-
proach for the main reason that the technique is non-
bypassable. Programs that receive untrusted input can
be subjected to running arbitrary code due to the absence
of strong memory protection in the C language. Such
arbitrary code can bypass the checks placed in the in-
line reference monitor. Given the fact that the operating-
system kernel / application boundary can be monitored
and security-related actions of programs must be ulti-
mately effected via system calls, system call interposi-
tion does not usually suffer from the non-bypassability
problem when implemented correctly.

System call interposition has therefore enjoyed a lot
of attention as a practical technique in several earlier
works [8, 1, 13, 17, 14, 7]. Mechanisms for implement-
ing policies based on system calls is also a well-studied
topic. For instance, the policy listed in the above exam-
ple can be tracked using a finite-automata based moni-
tor that tracks whether “the number of active open calls
made by the program is less than 50”.

The simplicity of policy enforcement in system call
interposition comes at a cost. Monitors written for this
approach cannot reason about the internal data-flow in a
program, since they operate exclusively at the applica-
tion/OS kernel boundary. Consequently, they tend to be
coarse-grained and cannot enforce policies such as con-
fidentiality of private data whose enforcement depends
on the internal data flow in the program.



To illustrate this further, let us consider a confiden-
tiality policy for a program that plays music files. It is
not unusual to find that such programs periodically con-
nect to an external server, possibly to obtain commercial
information or update information. The user considers
her music files and preferences sensitive and therefore
these are not to be sent to the server. To prevent sensitive
information from escaping the program, the sandboxing
policy over system calls will need to prevent any write
operations to public output channels such as files and
network connections. This policy will definitely prevent
information from leaking, but is very likely to trigger a
loss of functionality with respect to these output opera-
tions, even if they involve non-sensitive data.

The new approach presented in this paper, called data
sandboxing, combines the relative merits of inline refer-
ence monitoring (ability to incorporate data-flow infor-
mation in policies) with the practicality of system call
interposition (i.e., non-bypassability and easier policy
development). The high level idea used in the approach
is similar to program slicing [20]. A slice consists of in-
structions of a program that are affected by a set of vari-
ables from some program point, known as the slicing
criterion. (We note that our approach always proceeds
in the forward direction, starting from the criterion, and
our notion of slices is slightly different from the standard
notion, as explained in the next section). We identify in-
structions of the program that act on sensitive informa-
tion. Based on this analysis, we partition the original
program to meet the requirements of the confidentiality
policy.

The application of this partitioning technique to the
enforcement of a broad class of information flow confi-
dentiality policies is discussed in this paper. These poli-
cies prevent private information from leaking from the
program. Our technical presentation is focused on en-
forcement of these policies. Enforcement of other poli-
cies that gain precision by using data-flow information
in programs is very much possible using our approach.
However, we do not discuss them further in this paper.
In addition, confidentiality policies also include lattice
based multi-level policies [2], but our focus here is on
dealing with only two levels: “sensitive” (high) or “pub-
lic” (low). We also do not consider the effects of covert
channels such as implicit flows, timing or storage chan-
nels [16]. As remarked in [24], additional research in
this field is needed to make these techniques applicable
to a wide range of programs.

While partitioning can be done manually for each
program, it is not a viable option, considering the sake
of both correctness and usability. Therefore, we have

created a tool that partitions C programs in an automatic
manner. With the help of our tool, we have been able
to successfully enforce such policies on several applica-
tions. Using our approach, users who are programmers
can freely modify programs running in their systems in
order to guarantee confidentiality. End-users can freely
benefit from these changes.

Creating separate programs for security reasons may
seem to be a heavyweight solution, but is not new to
the security community. The idea of privilege separation
is based on creating separate programs to provide secu-
rity assurances, as illustrated by the design of qmail [3]
(a very widely used mail transfer agent), and in parti-
tioning of programs such as OpenSSH [15, 4]. These
projects also illustrate that security assurances outweigh
any concerns due to overheads imposed by the partition-
ing solution. Our approach uses such partitioning tech-
niques for enforcement of confidentiality policies.

