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Abstract AutoVis is a data viewer that responds to content – text, relational
tables, hierarchies, streams, images – and displays the information appropri-
ately (that is, as an expert would). Its design rests on the grammar of graphics,
scagnostics and a modeler based on the logic of statistical analysis. We distin-
guish an automatic visualization system (AVS) from an automated visualization
system. The former automatically makes decisions about what is to be visu-
alized. The latter is a programming system for automating the production of
charts, graphs and visualizations. An AVS is designed to provide a first glance
at data before modeling and analysis are done. AVS is designed to protect
researchers from ignoring missing data, outliers, miscodes and other anoma-
lies that can violate statistical assumptions or otherwise jeopardize the validity
of models. The design of this system incorporates several unique features: (1)
a spare interface – analysts simply drag a data source into an empty window,
(2) a graphics generator that requires no user definitions to produce graphs,
(3) a statistical analyzer that protects users from false conclusions, and (4) a
pattern recognizer that responds to the aspects (density, shape, trend, and so
on) that professional statisticians notice when investigating data sets.
Information Visualization (2010) 9, 47--69. doi:10.1057/ivs.2008.27;
published online 18 December 2008

Keywords: automatic visualization; statistics; visual analytics

Introduction

As John Tukey frequently taught, statistical practice is an endless cycle of
exploration, analysis, and revision.1--3 Exploratory data analysis (EDA) is
not a search for rules; it is a search for surprises. Modern visual analysis
extends Tukey’s idea. Its premise is that more can be learned from the visual
analysis of raw data than from blind summarization.
Engaging Tukey’s cycle begins with a paradox, however. How can we
explore if we do not know where to look? In the traditional environment of
statistical consulting, this paradox is resolved by the client. The first ques-
tion statisticians ask a client is how the data were collected. In answering
that question, a client tells a statistician about the ideas that generated
the data as well as all the particulars of the collection itself. Sometimes,
however, an analyst has no client. Data are given and the analyst receives
(this condition reflects the Latin meaning of data – givens). In such circum-
stances, an analyst begins in the dark.
This paper offers one approach for providing some initial light so an analyst
can enter the exploratory loop. We call this approach automatic visualization
and the software resting on it an automatic visualization system (AVS).
AutoVis is a program that provides a first view of a data source consisting
of text, relational tables, hierarchies, images, or other forms. We do our
best to make that view informative and consistent with the layout and
methods an expert statistician would employ.
We are not the first to use the term automatic visualization. It is frequently
employed to describe specific methods, such as graph layout. By contrast,
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the related work we acknowledge here involves the more
general, more difficult problem: visualizing data without
presupposing a model. The pioneering work in this area
was done by Jock Mackinlay in his Stanford dissertation.4

Mackinlay drew on the work of Codd (computer science),
Bertin (geography), Stevens (psychology), and the Tukey
Bell Labs group (statistics) to craft a system that could
display intelligently the contents of relational tables.

Steven Roth’s group at Carnegie-Mellon was the other
early stimulus for automatic visualization research.5,6 As
a psychologist, Roth drew heavily on cognitive theory
for developing visualization strategies in his software. His
system for automated graphics and explanation (SAGE)
was able to graph intricate data sets, such as Minard’s map
of Napoleon’s Russian campaign.

Others followed these researchers with systems for intel-
ligent or ‘smart’ graphics.7--12 In addition, there have
been systems designed around displaying large automated
visualizations, such as the CAVE,13 Information Mural14

and ImmersaDesk.15 These environments are especially
suited to data-rich displays and anticipate further devel-
opment of automated systems to populate large displays.

Our goal in this project is somewhat different from prior
work, however. We seek a beginning, not an end. Tools like
AutoVis must be accompanied by tools for detailed inter-
action with data, including brushing, linking, sorting, and
other actions introduced by Tukey’s Bell Labs group and
widely used today. In our view of automatic visualization,
we wish to cast enough light on data to help an analyst
to commence, but not enough light to help an analyst to
conclude. Our task is as much concerned with what not
to do (showing patterns that could lead to false conclu-
sions about random data) as with what to do (showing
significant relationships that may not be apparent
under conventional analyses). We believe a statistical
graphics viewer should stimulate thought, not suppress
thought.

Design

Displaying a data source requires several processing stages.
First, we must recognize the type of file or data source we
are given. Second, we must analyze the structure of the
data. Third, we must prioritize the views derived from our
analyses in order to present the most interesting results.
Finally, we must summarize the structure of the data source
in a single display. We address each of these problems in
sequence.

Recognizing

Our first tactic in recognizing a data source is to look at its
signature. Proprietary file extensions are easiest. They are
accompanied by standard formats that we can parse more
or less straightforwardly. These formats tell us something
about the structure of the file as well. We know that a
word processing file is more likely to contain free text, for

example. A spreadsheet file is more likely to contain one or
more tables. Some formats, such as Microsoft Word files,
may be so complicated and general as to tell us almost
nothing about the structure within.

Text files are also difficult. They may contain free
text or they may contain tables encoded in a comma-
separated, space-separated, or tabbed format. Or, they
may use MIME or other types of encoding to encapsu-
late more complex structures. Consequently, we pursue a
sequential strategy. We parse them as if they were tables
(looking for an optional first row of variable labels) and if
that fails, we parse them as free text. Our default column
separator is a space, but we also look for commas, tabs,
and other delimiters.

Image files are simple, because they have industry-
standard formats. Raster files are ready for analysis; we
decompose them into color histograms. Vector files must
be rendered into buffered image maps so that we can
process them as raster.

Sometimes our data are not contained in files. They
may be embedded in other structures, or presented as data
streams from a URL or other source. With an HTML or
XML source, we are fortunate to have tags to guide us.
In other cases, we follow a sequential strategy similar to
the one we use for files. With less information regarding
internal structure, however, we are more likely to fail.

