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Introduction
In the light of continuing debate over the applications of significance testing in psychol-

ogy journals and following the publication of Cohen (1994), the Board of Scientific Affairs 
(BSA) of the APA convened a committee called the Task Force on Statistical Inference 
(TFSI) whose charge was “to elucidate some of the controversial issues surrounding appli-
cations of statistics including significance testing and its alternatives; alternative underly-
ing models and data transformation; and newer methods made possible by powerful 
computers.” Robert Rosenthal, Robert Abelson, and Jacob Cohen (cochairs) met initially 
and agreed upon the desirability of having several types of specialists on the Task Force: 
statisticians, teachers of statistics, journal editors, authors of statistics books, computer ex-
perts, and wise elders. Nine individuals were subsequently invited to join and all agreed. 
These were: Leona Aiken, Mark Appelbaum, Gwyneth Boodoo, David A. Kenny, Helena 
Kraemer, Donald Rubin, Bruce Thompson, Howard Wainer, and Leland Wilkinson. In ad-
dition, Lee Cronbach, Paul Meehl, Frederick Mosteller and John Tukey served as Senior 
Advisors to the Task Force and commented on written materials. 

The TFSI met twice in two years and corresponded throughout the period. After the first 
meeting, the Task Force circulated a preliminary report indicating its intention to examine 
issues beyond null hypothesis significance testing. The Task Force invited comments and 
used this feedback in the deliberations during its second meeting. 

After the second meeting, the Task Force recommended several possibilities for further 
action, chief of which would be to revise the statistical sections of the APA Publication 
Manual. After extensive discussion, the BSA recommended that “before the TFSI under-
took a revision of the APA Publication Manual, it might want to consider publishing an ar-
ticle in American Psychologist, as a way to initiate discussion in the field about changes in 
current practices of data analysis and reporting.” 

This article follows that request. The sections in italic are proposed guidelines that the 
TFSI recommends could be used for revising the APA Publication Manual or for develop-
ing other BSA supporting materials. Following each guideline are comments, explanations, 
or elaborations assembled by Leland Wilkinson for the Task Force and under its review. 
This paper is concerned with the use of statistical methods only and is not meant as an as-
sessment of research methods in general. Psychology is a broad science. Methods appro-
priate in one area may be inappropriate in another.

The title and format of this paper are adapted from a similar article by Bailar and Mos-
teller (1988) that interprets the 1988 edition of the Uniform Requirements for Manuscripts 
Submitted to Biomedical Journals. That article should be consulted, since it overlaps some-
what with this one and discusses some issues relevant to research in psychology. Further 
detail can also be found in the publications on this topic by several committee members 
(Abelson, 1995, 1997; Rosenthal, 1994; Thompson, 1996; Wainer, 1999; see also articles 
in Harlow et al., 1997).
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Method

Design

Make clear at the outset what type of study you are doing. Do not cloak a 
study in one guise to try to give it the assumed reputation of another. For 
studies that have multiple goals, be sure to define and prioritize those goals.

There are many forms of empirical studies in psychology, including case reports, con-
trolled experiments, quasi-experiments, statistical simulations, surveys, observational stud-
ies, and studies of studies (meta-analyses). Some are hypothesis-generating: to explore data 
in order to form or sharpen hypotheses about a population for assessing future hypotheses. 
Some are hypothesis-testing: to assess specific a priori hypotheses or to estimate parame-
ters by random sampling from that population. Some are meta-analytic: to assess specific 
a priori hypotheses or to estimate parameters (or both) by synthesizing the results of avail-
able studies.

Some researchers have the impression or have been taught to believe that some of these 
forms yield information that is more valuable or credible than others (see Cronbach, 1975 
for a discussion). Occasionally proponents of some research methods disparage others. In 
fact, each form of research has its own strengths, weaknesses, and standards of practice. 

Population

The interpretation of the results of any study depends on the characteris-
tics of the population analyzed. Define the population (subjects, stimuli, or 
studies) clearly. If control or comparison groups are part of the design, 
present how they are defined. 

Psychology students sometimes think that a statistical population is the human race or, 
at least, college sophomores. They also have some difficulty distinguishing a class of ob-
jects vs. a statistical population - that sometimes we make inferences about a population via 
statistical methods and other times we make inferences about a class through logical or oth-
er non-statistical methods. Populations may be sets of potential observations on people, ad-
jectives, or even research papers. How a population is defined in a paper affects almost 
every conclusion in that paper.

Sample

Describe the sampling procedures, and emphasize any inclusion or exclu-
sion criteria. If the sample is stratified (e.g., by site or gender) describe fully 
the method and rationale. Note the proposed sample size for each subgroup.

Interval estimates for clustered and stratified random samples differ from those for sim-
ple random samples. Statistical software is now becoming available for these purposes. If 
you are using a convenience sample (whose members are not selected at random), be sure 
to make that procedure clear to your readers. Using a convenience sample does not auto-
matically disqualify a study from publication, but it harms your objectivity to try to conceal 
this by implying that you used a random sample. Sometimes the case for the representative-
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ness of a convenience sample can be strengthened by explicit comparison of sample char-
acteristics with those of a defined population across a wide range of variables.