This paper is organized as follows: Section 2 gives a
technical overview of the approach and the various com-
ponents of our system. Section 3 describes the design
and implementation of our core analysis engine. The
results of the analysis are used in the partitioning pro-
cedure described in Section 4. Section 5 describes our
experience in using the tool for various free/open source
utilities. Section 6 discusses related work. In section 7
we conclude.

2 Approach overview

Our approach involves splitting the original program
into two partitions. We call these partitions public zone
and private zone. The runtime view of these new pro-
grams is shown in Figure 1 (a). The private zone is the
set of instructions of the original program that operate
on potentially sensitive data. The public zone consists
of all other instructions. The original program execu-
tion is substituted with the execution of these two pro-
grams. Whenever the public zone needs to read or pro-
cess sensitive data, it initiates a domain transfer opera-
tion, which involves some IPC operations, resulting in
a logical transfer of control to the private zone. These
communication operations do not involve sending or re-
ceiving sensitive data. The private zone proceeds to exe-
cute code that processes sensitive input. Once operations
on sensitive objects are done, or when non-sensitive op-
erations need to be performed, a domain transfer is per-
formed again to the public zone. At any further point
in the program, if access to sensitive information is re-
quired, another pair of domain transfers happen.

As noted in the figure, the public zone is disallowed
from reading sensitive input, while the private zone
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Figure 1. Approach overview

is disallowed from writing to public output channels.
Therefore, the private zone is the only component that
receives, processes and stores sensitive data handled by
the program. It thereby retains sensitive data completely
within its address space.

The partitioning of the program into two components
provides the following two main benefits:

e Controlling sensitive data availability. By our de-
sign objective, the private zone only runs code that
is needed to process sensitive information. Sensitive
data is shielded from the public zone, as it runs in
a different address space. Therefore, any bugs (such
as buffer overflows) in other routines of the public
zone (i.e., when performing other non-sensitive pro-
gram tasks) will not result in unauthorized disclosure
of sensitive information. For example, this approach
will prevent an attack on an ssh server that targets to
steal the server’s master secret (its private key).

e Appropriate confinement for different zones. The
private zone is automatically confined such that it
cannot write to public locations, while the public
zone is disallowed from reading any sensitive chan-
nels. This is impossible to achieve in the case of
the original (monolithic) program without breaking
it or losing some functionality. In our music player
example given above, the operations related to read-
ing (sensitive) music preferences are performed in
the private zone, while network operations (that in-
volve sending and receiving non-sensitive data) are
performed in the public zone. This allows the music
player example to be successfully used by the user,
while ensuring that user’s privacy is never violated.

2.1 System overview

Figure 1(b) shows the basic architecture of our ap-
proach. A security policy is provided along with the pro-

gram to an analyzer. The analyzer performs data flow
analysis and deduces a list of variables (for every pro-
gram point) that may potentially contain sensitive val-
ues. It then performs a second analysis where it iden-
tifies the set of sensitive instruction regions in the pro-
gram. These regions are then taken by the partitioner to
create the public zone and private zone with appropriate
transfer routines that enable the domain transfer opera-
tion between these programs. The resulting programs
are confined using system call interposition policies at
runtime. We describe these operations in the following
sections.

2.2 Security Policy Specifications

In our approach, security policy specifications specify
the confidentiality requirements on the original program.
There are two parts to a policy specification: a runtime
part that is used to confine the program during its execu-
tion, and a static part that is used by our tool to analyze
and partition the program.

Runtime confinement policy These are policy speci-
fications over the alphabet of system calls that are en-
forced on the application when it is executed. Separate
policies are written for the public zone and the pri-
vate zone respectively to meet our confinement objec-
tives. Specifying and enforcing such policies is fairly
standard, as illustrated in several past works such as [§]
and [18]. We do not discuss them any further in this

paper.