Analyzing

Once we know the type of data we have, we need to
decide on an appropriate analytic strategy. This strategy
rests on a sequence of steps outlined in Wilkinson,16

called Grammar of Graphics (GoG). This system consists
of a functional data flow computed by the methods in
seven classes – Variables, Algebra, Scales, Statistics, Geom-
etry, Coordinates, and Aesthetics. Each class contributes
one method and the type of graph produced is a func-
tional chain of the methods. These seven functional
components comprise a complete order. It is claimed that
they cannot be computed in any other order without
producing meaningless results. Appendix B outlines this
system. We now describe how this system is used in
AutoVis.

1. Variables. First, we must determine whether a vari-
able is continuous or categorical. (Variables and their
types are defined formally in Appendix A.) For tables,
we consider each column as a variable. We classify
columns containing at least one non-numeric string
as categorical. For columns containing only numbers,
we tally numeric values and test for granularity by
counting the number of discrete values. When the
value tally is small, we declare a column to be categor-
ical. Otherwise it is declared continuous.
Other data sources are treated differently. For free text
data, we consider all elements to be instances of a cate-
gorical variable. Our analysis is based on counts of
instances. For images, we treat pixel values as drawn
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Figure 1: Opening screen (plus user manual). AutoVis has no menus or modal GUIs.

Figure 2: AutoVis history view. The three panels contain files listed by recency.

from continuous variables. We type-cast similarly for
other data sources.

2. Algebra. The graphs in AutoVis are produced from
tuples. These tuples are defined by the cross operator
in the GoG algebra. Appendix A details this operation.
We plan to incorporate the other two operators (nest

and blend), but this will require more refined analysis
of the structure of tabular data.

3. Scales. Next, we need to determine scales on which
graphs will be displayed. We iteratively apply Tukey’s
ladder of powers1,17 in order to make 1D distributions
as symmetric as possible. For an estimated power
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Figure 3: Text from Moby Dick. The edges in this graph were computed from co-occurrence of words in low-order n-grams.
The size of the nodes is proportional to the frequency of the words in the text.

exponent near zero, we follow Tukey and select a log
transformation. For values near one, we leave the data
untransformed. Tukey calls this process re-expression.
Most statisticians are familiar with a similar approach,
called the Box-Cox transformation,18 which was
derived from Tukey’s idea.
For categorical variables, we sort the category values
and assign each category an integer value.

4. Statistics. Next, we compute statistical summaries.
For continuous variables, we compute Epanechnikov-
kernel-smoothed empirical histograms.19 For categor-
ical variables, we compute category frequencies. For
pairs of continuous variables, we compute frequencies
within hexagon-bins.10,21 For continuous-categorical
combinations, we compute Tukey letter values
(quantiles) within category.1 For pairs of categorical

variables, we compute frequencies within rectangular
bins.
For free text, we compute a vertex-edge graph
using n-grams and adjacencies. We use a force-
directed graph layout22 to compute coordinates of the
vertices. For XML and other tree-based sources,
we compute a tree by depth-first-search. For raster
data, we compute color histograms and color-name
distributions.

5. Geometry. We choose different geometric representa-
tions for different types of data. For Epanechnikov 1D
densities, we use an area geometric element to high-
light the density. For 1D frequency data, we choose a
bar element. For 2D plots, we choose a schema (boxplot)
element for continuous-categorical summaries, and
a tile element for hexagon or rectangular bins. For
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Figure 4: The grammar of graphics specification of Minard's graph of Napoleon's Russian campaign. This figure was created
by dragging the visML specification (an XML schema) for the graph itself. The tree structure of the graph represents the
hierarchy of the graph elements. Executing this tree in visML reproduces the Minard graph itself.

vertex-edge graphs, we use the edge element. These
elements are defined in Appendix A.
None of these choices is necessary. We could assign
different geometries to the same statistical graph
elements. Nonetheless, we made our choices according
to best practices among statisticians.23,24

6. Coordinates. Almost all the graphs are embedded in
rectangular coordinates. To save display space, we use
polar coordinates for tree layouts.25

7. Aesthetics. Almost all the graphs are rendered using
position and shape aesthetic functions. We use color
aesthetics sparingly in a few graphs in order to high-
light noteworthy features. For example, we color tails
of 1D densities red if they fall outside the region inside
the Tukey inner fences:

q25 − 1.5(q75 − q25)<R<q75 + 1.5(q75 − q25) (1)

where q75 − q25 is the interquartile range or H-spread.1

For normally distributed variables, using this criterion
means that approximately 1 in 150 cases would be
flagged as outliers.

Prioritizing

With more than a few variables to analyze, we face a
priority problem. Presenting all 1D and 2D views on p
variables requires p(p + 1)/2 displays. This approach
would use a prohibitive amount of display real estate, so
we employ a strategy for finding both representative and
unusual scatterplots.

Prioritizing is perhaps the most important task required
for automatic visualization. By analogy, Google would be
useless without the Page Rank statistic to order its search
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Figure 5: Website of the second author. The nodes are elements tagged in the HTML code for the site. The layout was
produced by dragging the directory of the website into the AutoVis window.

results. We cannot use standard data mining methods
(decision trees, support vector machines, neural networks,
and so on) for this task because they presume a prediction
or segmentation model. Automatic visualization needs to
precede modeling.

Therefore, we need to operationalize the concept of
‘interesting’ in order to develop a mathematical model
for discovering interesting patterns. For this, we use
conventional statistical tests to filter out random rela-
tionships. We also use scagnostics26 to identify interesting
scatterplots. The scagnostic computations are outlined in
Appendix B.

There are three kinds of displays we consider poten-
tially interesting. The first involves notables. What are the
significant relationships that should be considered before
developing models? The second involves exemplars. What
are the most typical joint distributions of points? The third

involves anomalies. What are the most unusual or atypical
distributions of points?