Assignment

Random Assignment

For research involving causal inferences, the assignment of units to levels 
of the causal variable is critical. Random assignment (not to be confused with 
random selection) allows for the strongest possible causal inferences free of 
extraneous assumptions. If random assignment is planned, provide enough 
information to show that the process for making the actual assignments is 
random.

There is a strong research tradition and many exemplars for random assignment in vari-
ous fields of psychology. Even those who have elucidated quasi-experimental designs in 
psychological research (e.g., Cook and Campbell, 1979) have repeatedly emphasized the 
superiority of random assignment as a method for controlling bias and lurking variables. 

“Random” does not mean “haphazard.” Randomization is a fragile condition, easily cor-
rupted: deliberately, as we see when a skilled magician flips a fair coin repeatedly to heads, 
or innocently, as we saw in the Vietnam draft lottery. As psychologists, we also know that 
human subjects are incapable of producing a random process (digits, spatial arrangements, 
etc.) or recognizing one. It is best not to trust the random behavior of a physical device un-
less you are an expert in these matters. It is safer to use the pseudo-random sequence from 
a well-designed computer generator or from published tables of random numbers. The add-
ed benefit of such a procedure is that you can supply a random number seed or starting num-
ber in a table that other researchers can use to check your methods later. 

Nonrandom Assignment

For some research questions, random assignment is infeasible. In such 
cases, we need to minimize effects of variables that affect the observed rela-
tionship between a causal variable and an outcome. Such variables are com-
monly called confounds or covariates. The researcher needs to attempt to 
determine the relevant covariates, measure them adequately, and adjust for 
their effects either by design or by analysis. If the effects of covariates are ad-
justed by analysis, the strong assumptions that are made must be explicitly 
stated and, to the extent possible, tested and justified. Describe methods used 
to attenuate sources of bias, including plans for minimizing dropouts, 
non-compliance, and missing data.

Authors have used the term “control group” to describe, among other things, 1) a com-
parison group, 2) members of pairs matched or blocked on one or more nuisance variables, 
3) a group not receiving a particular treatment, 4) a statistical sample whose values are ad-
justed post-hoc by the use of one or more covariates, or 5) a group for which the experi-
menter acknowledges bias exists and perhaps hopes that this admission will allow the 
reader to make appropriate discounts or other mental adjustments. None of these is an in-
stance of a fully-adequate control group.
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From this perspective, one can make a recommendation concerning editorial usage. If we 
can neither implement randomization nor approach total control of variables that modify 
effects (outcomes), then we should use the term “control group” cautiously. In particular, 
we should describe exactly which confounding variables have been explicitly controlled 
and speculate about which unmeasured ones could lead to incorrect inferences. In the ab-
sence of randomization, we should do our best to investigate sensitivity to various untest-
able assumptions.

Measurement

Variables

Explicitly define the variables in the study, show how they are related to 
the goals of the study, and explain how they are measured. The units of mea-
surement of all variables, causal and outcome, should fit the language you 
use in the Introduction and Discussion sections of your report.

A variable is a method for assigning to a set of observations a value from a set of possible 
outcomes. For example, a variable called Gender might assign each of 50 observations to 
one of the values male or female. When we define a variable, we are declaring what we are 
prepared to represent as a valid observation and what we must consider as invalid. If we 
define the range of a particular variable (the set of possible outcomes) to be from 1 to 7 on 
a Likert scale, for example, then a value of 9 is not an outlier (an unusually extreme value). 
It is an illegal value. If we declare the range of a variable to be positive real numbers and 
the domain to be observations of reaction time in milliseconds to an administration of elec-
tric shock, then a value of 3,000 is not illegal; it is an outlier.

Naming a variable is almost as important as measuring it. We do well to select a name 
that reflects how a variable is measured. On this basis, the name “IQ test score” is prefera-
ble to “Intelligence” and “retrospective self-report of childhood sexual abuse” is preferable 
to “childhood sexual abuse.” Without such precision, ambiguity in defining variables can 
give a theory an unfortunate resistance to empirical falsification. Being precise does not 
make us operationalists. It simply means that we try to avoid excessive generalization.

Editors and reviewers should be suspicious when they notice authors changing defini-
tions or names of variables, failing to make clear what would be contrary evidence, or using 
measures with no past history, and thus no known properties. Researchers should be suspi-
cious when codebooks and scoring systems are inscrutable or more voluminous than the 
research papers on which they are based. Everyone should worry when a system offers to 
code a specific observation in two or more ways for the same variable.