Policy specification for static analysis Static policy
specifications are used by our analyzer to infer the flow
of sensitive information in the program. These are
written based on function prototypes. Let us say int
f (a,b) is a function, where the parameters a and b
are passed by value. Then the policy specification for £
may be stated as follows: f (high, -) —--> high



and £ (low, -) --> low. This means that the re-
turn value of f is sensitive if and only a is sensitive.
Similar specifications are provided for values provided
by reference as they act as outputs. Such input output
specifications are used in the following cases:

e Sensitive input routine specifications User input en-
ters a program using a function call or a system call
that reads from an input channel. For instance, in
the su program, the function getpass reads user
input. For this function, while the input is not sensi-
tive, the output is. The analyzer requires these inputs
for propagation of sensitive values further in the pro-
gram. These are specified using the same notation
that is used for system calls that is described below.

e System call specifications System calls are not
analyzable, and hence our approach requires us
to specify the input/output semantics of system
calls. For instance, a int read(int fd, void
x*buf, size_t count) system call that has the
following policy specification: low read (high,
low/high, low). It suggests that if the first
argument (the file descriptor) is a sensitive value,
then the second argument buf (passed by reference)
points to a sensitive (high) value at the end of the
read operation. Similar specifications are added for
external library calls that are not analyzed by our
tool. Note that we do not require specifications for
all system or library calls, but for only those that are
used to process sensitive information.

Occasionally, the policy may need to refer to the in-
put program line numbers to annotate the sensitive in-
put processing routines. A typical example is an open
system call whose file name argument is not statically
available. In this case, the programmer needs to provide
additional location information of the call in the source

file as part of the policy.
/x . Lox/
1. int pin, cpin, flag;
2. pin = getinput();
3. cpin = crypt(pin);
4. fdl = open(SECRET-FILE, .. );
5. f£fd2 = open(LOG-FILE, ..);
6. stored-pin= read-from-file(£fdl,..);
7. 1if (cpin == stored-pin) flag = 1;
8. else flag = 0;
9. write(£fd2,..);
[x . Lok /

We use the above toy example as a running illustra-
tion of the ideas used in this paper. It is a simple au-
thentication routine of a program that accepts a 32 bit
PIN number as input, compares it to the stored PIN and
writes the result of authentication to a public log file.

The policy specifies that the input function
getinput returns sensitive information, and
SECRET-FILE 1is sensitive (high), and LOG-FILE
is public (low). A correct enforcement of this policy
will prevent the PIN information from going to the log
file.

3 Analysis

The objective of the analysis engine is to identify in-
struction regions of the program that handle sensitive
information. Once this analysis is done, the set of sen-
sitive instruction regions is given to the code generation
step that partitions the code into public zone and pri-
vate zone. As mentioned earlier, we ignore the effect of
implicit flows [16] and any covert channels arising out
of timing or storage channels. Also, we wish to point
out the distinction here between the objectives of our
analysis module and those that use static analysis for in-
formation flow. The objective of the analysis engine is
not policy enforcement (i.e., ensuring that sensitive data
does not get written to public output channels). As al-
ready noted, that such analysis for enforcement is not re-
liable in the context of C programs and we require sand-
boxing. The purpose of the analysis is to merely identify
the set of sensitive instruction regions of the program.

3.1 Basic steps

The analysis proceeds with the following steps:

1. Propagate sensitive values across the program and
identify all potential variables that may receive sen-
sitive information.

2. Identify the set of instructions that act on these vari-
ables.

3. Logically group these instructions into sensitive in-
struction regions to be executed in the private zone.

The analyzer begins by using policy information to
identify the context function, which is a function in the
program which make use of the sensitive input routines.
There can be many such functions, but for the purposes
of this discussion we limit ourselves to one function. We
start with a set of sensitive variables that is initialized
from the policy. For each program point p in the context
function, the analyzer computes a set VP of sensitive
variables. This computation is performed for each loca-
tion based on the semantics of the instruction. This is
done using standard information flow rules for various
program constructs. If a branch is encountered, the an-
alyzer maintains and updates independent VP sets for
each point p along each path, thus maintaining path sen-
sitivity. When these paths merge, the union of these sets



is used for the merge point. At a call instruction, the
analyzer examines the called function. If the definition
is available, it analyzes the function and computes the
sensitivities of any arguments passed by reference and
return values. In the absence of a definition or a pol-
icy specification for a particular routine (i.e., an external
function) and if any argument to the function is sensi-
tive, then the analyzer considers the return value and any
arguments passed by reference as sensitive.

For the example program, based on the input
policy and analysis, variables pin, cpin, £d1,
stored-pin are sensitive at various locations. There-
fore, the values held in these variables at these locations
need to be protected.