Notables
We draw on classical statistics to highlight noteworthy
relationships. For continuous – continuous data, we
compute a Spearman correlation coefficient. For contin-
uous – categorical data, we compute a one-way analysis
of variance. For categorical–categorical data, we compute
a �2 measure of association. For each of these relations,
we compute a conventional test of significance. We then
sort all the P values and use the Benjamini–Hochberg
formula to control the false discovery error rate27:

rBH = max
{

0� i�m : pi��
i

m

}
(2)
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Figure 6: The AutoVis JAR file. AutoVis unzips the file automatically and analyzes its contents.

where p0 =0 and �=0.01 and m is the number of P values.
We display all relationships for which pj�prBH .

Exemplars
We use an iterative hierarchical k-means cluster anal-
ysis to find exemplars.28 This particular implementation
of k-means includes a determination of the number
of clusters through a sequential estimation technique.
The resulting number of clusters depends on the distri-
bution of the data. Further information on this algo-
rithm and its performance is given at www.cs.uic.
edu/∼wilkinson/Applets/cluster.html.

The cluster analysis is computed on the scagnostics, not
the original data. For 2D, there are nine scagnostics on
p(p−1)/2 displays. Exemplars are computed by finding the
scagnostic point nearest the centroid of each cluster. We
then display the 2D plot corresponding to each scagnos-

tics exemplar. We color the background of each plot a light
green to signal that these are exemplars.

Anomalies
Finding anomalies requires a different approach. We could
have computed Mahalanobis distances of every scagnostic
point to each of the respective cluster centroids and used
an F-test to determine outliers.29 While Hartigan–Wong
k-means clusters are guaranteed to be convex, they are
not guaranteed to be multivariate Normal, even though
the marginal null distributions of scagnostics are approx-
imately Normal.30 Consequently, we devised an alterna-
tive approach.

To locate anomalies, we compute a 9D geometric
minimum spanning tree on the scagnostics. We then
compute the distribution of edge lengths in the MST. We
consider an outlier to be a vertex whose adjacent edges in
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Figure 7: AutoVis representation of a statistical data set. The data are from a study of the relation between sleep habits of
animals and their chance of being eaten by predators. The left column contains kernel densities of the continuous variables
and bar charts for the categorical variables. The lower panels contain plots that AutoVis considers 'interesting.' The upper
panel contains an association diagram based on a coefficient of association computed between pairs of variables.

the MST all have a length greater than Finner+. Following
Tukey,1 we choose

Finner+ = q75 + 1.5(q75 − q25) (3)

where q75 is the 75th percentile of the MST edge lengths
and the expression in the parentheses is the interquartile
range (Tukey’s hinge spread) of the edge lengths. Tukey calls
Finner+ the upper inner fence of a data batch. We display
any 2D plot identified by this criterion. We color the back-
ground of each plot a light pink to signal that these are
anomalies.

Summarizing

The tabular displays we have discussed so far are all 1D
and 2D. We have so far devised methods for prioritizing

the 2D displays by filtering out random and uninteresting
relationships. Now we want to supplement these displays
with a global summary that conveys relations among all
the variables in a data source. Furthermore, in keeping
with our statistical approach to prioritizing, we want this
display to be unresponsive to random variation.

There are many off-the-shelf multivariate summary
displays we could use for this purpose: parallel coor-
dinates, glyphs (faces, rays, stars, and so on), scatter-
plot matrices, SVD-based projections (biplots, principal
components, correspondence plots), and MDS-based
projections. These methods suffer from various deficien-
cies: parallel coordinates and glyphs become messy for
large n; scatterplot matrices become messy for large p; SVD
does not handle nonlinearity; MDS is ill-suited for hetero-
geneous data. Furthermore, these standard methods do
not address the randomness issue.

54 © 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 1, 47–69
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Figure 8: Social data from world countries data set. Variable clusters are discernible in the association map.

We decided to adopt an alternative approach that
resembles some graph-theoretic displays used in compu-
tational biology. Namely, we use measures of similarity
among variables to construct a weighted adjacency matrix
and then embed the vertex-edge graph in a 2D display
using the same force-directed layout algorithm we employ
for text data. This approach deals flexibly with several
problems.

First, we use several scaled association measures to
address the heterogeneity problem. For continuous–
continuous data, we compute the absolute value of
a Spearman correlation coefficient. For continuous–
categorical data, we compute an eta coefficient (square
root of the ratio of between sum-of-squares to total sum-
of-squares in a one-way analysis of variance). And for
categorical – categorical data, we compute a phi coeffi-
cient (square root of �2/N). All three of these measures
lie between 0 and 1.

Second, we color our edges to reflect goodness of fit. Red
edges correspond to large association coefficients; blue

correspond to small. If an edge is long and red, or if it is
short and blue, we can see that the layout does not fit the
data well.

Third, we set the thickness of our edges to reflect the
strength of the relationship, but we threshold this setting.
If an association is insignificant, the edge vanishes. We do
this by computing a confidence interval on the parameter
underlying the edge statistic, using the appropriate t or �2

distribution. Edges whose weights are within the confi-
dence interval are deleted before layout. Vertices with
no remaining adjacent edges are also deleted from the
layout.

Examples

Figure 1 shows the opening window and user manual for
AutoVis (‘Drag files or text here’). There are no drop-down
menus or modal tools. This software is minimalist.Figure
2 shows the history window one sees when pressing the
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Figure 9: Time series data set. The multiple series represent stock prices for computer companies (Yahoo, IBM, Apple,
Microsoft, Dell and Google). The Dow-Jones Industrial Average ($INDU) is also included.

History button. This view allows one to retrieve prior files
to view them again. In this figure we show the files used in
this paper plus a few additional files analyzed previously.
The following sections illustrate the variety of data forms
that AutoVis can recognize and display intelligently.