Instruments

If a questionnaire is used to collect data, summarize the psychometric 
properties of its scores with specific regard to the way the instrument is used 
and its intended population. Psychometric properties include measures of va-
lidity, reliability, and any other qualities affecting conclusions. If a physical 
apparatus is used, provide enough information (brand, model, design speci-
fications) to allow another experimenter to replicate your measurement pro-
cess. 
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There are many methods for constructing instruments and psychometrically validating 
scores from such measures. Traditional true-score theory and item-response test theory pro-
vide appropriate frameworks for assessing reliability and internal validity. Signal detection 
theory and various coefficients of association can be used to assess external validity. Mes-
sick (1989) provides a comprehensive guide to validity.

It is important to remember that a test is not reliable or unreliable. Reliability is a property 
of the scores on a test for a particular population of examinees (Feldt & Brennan, 1989). 
Thus, authors should provide reliability coefficients of the scores for the data being ana-
lyzed even when the focus of their research is not psychometric. Interpreting the size of ob-
served effects requires an assessment of the reliability of the scores.

Besides showing that an instrument is reliable, we need to show that it does not correlate 
strongly with other key constructs. It is just as important to establish that a measure does 
not measure what it should not measure as to show that it does measure what it should.

Researchers occasionally encounter a measurement problem that has no obvious solu-
tion. This happens when they decide to explore a new and rapidly growing research area 
that is based on a previous researcher’s well-defined construct implemented in a poorly de-
veloped psychometric instrument. Innovators, in the excitement of their discovery, some-
times give insufficient attention to the quality of their instruments. Once a defective 
measure enters the literature, subsequent researchers are reluctant to change it. In these cas-
es, editors and reviewers should pay special attention to the psychometric properties of the 
instruments used, and they might want to encourage revisions (even if not by the scale’s 
author) in order to prevent the accumulation of results based on relatively invalid or unre-
liable measures.

Procedure

Describe any anticipated attrition due to noncompliance, dropout, death, 
or other factors. Indicate how such attrition may affect the generalizability of 
the results. Clearly describe the conditions under which measurements are 
taken, e.g., format, time, place, personnel used to collect data. Describe the 
specific methods used to minimize experimenter bias, especially if you col-
lected the data yourself. 

Despite the long-established findings of the effects of experimenter bias (Rosenthal, 
1966), many published studies appear to ignore or discount these problems. For example, 
some authors or their assistants with knowledge of hypotheses or study goals screen sub-
jects (through personal interviews or telephone conversations) for inclusion in their studies. 
Some authors administer questionnaires. Some authors give instructions to subjects. Some 
authors perform experimental manipulations. Some tally or code responses. Some rate vid-
eotapes.

An author’s self-awareness, experience, or resolve does not eliminate experimenter bias. 
In short, there are no valid excuses, financial or otherwise, for avoiding an opportunity to 
double-blind. Researchers looking for guidance on this matter should consult the classic 
book of Webb et al. (1966) and an exemplary dissertation (performed on a modest budget) 
by Baker (1969). 
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Power and Sample Size

Provide information on sample size and the process that led to sample size 
decisions. Document the effect sizes, sampling and measurement assump-
tions, as well as analytic procedures used in power calculations. Because 
power computations are most meaningful when done before data are collect-
ed and examined, it is important to show how effect-size estimates have been 
derived from previous research and theory in order to dispel suspicions that 
they might have been taken from data used in the study or, even worse, con-
structed to justify a particular sample size. Once the study is analyzed, confi-
dence intervals replace calculated power in describing results. 

Largely due to the work of Cohen (1969, 1988), psychologists have become aware of the 
need to consider power in the design of their studies, before they collect data. The intellec-
tual exercise required to do this stimulates authors to take seriously prior research and the-
ory in their field. And it gives an opportunity, with incumbent risk, for a few to offer the 
challenge that there is no applicable research behind a given study. If exploration were not 
disguised in hypothetico-deductive language, then it might have the opportunity to influ-
ence subsequent research constructively. 

Computer programs that calculate power for various designs and distributions are now 
available. One can use them to conduct power analyses for some range of reasonable alpha 
values and effect sizes. Doing so reveals how power changes across this range and over-
comes a tendency to regard a single power estimate as being absolutely definitive.

Many of us encounter power issues when applying for grants. Even when not asking for 
money, think about power. Statistical power does not corrupt.

Results

Complications

Before presenting results, report complications, protocol violations, and 
other unanticipated events in data collection. These include missing data, at-
trition, and nonresponse. Discuss analytic techniques devised to ameliorate 
these problems. Describe nonrepresentativeness statistically by reporting 
patterns and distributions of missing data and contaminations. Document 
how the actual analysis differs from the analysis planned before complica-
tions arose. The use of techniques to assure that the reported results are not 
produced by anomalies in the data (e.g., outliers, points of high influence, 
non-random missing data, selection bias, attrition problems) should be a 
standard component of all analyses.

As soon as you have collected your data, before you compute any statistics, look at your 
data. Data screening is not data snooping. It is not an opportunity to discard data or change 
values in order to favor your hypotheses. However, if you assess hypotheses without exam-
ining your data, you risk publishing nonsense. 

