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Abstract

When an application reads private / sensitive infor-

mation and subsequently communicates on an output

channel such as a public file or a network connection,

how can we ensure that the data written is free of private

information? In this paper, we address this question in a

practical setting through the use of a technique that we

call “data sandboxing” . Essentially, data sandboxing is

implemented using the popular technique of system call

interposition to mediate output channels used by a pro-

gram. To distinguish between private and public data,

the program is partitioned into two: one that contains

all the instructions that handle sensitive data and the

other containing the rest of the instructions. This parti-

tioning is performed based on techniques from program

slicing. When run together, these two programs collec-

tively replace the original program. To address confi-

dentiality, these programs are sandboxed with different

system call interposition based policies. We discuss the

design and implementation of a tool that enforces con-

fidentiality policies on C programs using this technique.

We also report our experiences in using our tool over

several programs that handle confidential data.

1 Introduction

Sandboxing (or run-time monitoring) is a powerful and

practical technique to protect an application that receives

input from external sources. Often, these sources are not

trustworthy and may send input that may victimize these

programs. By monitoring the code for adherence to a

specific policy, sandboxing prevents these attacks from

being successful.

The two most common methods of implementing

sandboxing are in-line reference monitoring (where

code that implements the monitor is embedded in the

same application) and interface interposition (where the

monitor code is implemented to run at a specific inter-

face boundary). Inline reference monitoring can tech-

nically enforce a richer set of policies when compared

to interface interposition, as policies for inline monitors

can specify constraints about internal variables of a pro-

gram. An example of such a policy constraint is “the

variable numfiles representing the number of files cur-

rently opened by a program never becomes more than

50”.

For C programs, system call interposition, an in-

stance of interface interposition, is the preferred ap-

proach for the main reason that the technique is non-

bypassable. Programs that receive untrusted input can

be subjected to running arbitrary code due to the absence

of strong memory protection in the C language. Such

arbitrary code can bypass the checks placed in the in-

line reference monitor. Given the fact that the operating-

system kernel / application boundary can be monitored

and security-related actions of programs must be ulti-

mately effected via system calls, system call interposi-

tion does not usually suffer from the non-bypassability

problem when implemented correctly.

System call interposition has therefore enjoyed a lot

of attention as a practical technique in several earlier

works [8, 1, 13, 17, 14, 7]. Mechanisms for implement-

ing policies based on system calls is also a well-studied

topic. For instance, the policy listed in the above exam-

ple can be tracked using a finite-automata based moni-

tor that tracks whether “the number of active open calls

made by the program is less than 50”.

The simplicity of policy enforcement in system call

interposition comes at a cost. Monitors written for this

approach cannot reason about the internal data-flow in a

program, since they operate exclusively at the applica-

tion/OS kernel boundary. Consequently, they tend to be

coarse-grained and cannot enforce policies such as con-

fidentiality of private data whose enforcement depends

on the internal data flow in the program.
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To illustrate this further, let us consider a confiden-

tiality policy for a program that plays music files. It is

not unusual to find that such programs periodically con-

nect to an external server, possibly to obtain commercial

information or update information. The user considers

her music files and preferences sensitive and therefore

these are not to be sent to the server. To prevent sensitive

information from escaping the program, the sandboxing

policy over system calls will need to prevent any write

operations to public output channels such as files and

network connections. This policy will definitely prevent

information from leaking, but is very likely to trigger a

loss of functionality with respect to these output opera-

tions, even if they involve non-sensitive data.

The new approach presented in this paper, called data

sandboxing, combines the relative merits of inline refer-

ence monitoring (ability to incorporate data-flow infor-

mation in policies) with the practicality of system call

interposition (i.e., non-bypassability and easier policy

development). The high level idea used in the approach

is similar to program slicing [20]. A slice consists of in-

structions of a program that are affected by a set of vari-

ables from some program point, known as the slicing

criterion. (We note that our approach always proceeds

in the forward direction, starting from the criterion, and

our notion of slices is slightly different from the standard

notion, as explained in the next section). We identify in-

structions of the program that act on sensitive informa-

tion. Based on this analysis, we partition the original

program to meet the requirements of the confidentiality

policy.

The application of this partitioning technique to the

enforcement of a broad class of information flow confi-

dentiality policies is discussed in this paper. These poli-

cies prevent private information from leaking from the

program. Our technical presentation is focused on en-

forcement of these policies. Enforcement of other poli-

cies that gain precision by using data-flow information

in programs is very much possible using our approach.