Networks (free text)

Figure 3 shows what happens when we drag a text file into
the AutoVis window. We have selected text from Moby
Dick. AutoVis recognizes that the file contains free text
and accordingly computes an undirected graph based on
an n-gram similarity measure. This measure counts the
number of times two words appear jointly in a collection
of text lists (sentences, paragraphs, or length-n sequences
of words).31,32 The full symmetric matrix of these counts
defines a weighted adjacency matrix for a graph whose
nodes are the words. AutoVis produces a planar layout
of this graph using a force-directed algorithm.22 It sizes
nodes proportionally to the similarity measure. Not

surprisingly, the word whale is the largest node in the
graph.

Trees

AutoVis traverses a graph to discover if it is a tree. If so,
it uses a polar layout algorithm to display the result. It
is capable of recognizing a number of data formats that
reduce to a tree structure.

XML
Figure 4 shows the result of dragging an XML resource
into the AutoVis window. Upon recognizing that the
file contains an XML tree, AutoVis parses the tree and
computes a radial tree planar layout.25

The display contains the grammar-of-graphics vizML
specification for Minard’s famous map of Napoleon’s
Russian campaign.33 Many of the grammar-of-graphics
components are visible in this specification, as well
as annotations such as axes and legends. Not surpris-
ingly, the structure of this tree display is not unlike the
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Figure 10: A random data set. AutoVis shows no associations because it finds none to be significant. It also finds no two-way
plots to be 'interesting.' AutoVis is designed to protect users from making false conclusions while viewing data.

structure of Figure 1.2 in Wilkinson,16 which shows the
tree structure of a typical statistical graphic.

A website
Figure 5 shows the result of dragging a website into
the AutoVis window. AutoVis computes the direc-
tory/resource tree of the site and uses the radial tree
algorithm to compute a planar layout.

We have used the website of the second author
(www.cs.uic.edu/∼wilkinson/). There are clique nodes for
The Grammar of Graphics, other publications, Java applets,
SYSTAT and support files. This example reveals the label
pruning that AutoVis does to avoid collisions. A popup
tool allows one to hover over any node to examine its
label interactively.

A Jar file
Figure 6 shows the result of dragging the Jar file for
the AutoVis program itself. AutoVis unzips the file and

analyzes the directory structure to lay out the contents.
Note that the images are separated from the executables.

Tables

Upon recognizing that a data set is organized as a
row/column table, AutoVis displays the entries through
a number of informative statistical graphics. The graphs
chosen for this purpose are derived from best practices
among graphically oriented statisticians.23,24 The specific
graphs incorporated in a display depend on the form of
the data.

Biological data
Figure 7 shows the result of dragging in a table containing
biological measures. The data are from a study of the
relation between sleep habits of animals and their chance
of being eaten by predators.34 On the left are kernel
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Figure 11: Kandinsky painting. The HSB color histogram is represented marginally on the left in three separate kernel
densities, and jointly on the right in a rotatable 3D plot.

densities of the variables in the file. Notice that AutoVis
has selected nonlinear scales for many of the continuous
variables. AutoVis groups transformations into several
panels. The top variable (sleep) is plotted on a linear
scale; no transformation is needed. The next group of
variables (dreaming and non-dreaming sleep) is plotted
on a square-root scale. The four variables below this panel
are plotted on a log scale. AutoVis gives us advice on
transformations we should consider before doing statis-
tical analyses. It decides on appropriate transformations
by iteratively computing various transformations and
examining the resulting histograms for skewness.

Directly below the kernel density panels are bar charts
of three additional variables. Even though these variables
are coded numerically in the file, AutoVis decided they
are categorical and displayed them as bar charts.

The top right of the display contains an association
diagram based on a robust measure of correlation between
the variables. The layout algorithm is force-directed,

similar to a multidimensional scaling. The strength of the
association is represented by color (on a rainbow color
scale). If the fit is good, then long edges should be red
and short edges blue.

The remainder of the display shows an assortment of
pairwise 2D plots. These have been selected by AutoVis
using the various strength-of-association indices discussed
above. The most strongly associated pairs of variables
are displayed. Categorical displays are either box plots
or tilings. Continuous displays are hexagon-binned scat-
terplots. The advantage of the tilings (rectangular or
hexagonal) is that they work well with very large data
sets, unlike ordinary scatterplots. These tilings are a form
of joint 2D density estimates.

Social data
Figure 8 shows the result of dragging in a statistical data set
with a larger number of variables. The data are excerpted
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Figure 12: AutoVis throws up its hands and surrenders. The input is a Microsoft Word file with embedded macros and
unusual text features not in the knowledge domain designed into AutoVis. In circumstances like this, AutoVis displays a 'core
dump' of the contents instead of crashing.

from a UN databank of demographic variables cited in
Wilkinson.16 The most interesting aspect of this display
is the way the association map groups the variables. We
clearly see clusters of similar variables in this data set
(infant mortality and birth rates, population, health statis-
tics, economic and political measures, and death rates).
The latitude and longitude variables, used for mapping the
countries in this data set, sit appropriately by themselves.
As with other displays, AutoVis transforms variables when
it decides the transformations are helpful.

Time series data
Figure 9 contains a display of time series data. The data
are stock series for several computer and software compa-
nies. After recognizing that the data comprise a time series,
AutoVis switches the univariate displays on the left from

kernel densities to line graphs. It also takes care not to
represent time as the dependent variable on the vertical
axis of any two-way plot.

Random data
Figure 10 shows the result of dragging in a uniform
random data set the same size as the sleep data set.
AutoVis shows no significant associations and finds no
interesting two-way plots. It simply displays histograms
(kernel densities) of the variables. No notables or anoma-
lies are presented. This is one of the most important tests
of the integrity of AutoVis. This demonstration under-
scores an important principle of visual analytics, one that
is often neglected in practice: visualizations that display
patterns in random data should be considered harmful
because they can lead to false discoveries.
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Figure 13: Scagnostics display panel of AutoVis. The data are statistics on 520 baseball players. The center panel shows the
scatterplot matrix (SPLOM) of the scagnostics computed on these data. The left column shows two scatterplots considered
by AutoVis to be exemplars for all the 120 possible scatterplots for the data set. The right column shows scatterplots that
AutoVis considers to be anomalies.