Computer malfunctions tend to be catastrophic: a system crashes, a file fails to import, 
data are lost. Less well-known are more subtle bugs that can be more catastrophic in the 
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long run. For example, a single value in a file may be corrupted in reading or writing (often 
in the first or last record). This circumstance usually produces a major value error, the kind 
of singleton that can make large correlations change sign and small correlations become 
large. 

Graphical inspection of data offers an excellent possibility for detecting serious compro-
mises to data integrity. The reason is simple: graphics broadcast, statistics narrowcast. In-
deed, some international corporations that must defend themselves against rapidly evolving 
fraudulent schemes use real-time graphical displays as their first line of defense and statis-
tical analyses as a distant second. The following example shows why.

Figure 1 shows a scatterplot matrix (SPLOM) of three variables from a national survey 
of approximately 3000 counseling clients (Chartrand, 1997). This display, consisting of 
pairwise scatterplots arranged in a matrix, is found in most modern statistical packages. The 
diagonal cells contain dot plots of each variable (with the dots stacked like a histogram) and 
scales used for each variable. The three variables shown are questionnaire measures of re-
spondent’s age (AGE), gender (SEX), and number of years together in current relationship 
(TOGETHER). The graphic in Figure 1 is not intended for final presentation of results; we 
use it instead to locate coding errors and other anomalies before we analyze our data. Figure 
1 is a selected portion of a computer screen display that offers tools for zooming in and out, 
examining points, and linking to information in other graphical displays and data editors. 
SPLOM displays can be used to recognize unusual patterns in 20 or more variables simul-
taneously. We will focus on these three only.

There are several anomalies in this graphic. The AGE histogram shows a spike at the 
right end, which corresponds to the value 99 in the data. This coded value most likely sig-
nifies a missing value, since it is unlikely that this many people in a sample of 3000 would 
have an age of 99 or greater. Using numerical values for missing value codes is a risky prac-
tice (Kahn & Udry, 1986). 

The histogram for SEX shows an unremarkable division into two values. The histogram 
for TOGETHER is highly skewed, with a spike at the lower end presumably signifying no 
relationship. The most remarkable pattern is the triangular joint distribution of TOGETH-
ER and AGE. Triangular joint distributions often (but not necessarily) signal an implication 
or a relation rather than a linear function with error. In this case, it makes sense that the span 
of a relationship should not exceed a person’s age. Closer examination shows that some-
thing is wrong here, however. We find some respondents (in the upper left triangular area 
of the TOGETHER-AGE panel) claiming that they have been in a significant relationship 
longer than they have been alive!

Had we computed statistics or fit models before examining the raw data, we would likely 
have missed these reporting errors. There is little reason to expect that TOGETHER would 
show any anomalous behavior with other variables, and even if AGE and TOGETHER ap-
peared jointly in certain models, we may not have known anything was amiss, regardless 
of our care in examining residual or other diagnostic plots.

The main point of this example is that the type of “atheoretical” search for patterns that 
we are sometimes warned against in graduate school can save us from the humiliation of 
having to retract conclusions we might ultimately make on contaminated data. We are 
warned against fishing expeditions for understandable reasons, but blind application of 
models without screening our data is a far graver error.

Graphics cannot solve all our problems. Special issues arise in modeling when we have 
missing data. The two popular methods for dealing with missing data that are found in basic 
statistics packages - listwise and pairwise deletion of missing values -  are among the worst 
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methods available for practical applications. Little and Rubin (1987) discuss these issues in 
more detail and offer alternative approaches. 

Figure 1  Scatterplot Matrix

Analysis

Choosing a minimally sufficient analysis

The enormous variety of modern quantitative methods leaves researchers 
with a non-trivial task of matching analysis and design to the research ques-
tion. Although complex designs and state-of-the-art methods are sometimes 
necessary to address research questions effectively, simpler classical ap-
proaches often can provide elegant and sufficient answers to important ques-
tions. Do not choose an analytic method to impress your readers or to deflect 
criticism. If the assumptions and strength of a simpler method are reasonable 
for your data and research problem, use it. Occam’s razor applies to methods 
as well as to theories.

We should follow the advice of Fisher (1935): 

Experimenters should remember that they and their colleagues usually know
more about the kind of material they are dealing with than do the authors of
text-books written without such personal experience, and that a more com-
plex, or less intelligible, test is not likely to serve their purpose better, in any
sense, than those of proved value in their own subject.

There is nothing wrong with using state-of-the-art methods, as long as you and your read-
ers understand how they work and what they are doing. On the other hand, don’t cling to 
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obsolete methods (e.g., Newman-Keuls or Duncan post-hoc tests) out of fear of learning 
the new. In any case, listen to Fisher. Begin with an idea. Then pick a method.

Computer programs

There are many good computer programs for analyzing data. More impor-
tant than choosing a specific statistical package is verifying your results, un-
derstanding what they mean, and knowing how they are computed. If you 
cannot verify your results by intelligent “guesstimates,” you should check 
them against the output of another program. You will not be happy if a vendor 
reports a bug after your data are in print (not an infrequent event). Do not 
report statistics found on a printout without understanding how they are com-
puted or what they mean. Do not report statistics to a greater precision than 
supported by your data simply because they are printed by the program. Us-
ing the computer is an opportunity for you to control your analysis and de-
sign. If a computer program does not provide the analysis you need, use 
another program rather than let the computer shape your thinking.