However, we do not discuss them further in this paper.

In addition, confidentiality policies also include lattice

based multi-level policies [2], but our focus here is on

dealing with only two levels: “sensitive” (high) or “pub-

lic” (low). We also do not consider the effects of covert

channels such as implicit flows, timing or storage chan-

nels [16]. As remarked in [24], additional research in

this field is needed to make these techniques applicable

to a wide range of programs.

While partitioning can be done manually for each

program, it is not a viable option, considering the sake

of both correctness and usability. Therefore, we have

created a tool that partitions C programs in an automatic

manner. With the help of our tool, we have been able

to successfully enforce such policies on several applica-

tions. Using our approach, users who are programmers

can freely modify programs running in their systems in

order to guarantee confidentiality. End-users can freely

benefit from these changes.

Creating separate programs for security reasons may

seem to be a heavyweight solution, but is not new to

the security community. The idea of privilege separation

is based on creating separate programs to provide secu-

rity assurances, as illustrated by the design of qmail [3]

(a very widely used mail transfer agent), and in parti-

tioning of programs such as OpenSSH [15, 4]. These

projects also illustrate that security assurances outweigh

any concerns due to overheads imposed by the partition-

ing solution. Our approach uses such partitioning tech-

niques for enforcement of confidentiality policies.

This paper is organized as follows: Section 2 gives a

technical overview of the approach and the various com-

ponents of our system. Section 3 describes the design

and implementation of our core analysis engine. The

results of the analysis are used in the partitioning pro-

cedure described in Section 4. Section 5 describes our

experience in using the tool for various free/open source

utilities. Section 6 discusses related work. In section 7

we conclude.

2 Approach overview

Our approach involves splitting the original program

into two partitions. We call these partitions public zone

and private zone. The runtime view of these new pro-

grams is shown in Figure 1 (a). The private zone is the

set of instructions of the original program that operate

on potentially sensitive data. The public zone consists

of all other instructions. The original program execu-

tion is substituted with the execution of these two pro-

grams. Whenever the public zone needs to read or pro-

cess sensitive data, it initiates a domain transfer opera-

tion, which involves some IPC operations, resulting in

a logical transfer of control to the private zone. These

communication operations do not involve sending or re-

ceiving sensitive data. The private zone proceeds to exe-

cute code that processes sensitive input. Once operations

on sensitive objects are done, or when non-sensitive op-

erations need to be performed, a domain transfer is per-

formed again to the public zone. At any further point

in the program, if access to sensitive information is re-

quired, another pair of domain transfers happen.

As noted in the figure, the public zone is disallowed

from reading sensitive input, while the private zone
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Figure 1. Approach overview

is disallowed from writing to public output channels.

Therefore, the private zone is the only component that

receives, processes and stores sensitive data handled by

the program. It thereby retains sensitive data completely

within its address space.

The partitioning of the program into two components

provides the following two main benefits:

• Controlling sensitive data availability. By our de-

sign objective, the private zone only runs code that

is needed to process sensitive information. Sensitive

data is shielded from the public zone, as it runs in

a different address space. Therefore, any bugs (such

as buffer overflows) in other routines of the public

zone (i.e., when performing other non-sensitive pro-

gram tasks) will not result in unauthorized disclosure

of sensitive information. For example, this approach

will prevent an attack on an ssh server that targets to

steal the server’s master secret (its private key).

• Appropriate confinement for different zones. The

private zone is automatically confined such that it

cannot write to public locations, while the public

zone is disallowed from reading any sensitive chan-

nels. This is impossible to achieve in the case of

the original (monolithic) program without breaking

it or losing some functionality. In our music player

example given above, the operations related to read-

ing (sensitive) music preferences are performed in

the private zone, while network operations (that in-

volve sending and receiving non-sensitive data) are

performed in the public zone. This allows the music

player example to be successfully used by the user,

while ensuring that user’s privacy is never violated.

2.1 System overview

Figure 1(b) shows the basic architecture of our ap-

proach. A security policy is provided along with the pro-

gram to an analyzer. The analyzer performs data flow

analysis and deduces a list of variables (for every pro-

gram point) that may potentially contain sensitive val-

ues. It then performs a second analysis where it iden-

tifies the set of sensitive instruction regions in the pro-

gram. These regions are then taken by the partitioner to

create the public zone and private zone with appropriate

transfer routines that enable the domain transfer opera-

tion between these programs. The resulting programs

are confined using system call interposition policies at

runtime. We describe these operations in the following

sections.