Images

AutoVis recognizes a variety of graphic file formats. For
image data, AutoVis computes the color distribution of
the image itself.

JPEG
Figure 11 shows the result of dragging a JPEG file into the
AutoVis window. We have selected a painting of Wassily
Kandinsky. On the left are kernel density histograms of the
HSB components of the image. On the right is a rotatable
(through mouse movements) 3D scatterplot of the HSB
components.

Unrecognizable files

Figure 12 shows the result of dragging a file with a format
unknown to AutoVis. In this case, AutoVis provides a
color-highlighted hex dump of the file. The file in this

example is a recent Microsoft Word document. We are
working on decoding many variations of Word files, but
parsing their structure from Java or other non-Microsoft
environments is a non-trivial enterprise. This example
illustrates the principle that the software should provide
some representation of the data instead of crashing from
failing to parse correctly.

Scagnostics

Figure 13 shows the scagnostics pane of AutoVis. The data
are derived from statistics on 520 baseball players. The
scatterplot matrix (SPLOM) in the center panel shows the
nine scagnostics from Wilkinson et al.26 computed on
these data. On the left are two scatterplots that AutoVis
considers to be exemplars. These plots were computed
through a k-means cluster analysis of the scagnostics on all
possible pairwise scatterplots. The algorithm continues to
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Figure 14: Data editor sorted within columns. The red cells denote missing values. The data are the world countries data
set used in Figure 8. The blue highlighting denotes size of cell entries – darker blue corresponds to larger values.

split clusters until no statistically significant reduction in
the within-cluster sum of squares is found. AutoVis then
locates the scatterplots that are closest to the centroid of
each of these clusters. From these, a data analyst can get an
idea of the typical bivariate distributions without having
to examine a huge number of pairwise plots.

On the right are five scatterplots that AutoVis considers
to be anomalies. Three of these plots are singletons (the
only examples of their shape). The plots listed here are the
same anomalies shown in Wilkinson et al.26 The statistical
theory on which these distinctions are made is explained
in Wilkinson and Wills.30 It is based on a peeling of the
minimum spanning tree on the scagnostics of all the plots.

Missing values

Missing values are highlighted in the data editor. AutoVis
displays these values in red. It sorts the rows and columns

so that similar patterns of missing values appear together
in the sorted display.Figure 14 shows the AutoVis data
editor containing the world countries data set used in
Figure 8. Non-missing data are displayed in various satu-
rations of blue. Larger values are highly saturated and
smaller values are less saturated. For larger data sets, the
editor reduces the size of the cells to accommodate more
rows and columns.35

Conclusion

There are two unique premises to the research reported in
this paper and inherent in the behavior of AutoVis. The
first is that automatic visualization systems, and perhaps
all visualization systems need to protect users from
finding patterns in random data. The second is that auto-
matic visualization systems must be designed to follow
the process that expert analysts use in examining data.
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Protecting users from false conclusions based on
random data is paramount. User judgments of mean-
ingfulness cannot substitute for mathematical analysis.
People can be fooled into thinking relatively simple
programs are intelligent.36 Even experts can be fooled
into finding patterns in random data.37--39 This is
why experts rely on statistical procedures based on
probability theory to protect themselves from false
conclusions. Expert visualization systems must do the
same.

Second, expert visualization systems need to follow the
same rules that expert analysts follow in practice. It would
be relatively simple to short cut this effort by developing
a system that achieves the surface appearance of AutoVis
through a standard visualization library and some basic
statistical graphics. By hard-wiring graph types to data
types, we could produce visualizations for a variety of data
sets. A novice viewer might think that such a system was
flexible and intelligent.

We are not interested in making a popular tool,
however. We are interested in understanding how to
model the process underlying what an expert analyst
does when screening data. AutoVis is a research plat-
form for this effort. It is not designed to produce capti-
vating visualizations. It is designed to mimic the steps
expert analysts follow when they first examine data and
to display the types of statistical graphics experts have
chosen as best-of-breed for this purpose.23,24,40

We intend to evaluate AutoVis in a user experiment.
Such an experiment will not be easy to design, however.
First of all, we need to develop several classes of outcome
measures. One class of measures involves user satis-
faction with the software: do novice and expert users
alike feel that the software facilitates their exploration
and analysis? Another class involves user performance:
does using AutoVis produce a more valid inference (as
measured by integrated mean-square error on replication
samples from known populations) than using a statistical
package or interactive visual analytic system? Another
class involves appropriateness of the visualizations: do the
visualizations produced by AutoVis correspond to those
produced by expert statisticians examining the same
data set?

We are not ready to evaluate the current AutoVis inter-
face, however. We need to do more work on broadening
the inferential capabilities of the AutoVis engine before
settling on a production user interface. Specifically, we
need to handle more data structures to make the appli-
cation useful in real settings. We need to develop spatial
mappings of non-numerical data (text, video, audio) in
order to exploit the pattern-recognition capabilities of
Scagnostics. And we need to implement gestures that will
make AutoVis easy to use in a web environment.

We expect to refine our model as we get more experi-
ence testing AutoVis on real data sets. Mackinlay posed
the original problem for relational data. Our research is
heading toward realizing Mackinlay’s goals for almost any
type of data.
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Appendix A. The Grammar of Graphics

The Grammar of Graphics, or GoG,16 denotes a system with
seven orthogonal components. By orthogonal, we mean
there are seven component classes, each containing one
or more methods (functions) as elements, and all tuples in
the seven-fold product of these sets of functions produce
meaningful graphs. A consequence of this orthogonality
is a high degree of expressiveness: we can produce a huge
variety of graphical forms or chart types in such a system.
In fact, it is claimed that virtually the entire corpus of
known charts can be generated by this relatively parsimo-
nious system, and perhaps a great number of meaningful
but undiscovered chart types as well. For the Java plat-
form used in AutoVis (called nViZn), the product set of the
seven function classes generates hundreds of thousands
of different graphs.