There is no substitute for common sense. If you cannot use rules of thumb to detect 
whether the result of a computation makes sense to you, then you should ask yourself 
whether the procedure you are using is appropriate for your research. Graphics can help you 
to make some of these determinations; theory can help in other cases. But never assume that 
using a highly regarded program absolves you of the responsibility for judging whether 
your results are plausible. Finally, when documenting the use of a statistical procedure, re-
fer to the statistical literature rather than a computer manual; when documenting the use of 
a program, refer to the computer manual rather than the statistical literature.

Assumptions

You should take efforts to assure that the underlying assumptions required 
for the analysis are reasonable given the data. Examine residuals carefully. 
Do not use distributional tests and statistical indexes of shape (e.g., skewness, 
kurtosis) as a substitute for examining your residuals graphically.

Using a statistical test to diagnose problems in model fitting has two shortcomings. Often 
significance tests based on summary statistics (such as tests for homogeneity of variance) 
are impractically sensitive. They lead us to reject fits that are relatively robust to these vi-
olations. Secondly, statistics such as skewness and kurtosis often fail to detect distribution-
al irregularities in the residuals. Third, statistical tests depend on sample size, and as sample 
size increases, they often will reject innocuous assumptions. In general, there is no substi-
tute for graphical analysis of assumptions.

 Modern statistical packages offer graphical diagnostics for helping to determine whether 
a model appears to fit data appropriately. Most users are familiar with residual plots for lin-
ear regression modeling. Fewer are aware that John Tukey’s paradigmatic equation data = 
fit + residual applies to a more general class of models and has broad implications for 
graphical analysis of assumptions. Stem-and-leaf plots, box plots, histograms, dot plots, 
spread/level plots, probability plots, spectral plots, autocorrelation and cross-correlation 
plots, co-plots, and trellises (Tukey, 1977; Chambers et al., 1983; Cleveland, 1995) all 
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serve at various times for displaying residuals, whether they arise from ANOVA, nonlinear 
modeling, factor analysis, latent variable modeling, multidimensional scaling, hierarchical 
linear modeling, or other procedures. 

Hypothesis tests

It is hard to imagine a situation in which a dichotomous accept-reject de-
cision is better than reporting an actual p-value or, better still, a confidence 
interval. Never use the unfortunate expression, “accept the null hypothesis.” 
Always provide some effect-size estimate when reporting a p-value.

Cohen (1994) has written on this subject in this journal. All psychologists would benefit 
from reading his insightful paper. 

Effect sizes

Always present effect sizes for primary outcomes. If the units of measure-
ment are practically meaningful (e.g., number of cigarettes smoked per day), 
then we should usually prefer an unstandardized measure (regression coeffi-
cient or mean difference) to a standardized measure (r or d). It helps to add 
brief comments that place these effect sizes in a practical and theoretical con-
text.

The 1994 APA publication manual included an important new “encouragement” (p. 18) 
to report effect sizes. Unfortunately, empirical studies of various journals indicate that the 
effect size of this encouragement has been negligible (Kirk, 1996; Keselman et al., 1998; 
Thompson & Snyder, 1998). We must stress again that reporting and interpreting effect siz-
es in the context of previously reported effects is essential to good research. It enables read-
ers to evaluate the stability of results across samples, designs, and analyses. Reporting 
effect sizes also informs power analyses and meta-analyses needed in future research.

Snyder and Lawson (1993), Fleiss (1994), Rosenthal (1994), and Kirk (1996) summarize 
various measures of effect sizes used in psychological research. Consult these articles for 
information on computing them. For a simple, general purpose display of the practical 
meaning of an effect size, see Rosenthal and Rubin (1982). Consult Rosenthal and Rubin 
(1994) for information on the use of "counternull intervals" for effect sizes  as alternatives 
to confidence intevals.

Interval estimates

Interval estimates should be given for any effect sizes involving principal 
outcomes. Provide intervals for correlations and other coefficients of associ-
ation or variation whenever possible.

Confidence intervals are usually available in statistical software; otherwise, confidence 
intervals for basic statistics can be computed from typical output. Comparing confidence 
intervals from a current study to intervals from previous, related studies helps focus atten-
tion on stability across studies (Schmidt, 1996). Collecting intervals across studies also 
helps in constructing plausible regions for population parameters. This practice should help 



11

prevent the common mistake of assuming a parameter is contained in a confidence interval. 

Multiplicities

Multiple outcomes require special handling. There are many ways to con-
duct reasonable inference when faced with multiplicity, e.g., Bonferroni cor-
rection of p-values, multivariate test statistics, empirical Bayes methods. It is 
your responsibility to define and justify the methods used. 