The next step is to identify the set of instructions
that handle sensitive variables. (In our implementation,
these steps are done concurrently.) If an instruction or a
statement at location p uses a variable that belongs VP,
that instruction is marked. In our example program, in-
structions in lines 2, 3, 4, 6, 7 and 8 are marked. If
the marked instruction is a function call then the corre-
sponding function definition is also included in the pri-
vate zone. A transitive closure of the set of such callees
is computed and all the definitions in this set are marked.

Block creation One way to partition code that han-
dles sensitive data, as opposed to the above marking ap-
proach, is to use a conventional forward slicing tech-
nique. While this approach is likely to yield programs
that are self-contained, they will include instructions that
may exclusively deal with non-sensitive variables. This
may eventually lead to a bloat in the size of the child
program. We have instead chosen to identify regions of
instructions that exclusively handle sensitive data.

The analyzer gathers these sets of sensitive instruc-
tions to identify sensitive code regions or blocks. A sen-
sitive code region comprises of one or more sequential
marked instruction(s) / statement(s). If control enters
the first instruction of the region, it exits only through
the last instruction. There can be several such regions.
When the analyzer encounters the first marked instruc-
tion, it begins a new block. Every consecutive marked
instruction is added to the block. The first non-marked
instruction encountered marks the completion of the cur-
rent sensitive code block. Any intervening unmarked in-
struction would therefore result in at least two blocks.
A branch is usually considered the start of a new block
unless the entire branch statement itself is marked.

For our example, two blocks are created. The first
block contains instructions in lines 2, 3 and 4 and the
second one contains line 6, 7 and 8. Therefore, the op-
eration that opens the (public) LOG-FILE will be per-

formed in the public zone.

Analysis for state exchange between zones While
blocks provide the needed abstraction, it is also neces-
sary to maintain program state across the public zone
and private zone. The analyzer uses a structure Vg to
keep track of the variables that are used in the instruc-
tions of the block B. This information is necessary to
generate code that provides the private zone with these
runtime values. If Vi;,.+ is the set of sensitive variables
at the start of the block, then the set difference of V5 and
Vistart 18 the set of values that needs to be communicated
at runtime.

When a block finishes execution, the program state
has to be communicated back to the public zone. By
definition of the private zone, note that no sensitive val-
ues are needed by the public zone. Hence, only values
of updated non-sensitive values need to be returned back
to the public zone. If V.,  is set of sensitive variables
at the end of a block, then the set difference of V5 and
Vena is the set of values that need to be returned to the
parent.

Declassification Cryptographic one-way functions
such as crypt are a special case. They do take sensitive
input, and return output that cannot be used to recover
the input. Any program analyzer cannot automatically
deduce this to be the case. Such automatic inference
can be shown to be undecidable by establishing a
reduction from the halting problem. In this situation, the
analyzer needs to know the input/output relationships of
these functions to downgrade the output value, thereby
performing declassification [16]. Another case that
the analysis handles automatically is the assignment of
constant values to variables. In this case, a sensitive
variable becomes non-sensitive. Declassification and
constant assignment control the growth of the V; set of
sensitive variables in our approach.

Use of arrays / structures Currently, an entire array
or structure is considered sensitive or non-sensitive as a
whole object.

4 Partitioning

Generation of private zone Once the set of sensitive
blocks is analyzed, the programs corresponding to the
public zone and the private zone need to be created. One
intuitive way to generate the private zone is to create
wrapper functions that enclose the sensitive instruction
regions. Whenever a domain transfer is initiated by the
public zone, these functions can be invoked by passing
them all the non-sensitive values from the public zone.

A problem arises with such an approach concerning



how sensitive variables are shared between these wrap-
per functions. Again, there are two options in this case:
a) have them in a scope that is global to all these func-
tions or b) restore these values as a first step in every
wrapper function, and save them on exit. However, the
first option has a disadvantage of making the sensitive
variables accessible to many other functions that don’t
require them. The second option has an obvious perfor-
mance penalty. Therefore, the approach we have taken
is to create blocks within the function itself. The sen-
sitive variables that are shared across blocks can now
be at the function scope. We use the facility offered by
the CIL [10] tool that lifts all local declarations (includ-
ing block-level) to the function scope level. The pri-
vate zone is thus constructed with several blocks that
are present in the context function, along with the cor-
responding local and global variables required by these
blocks.