The second principal claim of GoG is that this system
describes the meaning of what we do when we construct
statistical graphs, charts and visualizations. It is more than
a taxonomy. It is a computational system based on the
underlying mathematics of representing functions of data.

Figure A1 shows a data flow diagram that contains the
seven GoG classes. This data flow is a chain that describes
the sequence of mappings needed to produce a statistical
graphic from a set of data. The first class (Variables) maps
data to an object called a varset (a set of variables). The
next two classes (Algebra, Scales) are transformations on
varsets. The next class (Statistics) takes a varset and creates
a statistical graph (a statistical summary). The next class
(Geometry) maps a statistical graph to a geometric graph.
The next (Coordinates) embeds a graph in a coordinate
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Figure A1: The grammar of graphics data flow.

space. And the last class (Aesthetics) maps a graph to a
visible or perceivable display called a graphic.

The data flow architecture implies that the subtasks
needed to produce a graphic from data must be done in
this specified order. Changes to this ordering can produce
meaningless graphics. For example, if we compute certain
statistics on variables (for example, sums) before scaling
them (for example, log scales), we can produce statisti-
cally meaningless results because the log of a sum is not
the sum of the logs.

The data flow in has many paths through it. We can
choose different algebraic designs (factorial, nested, and
so on), scales (log, probability, and so on), statistical
methods (means, medians, modes, smoothers, and so
on), geometric objects (points, lines, bars, and so on),
coordinate systems (rectangular, polar, and so on), and
aesthetics (size, shape, color, and so on). These paths
reveal the richness of the system. We now summarize the
seven GoG classes.

Variables

We begin with data. We assume the data that we wish
to graph are organized in one or more tables. The
column(s) of each table represent a set of fields, each
field containing a set of measurements or attributes. The
row(s) of this table represent a set of logical records,
each record containing the measurements of an object
on each field. Usually, a relational database management
system (RDBMS) produces such a table from organized
queries specified in Structured Query Language (SQL) or
another relational language. Other data sources (object,
streaming, and so on) can be mapped to tables through
similar methods.

Our first step is to convert a table of data to a varset. A
varset is a set of one or more variables. While a column
of a table of data might superficially be considered to
be a variable, there are differences. A variable is both
more general (in regard to generalizability across samples)
and more specific (in regard to data typing and other
constraints) than a column of data. First, we define a
variable, then a varset.

Variable
A variable X is a mapping f : O → V , which we consider
as a triple:

X = [O,V, f ]
The domain O is a set of objects.
The codomain V is a set of values.
The function f assigns to each element of O an element
in V.

The image of O under f contains the values of X. We denote
a possible value as x, where x ∈ V . We denote a value of
an object as X(o), where o ∈ O. A variable is continuous if V
is an interval. A variable is categorical if V is a finite subset
of the integers (or there exists an injective map from V to
a finite subset of the integers).

Variables may be multidimensional. X is a p-dimensional
variable made up of p one-dimensional variables:

X = (X1, . . . , Xp)

= [O,Vi, f ], i = 1, . . . , p

= [O,V, f ]
The element x = (x1, . . . , xp), x ∈ V, is a p-dimensional
value of X. We use multidimensional variables in multi-
variate analysis.

Varset
We call the triple

X = [V, Õ, f ]
a varset. The word varset stands for variable set. If X is
multidimensional, we use boldface X. A varset inverts the
mapping used for variables. That is,

The domain V is a set of values.
The codomain Õ is a set of all possible ordered lists of
objects.
The function f assigns to each element of V an element
in Õ.

64 © 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 1, 47–69

 by guest on May 22, 2011ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


AutoVis

We invert the mapping customarily used for variables in
order to simplify the definitions of graphics algebra opera-
tions on varsets. In doing so, we also replace the variable’s
set of objects with the varset’s set of ordered lists. We use
lists in the codomain because it is possible for a value to
be mapped to an object more than once (as in repeated
measurements).

Algebra

Given one or more varsets, we now need to operate on
them to produce combinations of variables. A typical scat-
terplot of a variable X against a variable Y, for example, is
built from tuples (xi, yi) that are elements in a set product.
We use graphics algebra on values stored in varsets to
make these tuples. There are three binary operators in this
algebra: cross, nest and blend.

Cross (∗)
Cross joins the left argument with the right to produce a
set of tuples stored in the multiple columns of the new
varset:

The resulting set of tuples is a subset of the product of
the domains of the two varsets. The domain of a varset
produced by a cross is the product of the separate domains.
One may think of a cross as a horizontal concatena-
tion of the table representation of two varsets, assuming
the rows of each varset are equivalent and in the same
order.

Nest (/)
Nest partitions the left argument using the values in the
right:

Although it is not required in the definition, we
assume that the nesting varset on the right is categor-
ical. The name nest comes from design-of-experiments
terminology. We often use the word within to describe
its effect. For example, if we assess schools and teachers
in a district, then teachers within schools specifies that
teachers are nested within schools. Assuming each teacher
in the district teaches at only one school, we would
conclude that if our data contain two teachers with
the same name at different schools, they are different
people.

Blend (+)
Blend produces a union of varsets:

Blend is defined only if the order of the tuples (number
of columns) in the left and right varsets is the same.
Furthermore, we need to restrict blend to varsets with
composable domains. It would make little sense to blend
Age and Weight, much less Name and Height. The Scales
class, in the next section, throws an exception if we
attempt to blend varsets across different types of scales.

Scales

Before we compute summaries (totals, means, smoothers,
and so on) and represent these summaries using geometric
objects (points, lines, and so on), we must scale our varsets.
In producing most common charts, we do not notice this
step. When we implement log scales, however, we notice it
immediately. We must log our data before averaging logs.
Even if we do not compute nonlinear transformations,
however, we need to specify a measurement model.