2.2 Security Policy Specifications

In our approach, security policy specifications specify

the confidentiality requirements on the original program.

There are two parts to a policy specification: a runtime

part that is used to confine the program during its execu-

tion, and a static part that is used by our tool to analyze

and partition the program.

Runtime confinement policy These are policy speci-

fications over the alphabet of system calls that are en-

forced on the application when it is executed. Separate

policies are written for the public zone and the pri-

vate zone respectively to meet our confinement objec-

tives. Specifying and enforcing such policies is fairly

standard, as illustrated in several past works such as [8]

and [18]. We do not discuss them any further in this

paper.

Policy specification for static analysis Static policy

specifications are used by our analyzer to infer the flow

of sensitive information in the program. These are

written based on function prototypes. Let us say int

f(a,b) is a function, where the parameters a and b

are passed by value. Then the policy specification for f

may be stated as follows: f(high, -) --> high
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and f(low, -) --> low. This means that the re-

turn value of f is sensitive if and only a is sensitive.

Similar specifications are provided for values provided

by reference as they act as outputs. Such input output

specifications are used in the following cases:

• Sensitive input routine specifications User input en-

ters a program using a function call or a system call

that reads from an input channel. For instance, in

the su program, the function getpass reads user

input. For this function, while the input is not sensi-

tive, the output is. The analyzer requires these inputs

for propagation of sensitive values further in the pro-

gram. These are specified using the same notation

that is used for system calls that is described below.

• System call specifications System calls are not

analyzable, and hence our approach requires us

to specify the input/output semantics of system

calls. For instance, a int read(int fd, void

*buf, size t count) system call that has the

following policy specification: low read(high,

low/high, low). It suggests that if the first

argument (the file descriptor) is a sensitive value,

then the second argument buf (passed by reference)

points to a sensitive (high) value at the end of the

read operation. Similar specifications are added for

external library calls that are not analyzed by our

tool. Note that we do not require specifications for

all system or library calls, but for only those that are

used to process sensitive information.

Occasionally, the policy may need to refer to the in-

put program line numbers to annotate the sensitive in-

put processing routines. A typical example is an open

system call whose file name argument is not statically

available. In this case, the programmer needs to provide

additional location information of the call in the source

file as part of the policy.
/* .. ..*/

1. int pin, cpin, flag;

2. pin = getinput();

3. cpin = crypt(pin);

4. fd1 = open(SECRET-FILE,.. );

5. fd2 = open(LOG-FILE,..);

6. stored-pin= read-from-file(fd1,..);

7. if (cpin == stored-pin) flag = 1;

8. else flag = 0;

9. write(fd2,..);

/* .. ..*/
We use the above toy example as a running illustra-

tion of the ideas used in this paper. It is a simple au-

thentication routine of a program that accepts a 32 bit

PIN number as input, compares it to the stored PIN and

writes the result of authentication to a public log file.

The policy specifies that the input function

getinput returns sensitive information, and

SECRET-FILE is sensitive (high), and LOG-FILE

is public (low). A correct enforcement of this policy

will prevent the PIN information from going to the log

file.

3 Analysis

The objective of the analysis engine is to identify in-

struction regions of the program that handle sensitive

information. Once this analysis is done, the set of sen-

sitive instruction regions is given to the code generation

step that partitions the code into public zone and pri-

vate zone. As mentioned earlier, we ignore the effect of

implicit flows [16] and any covert channels arising out

of timing or storage channels. Also, we wish to point

out the distinction here between the objectives of our

analysis module and those that use static analysis for in-

formation flow. The objective of the analysis engine is

not policy enforcement (i.e., ensuring that sensitive data

does not get written to public output channels). As al-

ready noted, that such analysis for enforcement is not re-

liable in the context of C programs and we require sand-

boxing. The purpose of the analysis is to merely identify

the set of sensitive instruction regions of the program.

3.1 Basic steps

The analysis proceeds with the following steps:

1. Propagate sensitive values across the program and

identify all potential variables that may receive sen-

sitive information.

2. Identify the set of instructions that act on these vari-

ables.

3. Logically group these instructions into sensitive in-

struction regions to be executed in the private zone.

The analyzer begins by using policy information to

identify the context function, which is a function in the

program which make use of the sensitive input routines.