Generation of public zone The public zone program
includes all the statements in the original program, with
the exception of the sensitive blocks. This program is
created with instructions to fork the private zone pro-
gram and set up a communication channel. Note that,
such instructions must be inserted before any sensitive
information enters the original program. In the public
zone, these instructions must precede any node where
a domain transfer operation is initiated to the private
zone. This can be achieved by placing these operations
in a dominator node. The first instruction in the func-
tion is clearly a dominator where we have placed these
instructions. Similarly the operation for waiting for the
private zone needs to be done on a post-dominator node.
For functions with multiple return program points, the
one-return transformation [10] is a way of getting the
post-dominator point. The new public zone program
now replaces the original program executable.

Generation of checks that makes use of runtime in-
formation. Whenever the private zone is not process-
ing sensitive information, it blocks on the communica-
tion channel for the public zone to initiate the domain
transfer operation. It needs to know the right block to
execute when it receives a message. However, this infor-
mation is not statically available, as the parent can ini-
tiate a domain transfer from several possible locations,
hence we cannot generate static target labels for the pri-
vate zone. To solve this problem, we generate code that
(at runtime) determines the target block to be executed.
The public zone supplies this information at runtime, as
it knows the block to be executed. The private zone on
receiving this message finds the right block to execute.
Lines 5 and 6 in the transformed example show the gen-

erated code.
1. int pin, cpin, flag;

2. START:

3. msg = read_msg_from_parent();

4. if (msg == TERM) exit (0);

5. else if(msg == BLK1l) goto Blockl;
6. else if(msg == BLK2) goto Block2;
7. Blockl:

8. read_n_demarshal (cpin, pin);

9. pin = getinput();

10. cpin = crypt(pin);

11. fdl = open(SECRET-FILE,.. );

13. goto START;

14.Block2:

15. read_n_demarshal (flag);

16. stored-pin= read-from-file(£fdl,..);

17. if (cpin == stored-pin) flag = 1;

18. else flag = 0;

19. marshal_n_write(flagqg);

20. goto START;

Serialization The exchange of program state informa-
tion between the public zone and private zone is done
by serializing (also known as marshalling) the program
state into a byte array at that program point, and trans-
ferring the result to the private zone. In the private
zone, this byte array is de-serialized to reconstruct the
information about the environment. We have achieved
automatic serialization of a program’s state by generat-
ing stub modules for each data type that is exchanged
during the domain transfer.

In our approach, complex data types such as struc-
tures and pointers are described using a messaging pro-
tocol that describes the individual data types and their
type structure. The message passing is essential for val-
ues that can not be exchanged. For example, a pointer
variable pointing to NULL can not be directly commu-
nicated through its value. Similarly non-null pointer ref-
erences in public zone can be flattened but cannot be
directly used in private zone process. For this reason,
communicating pointer variables requires special treat-
ment. To maintain a pointer variable’s state consistent
during domain transfer, we keep a table in each zone
that maintains a mapping of the pointer’s address in the
other zone.

This procedure is adequate for most recursive data
types such as linked lists and trees that we have tried in
our examples. Our construction works correctly in these
cases and we have manually verified them. However,
more complex data structures may need manual inter-
vention as they may have specific invariant requirements
that cannot be deduced automatically.

Limitations While we believe our approach is general
enough to be applicable to a large class of programs, our



implementation has two main limitations. Both of them
relate to how pointers and aliasing are used in the target
program. The first limitation concerns the use of alias-
ing. Currently our approach treats pointers as data refer-
ences, treating any operations that directly make use of
pointers as references to values. They will be correctly
marked as sensitive. However, the presence of aliasing
(where an object is referred to both by its original name
and its alias) may invalidate this assumption. When-
ever the analysis encounters the possibility of aliasing,
it prompts the user for manual verification. In this case,
we had to perform manual verification of the code gen-
erated for the use of aliasing. Our assumption is valid
for the programs we have tested our tool with. In these
examples, pointers were indeed used as references and
hence our code generation approach was correct. Inte-
gration of points-to-alias analysis algorithms in our ap-
proach will ensure that we correctly identify all sensitive
instructions and avoid such manual verification.