Statisticians speak of “the curse of dimensionality.” To paraphrase, multiplicities are the 
curse of the social sciences. In many areas of psychology, we cannot do research on impor-
tant problems without encountering multiplicity. We often encounter many variables and 
many relationships.

One of the most prevalent strategies psychologists use to handle multiplicity is to follow 
an ANOVA with pairwise multiple-comparison tests. This approach is usually wrong for 
several reasons. First, pairwise methods such as Tukey’s HSD procedure were designed to 
control a familywise error rate based on the sample size and number of comparisons. Pre-
ceding them with an omnibus F-test in a stage-wise testing procedure defeats this design, 
making it unnecessarily conservative. Second, researchers rarely need to compare all pos-
sible means to understand their results or assess their theory; by setting their sights large, 
they sacrifice their power to see small. Third, the lattice of all-possible pairs is a straight-
jacket; forcing themselves to wear it often restricts researchers to uninteresting hypotheses 
and induces them to ignore more fruitful ones. 

As an antidote to the temptation to explore all pairs, imagine yourself restricted to men-
tioning only pairwise comparisons in the Introduction and Discussion sections of your re-
port. Higher-order concepts such as trends, structures, or clusters of effects would be 
forbidden. Your theory would be restricted to first-order associations. This scenario brings 
to mind the illogic of the converse, popular practice of theorizing about higher-order con-
cepts in the Introduction and Discussion sections and supporting that theorizing in the Re-
sults section with atomistic pairwise comparisons. If a specific contrast interests you, 
examine it. If all interest you, ask yourself why. For a detailed treatment of the use of con-
trasts, see Rosenthal, Rosnow, & Rubin (in press).

There is a variant of this preoccupation with all-possible-pairs that comes with the wide-
spread practice of printing p-values or asterisks next to every correlation in a correlation 
matrix. Methodologists frequently point out that these p-values should be adjusted through 
Bonferroni or other corrections. One should ask instead why any reader would want this 
information. The possibilities are: 

1) All the correlations are “significant.” If so, this can be noted in a single footnote.
2) None of the correlations is “significant.” Again, this can be noted once. We need to be 

reminded that this situation does not rule out the possibility that combinations or subsets of 
the correlations may be “significant.” The definition of the null-hypothesis for the global 
test may not include other potential null-hypotheses that might be rejected if they were test-
ed.

3) A subset of the correlations is “significant.” If so, our purpose in appending asterisks 
would seem to be to mark this subset. Using “significance” tests in this way is really a high-
lighting technique to facilitate pattern recognition. If this is your goal in presenting results, 
then it is better served by calling attention to the pattern (perhaps by sorting the rows and 
columns of the correlation matrix) and assessing it directly. This would force you, as well, 
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to provide a plausible explanation. 
There is a close relative of “all-possible-pairs” called “all-possible-combinations.” We 

see this occasionally in the publishing of higher-way factorial ANOVA’s that include all 
possible main effects and interactions. One should not imagine that placing asterisks next 
to conventionally “significant” effects in a 5-way ANOVA, for example, skirts the multi-
plicity problem. A typical 5-way fully factorial design applied to a reasonably large sample 
of random data has about an 80 percent chance of producing at least one “significant” effect 
by conventional F-tests at the .05 critical level (Hurlburt and Spiegel, 1976). 

Underlying the widespread use of all-possible-pairs methodology is the legitimate fear 
among editors and reviewers that some researchers would indulge in “fishing expeditions” 
without the restraint of simultaneous test procedures. We should indeed fear the well-inten-
tioned, indiscriminate search for structure more than the deliberate falsification of results, 
if only for the prevalence of wishful thinking over nefariousness. There are Bonferroni and 
recent related methods (e.g., Benjamini & Hochberg, 1995) for controlling this problem 
statistically. Nevertheless, there is an alternative restraint. Reviewers should require writers 
to articulate their expectations well enough to reduce the likelihood of post-hoc rationaliza-
tions. Fishing expeditions are often recognizable by the promiscuity of their explanations. 
They mix ideas from scattered sources, rely heavily on common sense, and cite fragments 
rather than trends.

If, on the other hand, a researcher “fools” us with an intriguing result caught while indis-
criminately fishing, we might want to fear this possibility less than we do now. The enforc-
ing of rules to prevent chance results in our journals may at times distract us from noticing 
the more harmful possibility of publishing bogus theories and methods (ill-defined vari-
ables, lack of parsimony, experimenter bias, logical errors, artifacts) that are buttressed by 
evidently impeccable statistics. There are enough good ideas behind fortuitous results to 
make us wary of restricting them. This is especially true in those areas of psychology where 
lives and major budgets are not at stake. Let replications promote reputations.

Causality

Inferences of causality from non-randomized designs are fraught with pit-
falls. Researchers using non-randomized designs have an extra obligation to 
explain the logic behind covariates included in their designs and to alert the 
reader to plausible rival hypotheses that might explain their results. Even in 
randomized experiments, attributing causal effects to any one aspect of the 
treatment condition requires support from additional experimentation.