There can be many such functions, but for the purposes

of this discussion we limit ourselves to one function. We

start with a set of sensitive variables that is initialized

from the policy. For each program point p in the context

function, the analyzer computes a set Vs
p of sensitive

variables. This computation is performed for each loca-

tion based on the semantics of the instruction. This is

done using standard information flow rules for various

program constructs. If a branch is encountered, the an-

alyzer maintains and updates independent Vs
p sets for

each point p along each path, thus maintaining path sen-

sitivity. When these paths merge, the union of these sets
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is used for the merge point. At a call instruction, the

analyzer examines the called function. If the definition

is available, it analyzes the function and computes the

sensitivities of any arguments passed by reference and

return values. In the absence of a definition or a pol-

icy specification for a particular routine (i.e., an external

function) and if any argument to the function is sensi-

tive, then the analyzer considers the return value and any

arguments passed by reference as sensitive.

For the example program, based on the input

policy and analysis, variables pin, cpin, fd1,

stored-pin are sensitive at various locations. There-

fore, the values held in these variables at these locations

need to be protected.

The next step is to identify the set of instructions

that handle sensitive variables. (In our implementation,

these steps are done concurrently.) If an instruction or a

statement at location p uses a variable that belongs Vs
p,

that instruction is marked. In our example program, in-

structions in lines 2, 3, 4, 6, 7 and 8 are marked. If

the marked instruction is a function call then the corre-

sponding function definition is also included in the pri-

vate zone. A transitive closure of the set of such callees

is computed and all the definitions in this set are marked.

Block creation One way to partition code that han-

dles sensitive data, as opposed to the above marking ap-

proach, is to use a conventional forward slicing tech-

nique. While this approach is likely to yield programs

that are self-contained, they will include instructions that

may exclusively deal with non-sensitive variables. This

may eventually lead to a bloat in the size of the child

program. We have instead chosen to identify regions of

instructions that exclusively handle sensitive data.

The analyzer gathers these sets of sensitive instruc-

tions to identify sensitive code regions or blocks. A sen-

sitive code region comprises of one or more sequential

marked instruction(s) / statement(s). If control enters

the first instruction of the region, it exits only through

the last instruction. There can be several such regions.

When the analyzer encounters the first marked instruc-

tion, it begins a new block. Every consecutive marked

instruction is added to the block. The first non-marked

instruction encountered marks the completion of the cur-

rent sensitive code block. Any intervening unmarked in-

struction would therefore result in at least two blocks.

A branch is usually considered the start of a new block

unless the entire branch statement itself is marked.

For our example, two blocks are created. The first

block contains instructions in lines 2, 3 and 4 and the

second one contains line 6, 7 and 8. Therefore, the op-

eration that opens the (public) LOG-FILE will be per-

formed in the public zone.

Analysis for state exchange between zones While

blocks provide the needed abstraction, it is also neces-

sary to maintain program state across the public zone

and private zone. The analyzer uses a structure VB to

keep track of the variables that are used in the instruc-

tions of the block B. This information is necessary to

generate code that provides the private zone with these

runtime values. If Vstart is the set of sensitive variables

at the start of the block, then the set difference of VB and

Vstart is the set of values that needs to be communicated

at runtime.

When a block finishes execution, the program state

has to be communicated back to the public zone. By

definition of the private zone, note that no sensitive val-

ues are needed by the public zone. Hence, only values

of updated non-sensitive values need to be returned back

to the public zone. If Vend is set of sensitive variables

at the end of a block, then the set difference of VB and

Vend is the set of values that need to be returned to the

parent.

Declassification Cryptographic one-way functions

such as crypt are a special case. They do take sensitive

input, and return output that cannot be used to recover

the input. Any program analyzer cannot automatically

deduce this to be the case. Such automatic inference

can be shown to be undecidable by establishing a

reduction from the halting problem. In this situation, the

analyzer needs to know the input/output relationships of

these functions to downgrade the output value, thereby

performing declassification [16]. Another case that

the analysis handles automatically is the assignment of

constant values to variables. In this case, a sensitive

variable becomes non-sensitive. Declassification and

constant assignment control the growth of the Vs set of

sensitive variables in our approach.

Use of arrays / structures Currently, an entire array

or structure is considered sensitive or non-sensitive as a

whole object.