The second assumption concerns the size of objects
referred by pointers. While serializing data to commu-
nicate the public zone state to the private zone, there
are some situations where the sizes of objects pointed to
by pointer data types is not known. In general, track-
ing pointer sizes is hard. One solution is to have fat
pointers that record additional information, such as their
sizes. Another viable solution is to have a shared mem-
ory region between the public zone and private zone
that contains public data, and taking additional measures
to protect sensitive data in the private zone. This will
be explored as part of our future work. For now, the
code generation uses some simple heuristics that make
certain guesses about the nature of the variable being
pointed to. For example, to serialize a variable of type
pointer to char, we use the a runtime sample value of
the strlen() function for the size of the variable. Another
current option we had at hand was to have the user of
the tool explicitly specify the size of the pointed-to vari-
ables. We preferred the first option even though it is a
potentially unsound heuristic, as it seems to be a good
tradeoff to the complexity of specifying individual ob-
ject sizes. We adopted this approach, and followed up
by manual verification for checking pointer sizes. Since
the sizes of code blocks was small (see Figure 3), this
was easily possible.

5 Evaluation

In this section, we describe the results with our prototype
implementation. Our implementation uses the CIL [10]
framework. We have chosen representative examples
from several classes of open source programs: simple

authentication programs, system monitoring and analy-
sis programs, music related utilities that handle sensi-
tive information. Our evaluation section is divided into
three parts 1) policy enforcement evaluation, where we
present the effectiveness of policies in preventing infor-
mation flow 2) performance evaluation and 3) security
analysis of the approach.

5.1 Policy enforcement evaluation

Linux-Monitor is a utility that polls system resources
such as processes and disk partitions at specific inter-
vals of time. It then proceeds to log this information
into system logs or at a remote-server running on port
8881 (syslogd substitute for remote logging). Here we
enforce a policy that prevents linux-monitor from log-
ging to a remote connection when it reads from system
resources considered sensitive by the system administra-
tor. The policy enforcement successfully prevented this
information from being communicated.

Htpasswd is used to create and update flat-files, that
store user names and password for basic authentication
of HTTP users. It calls the crypt routine and then writes
encrypted passwords to a user specified file. Our tool
separates the code handling password information and
enforces a policy that prevents this information from be-
ing written to any other file.

Mediachat is our own implementation that simulates
a media player that allows users to connect to a chat
server while reading and playing music files from their
local disk. It is an example of an application that oper-
ates on sensitive (music preferences) and non-sensitive
data (network chat) at the same time. The policy is to
prevent the list of music files from being communicated
on the network to the server. A typical sandboxing pol-
icy would have prevented the chat application from cor-
rectly functioning. Our data sandboxing approach al-
lowed the chat to proceed while preventing any private
music information from being sent to the network.

chfn, chsh, passwd These are standard Unix admin-
istrative utilities. Our tools successfully partitioned the
authentication code in these programs. We sandboxed
the private zone programs to ensure that sensitive in-
formation is only written to the system password files
(in the case of passwd, chfn and chsh). The sandbox
for the public zone programs need a setuid wrapper, as
these are setuid programs and the ptrace mechanism we
use for user-level system call interposition does not cross
setuid boundaries. A kernel interception mechanism can
handle this situation.



5.2 Evaluation

The performance of the system was analyzed both for
the overall performance and for the domain transfer op-
eration using micro benchmarks. We ran experiments on
a Intel P4 3.4 GHz processor with 2 GB of RAM running
linux kernel version 2.6.9.

Micro benchmark on the domain transfer operation
We measured the base overhead for a domain transfer
between public zone and private zone. This overhead
results from setting up a communication channel and
performing serialization. Of the programs we tested, the
linux-mon program had the worst case domain transfer
overhead. We monitored five different resources and the
time to serialize shared data was 2.86 milliseconds. The
performance penalty for domain transfer operation (cost
of communication setup + serialization and deserializa-
tion as opposed to simply executing instructions in the
original program) was a factor of 6.16.
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Figure 2. Performance Overheads

Overall performance measurements We measured
the overall performance ( public zone + private zone,
combined user + system time, without system call inter-
position) of the transformed programs compared to the
original programs, and the results are shown in Figure 2.
Linux monitor is a continuously running server program
that keeps reading sensitive files and so we could not
use this form of comparison. From the results, we note
that the worst overhead is about 231.5% for htpasswd,
and is primarily due to the new address space creation.
System call interposition techniques at the kernel level
would add about 10-15% overheads.