It is sometimes thought that correlation does not prove causation but “causal modeling” 
does. Despite the admonitions of experts in this field, researchers sometimes use goodness-
of-fit indices to hunt through thickets of competing models and settle on a plausible sub-
stantive explanation only in retrospect. McDonald (1997), in an analysis of an historical 
dataset, shows the dangers of this practice and the importance of substantive theory. Schei-
nes et al. (1998; discussions following) offer similar cautions from a theoretical standpoint.

A generally accepted framework for formulating questions concerning the estimation of 
causal effects in social and biomedical science involves the use of "potential outcomes," 
with one outcome for each treatment condition. Although the perspective has old roots, in-
cluding use by Fisher and Neyman in the context of completely randomized experiments 
analyzed by randomization-based inference (Rubin, 1990a), it is typically referred to as 
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"Rubin's Causal Model” or RCM (Holland, 1986). For extensions to observational studies 
and other forms of inference, see Rubin (1974, 1977, 1978). This approach is now relatively 
standard, even for settings with instrumental variables and multi-stage models or simulta-
neous equations.

The crucial idea is to set up the causal inference problem as one of missing data, as de-
fined in Rubin (1976), where the missing data are the values of the potential outcomes un-
der the treatment not received and the observed data include the values of the potential 
outcomes under the received treatments. Causal effects are defined on a unit level as the 
comparison of the potential outcomes under the different treatments, only one of which can 
ever be observed (we cannot go back in time to expose the unit to a different treatment). 
The essence of the RCM is to formulate causal questions in this way, and use formal statis-
tical methods to draw probabilistic causal inferences, whether based on Fisherian random-
ization-based (permutation) distributions, Neymanian repeated-sampling randomization-
based distributions, frequentist superpopulation sampling distributions, or Bayesian poste-
rior distributions (Rubin, 1990b).

If a problem of causal inference cannot be formulated in this manner (as the comparison 
of potential outcomes under different treatment assignments), it is not a problem of infer-
ence for causal effects, and the use of "causal" should be avoided. To see the confusion that 
can be created by ignoring this requirement, see the classic "Lord's Paradox" and its reso-
lution by the use of the RCM in Holland and Rubin (1983).

The critical assumptions needed for causal inference are essentially always beyond test-
ing from the data at hand because they involve the missing data. Thus, especially when for-
mulating causal questions from nonrandomized data, the underlying assumptions needed to 
justify any causal conclusions should be carefully and explicitly argued, not in terms of 
technical properties like "uncorrelated error terms," but in terms of real world properties, 
such as how the units received the different treatments.

The use of complicated "causal modeling" software rarely yields any results that have 
any interpretation as causal effects. If such software is used to produce anything beyond an 
exploratory description of a data set, the bases for such extended conclusions must be care-
fully presented and not just asserted based on imprecise labeling conventions of the soft-
ware.

Tables and figures

While tables are commonly used to show exact values, well-drawn figures 
need not sacrifice precision. Figures attract the reader's eye and help convey 
global results. Because individuals have different preferences for processing 
complex information, it often helps to provide both tables and figures. This 
works best when figures are kept small enough to allow space for both for-
mats. Avoid complex figures when simpler ones will do. In all figures, include 
graphical representations of interval estimates whenever possible. 

Bailar and Mosteller (1988) offer helpful information on improving tables in published 
reports. Many of their recommendations (e.g., sorting rows and columns by marginal aver-
ages, rounding to a few significant digits, avoiding decimals when possible) are based on 
the clearly-written tutorials of Ehrenberg (1975, 1981). 

A common deficiency of graphics in psychological publications is their lack of essential 
information. In most cases, this information is the shape or distribution of the data. Whether 
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from a negative motivation to conceal irregularities or from a positive belief that “less is 
more,” omitting shape information from graphics often hinders scientific evaluation. 
Chambers et al. (1983) and Cleveland (1995) offer specific ways to address these problems. 
The following examples do this using two of the most frequent graphical forms in psychol-
ogy publications. 

Figure 2 shows plots based on data from 80 graduate students in a Midwestern university 
psychology department collected from 1969 through 1978. The variables are scores on the 
psychology advanced test of the Graduate Record Examination (GRE), the undergraduate 
grade point average (GPA), and whether or not a student completed a Ph.D. in the depart-
ment (PhD). The left panel of Figure 2 shows a format appearing frequently in psychology 
journal articles: two regression lines, one for each group of students. This graphic conveys 
nothing more than four numbers, the slopes and intercepts of the regression lines. Because 
the scales have no physical meaning, seeing the slopes of lines (as opposed to reading the 
numbers) adds nothing to our understanding of the relationship.