4 Partitioning

Generation of private zone Once the set of sensitive

blocks is analyzed, the programs corresponding to the

public zone and the private zone need to be created. One

intuitive way to generate the private zone is to create

wrapper functions that enclose the sensitive instruction

regions. Whenever a domain transfer is initiated by the

public zone, these functions can be invoked by passing

them all the non-sensitive values from the public zone.

A problem arises with such an approach concerning
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how sensitive variables are shared between these wrap-

per functions. Again, there are two options in this case:

a) have them in a scope that is global to all these func-

tions or b) restore these values as a first step in every

wrapper function, and save them on exit. However, the

first option has a disadvantage of making the sensitive

variables accessible to many other functions that don’t

require them. The second option has an obvious perfor-

mance penalty. Therefore, the approach we have taken

is to create blocks within the function itself. The sen-

sitive variables that are shared across blocks can now

be at the function scope. We use the facility offered by

the CIL [10] tool that lifts all local declarations (includ-

ing block-level) to the function scope level. The pri-

vate zone is thus constructed with several blocks that

are present in the context function, along with the cor-

responding local and global variables required by these

blocks.

Generation of public zone The public zone program

includes all the statements in the original program, with

the exception of the sensitive blocks. This program is

created with instructions to fork the private zone pro-

gram and set up a communication channel. Note that,

such instructions must be inserted before any sensitive

information enters the original program. In the public

zone, these instructions must precede any node where

a domain transfer operation is initiated to the private

zone. This can be achieved by placing these operations

in a dominator node. The first instruction in the func-

tion is clearly a dominator where we have placed these

instructions. Similarly the operation for waiting for the

private zone needs to be done on a post-dominator node.

For functions with multiple return program points, the

one-return transformation [10] is a way of getting the

post-dominator point. The new public zone program

now replaces the original program executable.

Generation of checks that makes use of runtime in-

formation. Whenever the private zone is not process-

ing sensitive information, it blocks on the communica-

tion channel for the public zone to initiate the domain

transfer operation. It needs to know the right block to

execute when it receives a message. However, this infor-

mation is not statically available, as the parent can ini-

tiate a domain transfer from several possible locations,

hence we cannot generate static target labels for the pri-

vate zone. To solve this problem, we generate code that

(at runtime) determines the target block to be executed.

The public zone supplies this information at runtime, as

it knows the block to be executed. The private zone on

receiving this message finds the right block to execute.

Lines 5 and 6 in the transformed example show the gen-

erated code.
1. int pin, cpin, flag;

2. START:

3. msg = read_msg_from_parent();

4. if (msg == TERM) exit(0);

5. else if(msg == BLK1) goto Block1;

6. else if(msg == BLK2) goto Block2;

7. Block1:

8. read_n_demarshal(cpin, pin);

9. pin = getinput();

10. cpin = crypt(pin);

11. fd1 = open(SECRET-FILE,.. );

13. goto START;

14.Block2:

15. read_n_demarshal(flag);

16. stored-pin= read-from-file(fd1,..);

17. if (cpin == stored-pin) flag = 1;

18. else flag = 0;

19. marshal_n_write(flag);

20. goto START;

Serialization The exchange of program state informa-

tion between the public zone and private zone is done

by serializing (also known as marshalling) the program

state into a byte array at that program point, and trans-

ferring the result to the private zone. In the private

zone, this byte array is de-serialized to reconstruct the

information about the environment. We have achieved

automatic serialization of a program’s state by generat-

ing stub modules for each data type that is exchanged

during the domain transfer.

In our approach, complex data types such as struc-

tures and pointers are described using a messaging pro-

tocol that describes the individual data types and their

type structure. The message passing is essential for val-

ues that can not be exchanged. For example, a pointer

variable pointing to NULL can not be directly commu-

nicated through its value. Similarly non-null pointer ref-

erences in public zone can be flattened but cannot be

directly used in private zone process. For this reason,

communicating pointer variables requires special treat-

ment. To maintain a pointer variable’s state consistent

during domain transfer, we keep a table in each zone

that maintains a mapping of the pointer’s address in the

other zone.

This procedure is adequate for most recursive data

types such as linked lists and trees that we have tried in

our examples. Our construction works correctly in these

cases and we have manually verified them. However,

more complex data structures may need manual inter-

vention as they may have specific invariant requirements

that cannot be deduced automatically.