Performance Improvements Our implementation is
currently not optimized for performance. The major fac-
tors contributing to the overheads are the domain trans-
fer operation and the associated copying of state. Sev-
eral optimizations are possible. The current implemen-
tation uses address spaces for memory isolation. An
intra-address space protection mechanism such as soft-
ware fault isolation [22] can result in much lower over-
heads. Also compiler optimizations such as code motion

Program Orig. | Marked ins # of Avg. #
Name #LOC) #LOC) | Blocks | LOC/block
passwd 2333 193 (8%) 6 4
htpasswd 984 | 240 (24%) 4 12
chfn 1238 | 126 (10%) 1 18
chsh 1138 | 112 (10%) 1 18
Mediachat 335 92 (27%) 2 7

Figure 3. Program size information

can be used to produce fewer state transfers, and live
variable analysis may result in lowering copying over-
heads.

Additional memory overheads Since our approach
creates a new private zone process for every program,
there is an additional memory overhead due to the pro-
cess creation. We chose to measure memory overhead
for to the htpasswd program, as the private zone pro-
cess in this case has the worst case memory consump-
tion both for code as well as data. We inserted a break
point in the code of the private zone, and measured
the resident memory size of the process. The additional
memory required was 2.5 Megabytes. Other programs
listed above tested will consume significantly less mem-
ory than htpasswd.

Program sizes Figure 3 gives a table of the analyzed
program sizes in LOC, the number of marked (sensitive)
instructions in LOC, the number of blocks and the av-
erage block sizes respectively. The actual sizes of the
programs are much larger, the LOC was measured with-
out counting the code from libraries. Also the sizes of
the private zone programs are the sizes of these marked
instructions plus a linked library of around 200 lines of
C code that performs serialization. We observe that the
percentage of instructions that handle sensitive data in
these programs ranges from 8% to 27%. The highest is
for Mediachat, which performs a significant fraction of
its code in handling sensitive (music) data.

5.3 Security analysis of the approach

Our approach also prevents damage from attacks that
subvert the program to gain access to confidential data.
In this case, the (minimal) code that runs in the pri-
vate zone only reads and processes sensitive informa-
tion. The public zone if subverted, thus cannot be di-
rected to read sensitive information. Secondly, the code
that runs in the private zone does not share sensitive
data with the public zone. Also, the communication
channel between the public zone and private zone is a
pipe, which is only available to these two processes and
hence cannot be observed by any local processes acting
on behalf of the attacker. It is possible that the private



zone can have code (derived from the original program)
to have bugs that can be exploited. In this case, we first
note that our approach does not do any worse than be-
fore, as the original program still can be exploited. Sec-
ondly, since the private zone runs the minimal piece of
code required to run sensitive information, as opposed
to the public zone which runs code that does the bulk
of the work of the program, chances of such bugs being
present in the private zone is reduced. Thus the code
that reads confidential data is separate from the remain-
ing processing code, and this mitigates security risks of
losing confidential information.

6 Related work

Sandboxing Sandboxing based approaches [8, 1, 13,
17, 14] involve observing a program’s behavior and
blocking actions that may compromise the system’s se-
curity. This is achieved in most of these works through
system call interposition. This approach is transparent
to the program, and policy enforcement comes without
needing to modify programs. However, the monitor can-
not distinguish between sensitive and public data that is
written in an output channel. Consequently, sandboxing
approaches do not allow program actions that write to
public output channels, and could therefore be limiting
application behavior in many situations. In this work,
we have provided an approach that addresses this prob-
lem.

Static analysis Several static analysis based ap-
proaches [5, 6, 19, 9] have been successfully used for
finding bugs in C programs. However, static analysis
alone cannot be used reliably in policy enforcement for
C programs, as programs can be compromised due to
lack of memory safety. Though our approach uses static
analysis, this is merely done to partition a program. Our
enforcement technique is based on monitoring at the ap-
plication/kernel boundary, and hence is not bypassable.