The measurement model determines how distance in a
frame region relates to the ranges of the variables defining
that region. Measurement models are reflected in the axes,
scales, legends and other annotations that demarcate a
chart’s frame. Measurement models determine how values
are represented (for example, as categories or magnitudes)
and what the units of measurement are.

In constructing scales for statistical charts, we need to
know the function used to assign values to objects. S.S.
Stevens developed a taxonomy of such functions based on
axioms of measurement.41 Stevens identified four basic
scale types: nominal, ordinal, interval, and ratio. These scales
are widely cited in introductory statistics books and in
some visualization schemes.42

For graphics grammar, we employ a more restrictive
classification based on units of measurement. Unit scales
permit standardization and conversion of metrics and
raise exceptions when improper blends are attempted.
The International System of Units (SI) unifies measure-
ment under transformation rules encapsulated in a set
of base classes.43 Most of the measurements in the SI
system fit within the interval and ratio levels of Stevens’
system. There are other scales fitting Stevens’ system that
are not classified within the SI system, however. These
involve units such as category (state, province, country,
color, species, and so on), order (rank, index) and measure
(probability, proportion, percent, and so on). Also, there
are some additional scales that are in neither the Stevens
nor the SI system, such as partial order.
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Statistics

The statistics component receives a varset, computes
statistical summaries and outputs another varset. In the
simplest case, the statistical method is an identity. We do
this for scatterplots. Data points are input and the same
data points are output. In other cases, such as histogram
binning, a varset with n rows is input and and a varset
with k rows is output, where k is the number of bins
(k <n). With smoothers (regression or interpolation), a
varset with n rows is input and a varset with k rows
is output, where k is the number of knots in a mesh
over which smoothed values are computed. With point
summaries (means, medians, and so on), a varset with
n rows is input and a varset with one row is output.
With regions (confidence intervals, ranges, and so on),
a varset with n rows is input and a varset with two rows
is output.

Statistical methods are members of their own object,
so they are independent of the other elements in the
system. There is no necessary connection between regres-
sion methods and curves or between confidence inter-
vals and error bars or between histogram binning and
histograms. We can represent the same statistic with a
variety of different geometric objects.

Geometry

Geometric graphs are produced by graphing functions F :
Bm → Rn that injectively map a m-dimensional bounded
region to an n-dimensional real space and have geometric
names like line() or tile(). A geometric graph is the image
of F. Geometric graphs are not visible; they are geometric
sets.

• The point() graphing function produces a geometric
point, which is an n-tuple. This function can also
produce a finite set of points, called a multipoint or
a point cloud. The set of points produced by point() is
called a point graph.

• The line() graphing function is a bit more complicated.
Let Bm be a bounded region in Rm. Consider the func-
tion F : Bm → Rn, where n = m+ 1, with the following
additional properties:

1. the image of F is bounded, and
2. F(x) = (v, f(v)), where f : Bm → R and v =
(x1, . . . , xm) ∈ Bm.

If m = 1, this function maps an interval to a functional
curve on a bounded plane; and if m = 2, it maps a
bounded region to a functional surface in a bounded
3D space. The line() graphing function produces these
graphs. Like point(), line() can also produce a finite set
of lines. A set of lines is called a multiline. We need
this capability for representing multimodal smoothers,
confidence intervals on regression lines and other multi-
functional lines.

• The path() graphing function is similar to a line, but
it is not ordered on x. A path() produces a path that
connects points such that each point touches no more
than two line segments. Thus, a path visits every point
in a collection of points only once. If a path is closed
(every point touches two line segments), we call it a
circuit.

• The area() graphing function produces a graph
containing all points within the region under the line
graph.

• The bar() graphing function produces a set of closed
intervals. An interval has two ends. Ordinarily, however,
bars are used to denote a single value through the loca-
tion of one end. The other end is anchored at a common
reference point (usually zero).

• The histobar() graphing function produces a histogram
element. This element behaves like a bar except a value
maps to the area of a histobar rather than to its extent.
Also, histobars are glued to each other. They have non-
zero measure over their domain (even when their height
is zero), so they cover an interval or region, unlike bars.

• A schema is a diagram that includes both general and
particular features in order to represent a distribution.
We have taken this usage from Tukey,1 who invented
the schematic plot, which has come to be known as
the box plot because of its physical appearance. The
schema() graphing function produces a collection of one
or more points and intervals.

• The tile() graphing function tiles a surface or space. A tile
graph covers and partitions the bounded region defined
by a frame; there can be no gaps or overlaps between
tiles. The Latinate tessellation (for tiling) is often used to
describe the appearance of the tile graphic.

• A contour() graphing function produces contours, or
level curves. A contour graph is used frequently in
weather and topographic maps. Contours can be used
to delineate any continuous surface.

• The edge() graphing function joins points with line
segments (edges). Although edges join points, a point
graph is not needed in a frame in order to make
an edge.

Coordinates

The most popular types of charts employ Cartesian coor-
dinates. The same real tuples in the graphs underlying
these graphics can be embedded in many other coordinate
systems, however. The nViZn platform on which AutoVis
is based has several non-rectangular coordinate functions
available, including polar, fisheye, and geographic (spher-
ical) projections.

Aesthetics

An aesthetic is a function that maps a graph to a perceiv-
able graphic. Seven of the aesthetic functions in GoG
are derived from Bertin’s visual variables: position (posi-
tion), size (taille), shape (forme), orientation (orientation),

66 © 2010 Macmillan Publishers Ltd. 1473-8716 Information Visualization Vol. 9, 1, 47–69

 by guest on May 22, 2011ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


AutoVis

brightness (valeur), color (couleur) and granularity (grain).
In GoG, color is separated into three components. Addi-
tional GoG aesthetics involve dimensions such as blur,
sound and motion.