Limitations While we believe our approach is general

enough to be applicable to a large class of programs, our
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implementation has two main limitations. Both of them

relate to how pointers and aliasing are used in the target

program. The first limitation concerns the use of alias-

ing. Currently our approach treats pointers as data refer-

ences, treating any operations that directly make use of

pointers as references to values. They will be correctly

marked as sensitive. However, the presence of aliasing

(where an object is referred to both by its original name

and its alias) may invalidate this assumption. When-

ever the analysis encounters the possibility of aliasing,

it prompts the user for manual verification. In this case,

we had to perform manual verification of the code gen-

erated for the use of aliasing. Our assumption is valid

for the programs we have tested our tool with. In these

examples, pointers were indeed used as references and

hence our code generation approach was correct. Inte-

gration of points-to-alias analysis algorithms in our ap-

proach will ensure that we correctly identify all sensitive

instructions and avoid such manual verification.

The second assumption concerns the size of objects

referred by pointers. While serializing data to commu-

nicate the public zone state to the private zone, there

are some situations where the sizes of objects pointed to

by pointer data types is not known. In general, track-

ing pointer sizes is hard. One solution is to have fat

pointers that record additional information, such as their

sizes. Another viable solution is to have a shared mem-

ory region between the public zone and private zone

that contains public data, and taking additional measures

to protect sensitive data in the private zone. This will

be explored as part of our future work. For now, the

code generation uses some simple heuristics that make

certain guesses about the nature of the variable being

pointed to. For example, to serialize a variable of type

pointer to char, we use the a runtime sample value of

the strlen() function for the size of the variable. Another

current option we had at hand was to have the user of

the tool explicitly specify the size of the pointed-to vari-

ables. We preferred the first option even though it is a

potentially unsound heuristic, as it seems to be a good

tradeoff to the complexity of specifying individual ob-

ject sizes. We adopted this approach, and followed up

by manual verification for checking pointer sizes. Since

the sizes of code blocks was small (see Figure 3), this

was easily possible.

5 Evaluation

In this section, we describe the results with our prototype

implementation. Our implementation uses the CIL [10]

framework. We have chosen representative examples

from several classes of open source programs: simple

authentication programs, system monitoring and analy-

sis programs, music related utilities that handle sensi-

tive information. Our evaluation section is divided into

three parts 1) policy enforcement evaluation, where we

present the effectiveness of policies in preventing infor-

mation flow 2) performance evaluation and 3) security

analysis of the approach.

5.1 Policy enforcement evaluation

Linux-Monitor is a utility that polls system resources

such as processes and disk partitions at specific inter-

vals of time. It then proceeds to log this information

into system logs or at a remote-server running on port

8881 (syslogd substitute for remote logging). Here we

enforce a policy that prevents linux-monitor from log-

ging to a remote connection when it reads from system

resources considered sensitive by the system administra-

tor. The policy enforcement successfully prevented this

information from being communicated.

Htpasswd is used to create and update flat-files, that

store user names and password for basic authentication

of HTTP users. It calls the crypt routine and then writes

encrypted passwords to a user specified file. Our tool

separates the code handling password information and

enforces a policy that prevents this information from be-

ing written to any other file.

Mediachat is our own implementation that simulates

a media player that allows users to connect to a chat

server while reading and playing music files from their

local disk. It is an example of an application that oper-

ates on sensitive (music preferences) and non-sensitive

data (network chat) at the same time. The policy is to

prevent the list of music files from being communicated

on the network to the server. A typical sandboxing pol-

icy would have prevented the chat application from cor-

rectly functioning. Our data sandboxing approach al-

lowed the chat to proceed while preventing any private

music information from being sent to the network.

chfn, chsh, passwd These are standard Unix admin-

istrative utilities. Our tools successfully partitioned the

authentication code in these programs. We sandboxed

the private zone programs to ensure that sensitive in-

formation is only written to the system password files

(in the case of passwd, chfn and chsh). The sandbox

for the public zone programs need a setuid wrapper, as

these are setuid programs and the ptrace mechanism we

use for user-level system call interposition does not cross

setuid boundaries. A kernel interception mechanism can

handle this situation.
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5.2 Evaluation

The performance of the system was analyzed both for

the overall performance and for the domain transfer op-

eration using micro benchmarks. We ran experiments on

a Intel P4 3.4 GHz processor with 2 GB of RAM running

linux kernel version 2.6.9.