Information flow analysis There is a long history of
work in information flow analysis of program. Work on
information flow started with the work of Bell and La-
Padula [2] in the context of processes in an operating
system. More recent work [21, 11] brought this work
in terms of data flow in programs. Most of these ap-
proaches rely on type safety for enforcement of policies.
In a language such as C which is not type safe, direct
application of such policies will not result in reliable en-
forcement. In such systems, confidential data continues
to remain in the program’s memory once a program is
victimized, and is readily available without any protec-
tion. The goal of this work was to minimize the window

of disclosure of confidential information. Though we
use static analysis for inferring possible data flows, our
enforcement uses the combination of address space sep-
aration of private data and sandboxing for reliable en-
forcement of such policies.

Taint based approaches Taint based approaches [12,
23] have been recently used in detection of data-oriented
attacks such as injection attacks. Taint-based approaches
do have the scope for providing finer granularity to assist
sandboxing. In all the above works, taint based enforce-
ment has been used for protecting system integrity, i.e.,
ensuring that data from untrusted sources do not com-
promise trusted destinations such as shell commands.
In this work, we presented an approach to solve the
dual problem of confidentiality, where input from trusted
sources do not reach untrusted (public) output channels.

Program partitioning approaches A program trans-
formation technique Jif-split was described in [25] in
the context of distributed programs running on untrusted
hosts. Programs written in a language called Jif are an-
notated with security types, and the system automati-
cally splits the program to match the enforced security
policy described through these types. There are several
differences with respect to our approach: First, their ap-
proach is in enforcement of distributed programs such
as web services in the context of untrusted hosts. Our
approach is for protecting the confidentiality of inputs
in trusted hosts that may receive untrusted inputs. Sec-
ondly, their approach requires writing programs in a spe-
cial type-safe language for Jif to accomplish the parti-
tioning, and our approach is focused on retrofitting C
programs that handle confidential information for pro-
tection of sensitive data.

Privilege separation is another idea that uses separa-
tion of program on the basis of privileges required to
minimize security risks. It was used in the design of
programs such as gmail [3], and later in retrofitting of
programs such as OpenSSH manually [15] and automat-
ically [4]. While the goal of these approaches is to sep-
arate code running with special privileges, our approach
is focused on using using a similar approach to make
private data inaccessible to the parts of the program that
do not require it. Privtrans [4] was the first work that ap-
plied an automated technique for privilege separation in
the realm of C programs. We follow a similar partition-
ing approach that partitions programs based on process-
level separation. However, there are two main differ-
ences. Their approach to partitioning unprivileged and
privileged code is based on a delegation / authorization
model, where the unprivileged code requests the privi-
leged code to perform certain operations. This is suit-



able for privileged operations such as setuid, where ex-
plicit operating system permissions are required to per-
form these operations. However, it may not be suitable
for operations that handle private data, as the unprivi-
leged program can be compromised to perform such an
operation (say reading a sensitive file) by itself with-
out needing special permissions or having to request the
privileged program to perform that operation. (For in-
stance, this can be done after a compromise through a
return-into-libc attack.) In our approach, such an opera-
tion is prevented through the policy enforcement by sys-
tem call interposition. Secondly, they assume the pro-
cedure level abstraction as the boundary for partition-
ing. This method of partitioning is unsuitable for our
approach that intends to minimize the instructions that
can access sensitive data, and thereby making it inac-
cessible to portions of the program that do not require
it. Doing this requires us to insert domain transfer code
in the body of functions and not necessarily at function
boundaries.

7 Conclusion

In this paper, we presented an approach called data
sandboxing for protecting confidential information from
unauthorized disclosure. Our approach works by par-
titioning program instructions into two parts, the pub-
lic zone and private zone. These two parts are isolated
from each other through address space separation, thus
making the sensitive data in private zone inaccessible
to the public zone part of the program. Our approach
has potential to prevent sensitive information from dis-
closure in the event of a compromise. It also overcomes
the disadvantages of pure sandboxing approaches which
prevent external communication in order to enforce con-
fidentiality. We illustrated the use of our approach by
applying it to several examples.
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