The right panel of Figure 2 shows a scatterplot of the same data with a locally-weighted 
scatterplot smoother for each PhD group (Cleveland & Devlin, 1988). This robust curvilin-
ear regression smoother (called LOESS) is available in modern statistics packages. Now we 
can see some curvature in the relationships. (When a model that includes a linear and qua-
dratic term for GPA is computed, the apparent interaction involving the PhD and NoPhD 
groups depicted in the left panel disappears.) The graphic in the right panel tells us many 
things. We note the unusual student with a GPA of less than 4.0 and a psychology GRE 
score of 800, we note the less surprising student with a similar GPA but a low GRE score 
(both of whom failed to earn doctoral degrees), we note the several students who had 
among the lowest GRE scores but earned doctorates, and so on. We might imagine these 
kinds of cases in the left panel (as we should in any dataset containing error), but their lo-
cation and distribution in the right panel tells us something about this specific dataset.

Figure 2  Graphics for Regression

The left panel of Figure 3 shows another popular format for displaying data in psychol-
ogy journals. It is based on the dataset used for Figure 2. Authors frequently use this format 
for displaying the results of t-tests or ANOVAs. For factorial ANOVAs, this format gives 
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authors an opportunity to represent interactions by using a legend with separate symbols 
for each line. In more laboratory-oriented psychology journals (e.g., animal behavior, neu-
roscience), authors sometimes add error bars to the dots representing the means.

The right panel of Figure 3 adds to the line graphic a dot plot representing the data and 
95 percent confidence intervals on the means of the two groups (using the t-distribution). 
The graphic reveals a left-skewness of GRE scores in the PhD group. While this skewness 
may not be severe enough to affect our statistical conclusions, it is nevertheless noteworthy. 
It may be due to ceiling effects (although note the 800 score in the NoPhD group) or some 
other factor. At the least, the reader has a right to be able to evaluate this kind of informa-
tion.

There are other ways to include data or distributions in graphics, including box plots and 
stem-and-leaf plots (Tukey 1977) and kernel density estimates (Silverman, 1986; Scott, 
1992). Many of these procedures are found in modern statistical packages. It is time for au-
thors to take advantage of them and for editors and reviewers to urge authors to do so.

Figure 3  Graphics for Groups

Discussion

Interpretation

When you interpret effects, think of credibility, generalizability, and ro-
bustness. Are the effects credible, given the results of previous studies and 
theory? Do the features of the design and analysis (e.g., sample quality, sim-
ilarity of the design to designs of previous studies, similarity of the effects to 
those in previous studies) suggest the results are generalizable? Are the de-
sign and analytic methods robust enough to support strong conclusions? 

Novice researchers err either by over-generalizing their results or, equally unfortunately, 
over-particularizing. Explicitly compare the effects detected in your inquiry with the effect 
sizes reported in related previous studies. Do not be afraid to extend your interpretations to 
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a general class or population if you have reasons to assume that your results apply. This 
general class may consist of populations you have studied at your site, or other populations 
at other sites, or even more general populations. Providing these reasons in your discussion 
will help you to stimulate future research for yourself and others.

Conclusions

Speculation may be appropriate, but use it sparingly and explicitly. Note 
the shortcomings of your study. Remember, however, that acknowledging 
limitations is for the purpose of qualifying results and avoiding pitfalls in fu-
ture research. Confession should not have the goal of disarming criticism. 
Recommendations for future research should be thoughtful and grounded in 
present and previous findings. Gratuitous suggestions (“further research 
needs to be done ...”) waste space. Do not interpret a single study’s results as 
having importance independent of the effects reported elsewhere in the rele-
vant literature. The thinking presented in a single study may turn the move-
ment of the literature, but the results in a single study are important primarily 
as one contribution to a mosaic of study effects.

Some had hoped that the Task Force would vote to recommend an outright ban on the 
use of significance tests in psychology journals. Although this might eliminate some abus-
es, the committee thought that there were enough counterexamples (e.g., Abelson, 1997) to 
justify forbearance. Furthermore, the committee believed that the problems raised in its 
charge went beyond the simple question of whether to ban significance tests. 

The committee hopes instead that this report will induce editors, reviewers, and authors 
to recognize practices that institutionalize the thoughtless application of statistical methods. 
Distinguishing statistical significance from theoretical significance (Kirk, 1996) will help 
the entire research community to publish more substantial results. Encouraging good de-
sign and logic will help improve the quality of conclusions. And promoting modern statis-
tical graphics will improve the assessment of assumptions and display of results.

More than fifty years ago, Hotelling et al. (1948) wrote, “Unfortunately, too many people 
like to do their statistical work as they say their prayers -- merely substitute in a formula 
found in a highly respected book written a long time ago.” Good theories and intelligent 
interpretation advance a discipline more than rigid methodological orthodoxy. If editors 
keep in mind Fisher’s words quoted above, then there is less danger of methodology sub-
stituting for thought. Statistical methods should guide and discipline our thinking, but 
should not determine it.

Notes
Jacob Cohen died on January 20, 1998. Without his initiative and gentle persistence, this 

report most likely would not have appeared. Grant Blank provided the Kahn and Udry 
(1986) reference. Gerard Dallal and Paul Velleman offered helpful comments.
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