Micro benchmark on the domain transfer operation

We measured the base overhead for a domain transfer

between public zone and private zone. This overhead

results from setting up a communication channel and

performing serialization. Of the programs we tested, the

linux-mon program had the worst case domain transfer

overhead. We monitored five different resources and the

time to serialize shared data was 2.86 milliseconds. The

performance penalty for domain transfer operation (cost

of communication setup + serialization and deserializa-

tion as opposed to simply executing instructions in the

original program) was a factor of 6.16.

Figure 2. Performance Overheads

Overall performance measurements We measured

the overall performance ( public zone + private zone,

combined user + system time, without system call inter-

position) of the transformed programs compared to the

original programs, and the results are shown in Figure 2.

Linux monitor is a continuously running server program

that keeps reading sensitive files and so we could not

use this form of comparison. From the results, we note

that the worst overhead is about 231.5% for htpasswd,

and is primarily due to the new address space creation.

System call interposition techniques at the kernel level

would add about 10-15% overheads.

Performance Improvements Our implementation is

currently not optimized for performance. The major fac-

tors contributing to the overheads are the domain trans-

fer operation and the associated copying of state. Sev-

eral optimizations are possible. The current implemen-

tation uses address spaces for memory isolation. An

intra-address space protection mechanism such as soft-

ware fault isolation [22] can result in much lower over-

heads. Also compiler optimizations such as code motion

Program Orig. Marked ins # of Avg. #

Name (# LOC) (# LOC) Blocks LOC/block

passwd 2333 193 (8%) 6 4

htpasswd 984 240 (24%) 4 12

chfn 1238 126 (10%) 1 18

chsh 1138 112 (10%) 1 18

Mediachat 335 92 (27%) 2 7

Figure 3. Program size information

can be used to produce fewer state transfers, and live

variable analysis may result in lowering copying over-

heads.

Additional memory overheads Since our approach

creates a new private zone process for every program,

there is an additional memory overhead due to the pro-

cess creation. We chose to measure memory overhead

for to the htpasswd program, as the private zone pro-

cess in this case has the worst case memory consump-

tion both for code as well as data. We inserted a break

point in the code of the private zone, and measured

the resident memory size of the process. The additional

memory required was 2.5 Megabytes. Other programs

listed above tested will consume significantly less mem-

ory than htpasswd.

Program sizes Figure 3 gives a table of the analyzed

program sizes in LOC, the number of marked (sensitive)

instructions in LOC, the number of blocks and the av-

erage block sizes respectively. The actual sizes of the

programs are much larger, the LOC was measured with-

out counting the code from libraries. Also the sizes of

the private zone programs are the sizes of these marked

instructions plus a linked library of around 200 lines of

C code that performs serialization. We observe that the

percentage of instructions that handle sensitive data in

these programs ranges from 8% to 27%. The highest is

for Mediachat, which performs a significant fraction of

its code in handling sensitive (music) data.

5.3 Security analysis of the approach

Our approach also prevents damage from attacks that

subvert the program to gain access to confidential data.

In this case, the (minimal) code that runs in the pri-

vate zone only reads and processes sensitive informa-

tion. The public zone if subverted, thus cannot be di-

rected to read sensitive information. Secondly, the code

that runs in the private zone does not share sensitive

data with the public zone. Also, the communication

channel between the public zone and private zone is a

pipe, which is only available to these two processes and

hence cannot be observed by any local processes acting

on behalf of the attacker. It is possible that the private
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zone can have code (derived from the original program)

to have bugs that can be exploited. In this case, we first

note that our approach does not do any worse than be-

fore, as the original program still can be exploited. Sec-

ondly, since the private zone runs the minimal piece of

code required to run sensitive information, as opposed

to the public zone which runs code that does the bulk

of the work of the program, chances of such bugs being

present in the private zone is reduced. Thus the code

that reads confidential data is separate from the remain-

ing processing code, and this mitigates security risks of

losing confidential information.

6 Related work

Sandboxing Sandboxing based approaches [8, 1, 13,

17, 14] involve observing a program’s behavior and

blocking actions that may compromise the system’s se-

curity. This is achieved in most of these works through

system call interposition. This approach is transparent

to the program, and policy enforcement comes without

needing to modify programs. However, the monitor can-

not distinguish between sensitive and public data that is

written in an output channel. Consequently, sandboxing

approaches do not allow program actions that write to

public output channels, and could therefore be limiting

application behavior in many situations. In this work,

we have provided an approach that addresses this prob-

lem.

Static analysis Several static analysis based ap-

proaches [5, 6, 19, 9] have been successfully used for

finding bugs in C programs. However, static analysis

alone cannot be used reliably in policy enforcement for

C programs, as programs can be compromised due to

lack of memory safety. Though our approach uses static

analysis, this is merely done to partition a program. Our

enforcement technique is based on monitoring at the ap-

plication/kernel boundary, and hence is not bypassable.

Information flow analysis There is a long history of

work in information flow analysis of program. Work on

information flow started with the work of Bell and La-

Padula [2] in the context of processes in an operating

system. More recent work [21, 11] brought this work

in terms of data flow in programs. Most of these ap-

proaches rely on type safety for enforcement of policies.

In a language such as C which is not type safe, direct

application of such policies will not result in reliable en-

forcement. In such systems, confidential data continues

to remain in the program’s memory once a program is

victimized, and is readily available without any protec-

tion. The goal of this work was to minimize the window

of disclosure of confidential information. Though we

use static analysis for inferring possible data flows, our

enforcement uses the combination of address space sep-

aration of private data and sandboxing for reliable en-

forcement of such policies.

Taint based approaches Taint based approaches [12,

23] have been recently used in detection of data-oriented

attacks such as injection attacks. Taint-based approaches

do have the scope for providing finer granularity to assist

sandboxing. In all the above works, taint based enforce-

ment has been used for protecting system integrity, i.e.,

ensuring that data from untrusted sources do not com-

promise trusted destinations such as shell commands.

In this work, we presented an approach to solve the

dual problem of confidentiality, where input from trusted

sources do not reach untrusted (public) output channels.

Program partitioning approaches A program trans-

formation technique Jif-split was described in [25] in

the context of distributed programs running on untrusted

hosts. Programs written in a language called Jif are an-

notated with security types, and the system automati-

cally splits the program to match the enforced security

policy described through these types. There are several

differences with respect to our approach: First, their ap-

proach is in enforcement of distributed programs such

as web services in the context of untrusted hosts. Our

approach is for protecting the confidentiality of inputs

in trusted hosts that may receive untrusted inputs. Sec-

ondly, their approach requires writing programs in a spe-

cial type-safe language for Jif to accomplish the parti-

tioning, and our approach is focused on retrofitting C

programs that handle confidential information for pro-

tection of sensitive data.

Privilege separation is another idea that uses separa-

tion of program on the basis of privileges required to

minimize security risks. It was used in the design of

programs such as qmail [3], and later in retrofitting of

programs such as OpenSSH manually [15] and automat-

ically [4]. While the goal of these approaches is to sep-

arate code running with special privileges, our approach

is focused on using using a similar approach to make

private data inaccessible to the parts of the program that

do not require it. Privtrans [4] was the first work that ap-

plied an automated technique for privilege separation in

the realm of C programs. We follow a similar partition-

ing approach that partitions programs based on process-

level separation. However, there are two main differ-

ences. Their approach to partitioning unprivileged and

privileged code is based on a delegation / authorization

model, where the unprivileged code requests the privi-

leged code to perform certain operations. This is suit-
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able for privileged operations such as setuid, where ex-

plicit operating system permissions are required to per-

form these operations. However, it may not be suitable

for operations that handle private data, as the unprivi-

leged program can be compromised to perform such an

operation (say reading a sensitive file) by itself with-

out needing special permissions or having to request the

privileged program to perform that operation. (For in-

stance, this can be done after a compromise through a

return-into-libc attack.) In our approach, such an opera-

tion is prevented through the policy enforcement by sys-

tem call interposition. Secondly, they assume the pro-

cedure level abstraction as the boundary for partition-

ing. This method of partitioning is unsuitable for our

approach that intends to minimize the instructions that

can access sensitive data, and thereby making it inac-

cessible to portions of the program that do not require

it. Doing this requires us to insert domain transfer code

in the body of functions and not necessarily at function

boundaries.

7 Conclusion

In this paper, we presented an approach called data

sandboxing for protecting confidential information from

unauthorized disclosure. Our approach works by par-

titioning program instructions into two parts, the pub-

lic zone and private zone. These two parts are isolated

from each other through address space separation, thus

making the sensitive data in private zone inaccessible

to the public zone part of the program. Our approach

has potential to prevent sensitive information from dis-

closure in the event of a compromise. It also overcomes

the disadvantages of pure sandboxing approaches which

prevent external communication in order to enforce con-

fidentiality. We illustrated the use of our approach by

applying it to several examples.
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