Appendix B. Computing Scagnostics

For more detail on the material in this section, see
Wilkinson et al. 26

Geometric graphs

The scagnostic measures are based on the following defi-
nitions. A graphG=(V, E) is a set V (called vertices) together
with a relation on V induced by a set E (called edges). An
edge e(v,w), with e ∈ E and v,w ∈ V , is a pair of vertices.
A geometric graph G� = [f(V), g(E), S] is an embedding of a
graph in a metric space S that maps vertices to points and
edges to straight line segments connecting pairs of points.
We restrict our graphs to 2D Euclidean geometric graphs
and omit the asterisk in subsequent notation.

The measures are derived from several features of
2D Euclidean geometric graphs. The length of an edge,
length(e), is the Euclidean distance between its vertices.
The length of a graph, length(G), is the sum of the lengths
of its edges. A path is a list of successively adjacent,
distinct edges. A path is closed if its first and last vertex
are the same. A polygon, P, is a region bounded by a closed
path. A simple polygon is a polygon bounded by exactly
one closed path that has no intersecting edges. We restrict
P to simple polygons. The perimeter of a simple polygon,
perimeter(P), is the length of its boundary. The area of a
simple polygon, area(P) is the area of its interior.

Minimum spanning tree
A tree is a graph in which any two nodes are connected by
exactly one path. A spanning tree is an undirected tree. A
minimum spanning tree (MST) is a spanning tree whose total
length is a minimum among the lengths of all spanning
trees on a given set of points.45 We restrict ourselves to
the geometric MST computed from Euclidean distances
between points in a 2D Euclidean geometric graph.

Convex hull
A hull of a set of points embedded in 2D Euclidean space
is a collection of the boundaries of one or more simple
polygons that have a subset of the points for their vertices
and that collectively contain all the points. This definition
includes entities that range from the boundary of a single
simple polygon to a collection of boundaries of simple
polygons each consisting of a single point. A hull is convex
if it contains all the straight line segments connecting any
pair of points in its interior. A peeled convex hull is a convex
hull computed after deleting points on the convex hull.

Alpha hull
An alpha hull is a non-convex hull based on a pro-
ximity graph. A proximity graph (or neighborhood graph) is a
geometric graph whose edges are determined by an indi-
cator function based on distances between a given set of
points in a metric space.46 To define this indicator func-
tion, we use an open disk D. We say D touches a point if that
point is on the boundary of D. We say D contains a point if
that point is in D. We call an open disk of fixed radiusD(r).

An alpha complex is a collection of one or more simple
polygons defined by a fixed open disk.47 For this complex,
an edge exists between any pair of points that can be
touched by an open disk D(�) containing no points. An
alpha hull is the boundary (or boundaries) of an alpha
complex.

Marchette48 recommends a value of � to be the average
value of the edge lengths in the MST. To reduce noise, we
use a larger value, namely the 90th percentile of the MST
edge lengths. We clamp this value at one-tenth the width
of a frame if the percentile exceeds a tenth. This prevents
us from including sparse or striated point sets in a single
alpha graph.

Preprocessing

We bin our data and delete outliers before computing
geometric graphs. This preprocessing improves perfor-
mance of our algorithms and robustness of our measures.

Binning
We begin by normalizing the data to the unit interval
and then use a 40 × 40 hexagonal grid to aggregate the
points in each scatterplot. If there are more than 250 non-
empty cells, we reduce the bin size by half and rebin.
We rebin until there are no more than 250 non-empty
cells. The choice of bin size is constrained by efficiency
(too many bins slow down calculations of the geometric
graphs) and sensitivity (too few bins obscure features in
the scatterplots).

We use hexagon binning20 to improve performance.
Hexagon binning reduces anisotropy of local neighbor-
hoods because of the near-circular shape of hexagons. This
anisotropy reduction is important for keeping scagnostics
orientation-independent.

Binning, like other aggregation methods, can affect
statistical estimates. A well-known instance of such
an effect is the ecological correlation.49 Consequently,
we apply a stabilizing transformation on some of the
scagnostics computed from binned data to attenuate the
influence of binning. Our weight function is

w= 0.7 + 0.3

1 + t2 (B.1)

where t = n/500. This function is fairly constant for
n>2000. We determined its shape and parameters by hex
binning and computing scagnostics on a wide variety of
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data sets. We use this function to adjust for bias in the
Skewed, Sparse and Convex scagnostics formulas given
below.

Deleting outliers
We delete outliers to improve robustness of our scagnos-
tics. Classical outlier detection methods50 are of little
use for this purpose because they presume parametric
densities. To avoid distributional assumptions, Tukey51

used the recursively peeled convex hull to delete extreme
points. For 1D points, this amounts to Winsorizing,52 or
successive symmetric trimming of extreme observations.

Because we do not assume convex support for our point
sets, we cannot expect outliers will be outside the edges of
a peeled convex hull. We want to identify points located
in relatively sparse interior regions, for example. Conse-
quently, we peel the MST instead of the convex hull. We
consider an outlier to be a vertex whose adjacent edges in
the MST all have a weight (length) greater than Finner+,
where

Finner+ = q75 + 1.5(q75 − q25) (B.2)

where q75 is the 75th percentile of the MST edge lengths
and the expression in the parentheses is the interquartile
range of the edge lengths.

Computing scagnostic measures

We now present the scagnostic measures computed on
our three geometric graphs. In the formulas below, we use
H for the convex hull, A for the alpha hull and T for the
minimum spanning tree. We are interested in assessing
three aspects of scattered points: density, shape and
association.

Density measures
The following measures detect different point densities.

• Outlying: The Outlying scagnostic measures the propor-
tion of the total edge length of the minimum spanning
tree accounted for by the total length of edges adjacent
to outlying points (as defined above). We do this calcu-
lation before deleting outliers for the other measures.

coutlying = length(Toutliers)/length(T) (B.3)

• Skewed: We use two other density measures. The first is a
relatively robust measure of skewness in the distribution
of edge lengths of the MST.

qskew = (q90 − q50)/(q90 − q10) (B.4)

Because Skewed tends to decrease with n after adaptive
binning, we invert the weight in (B.1) to compute the
Skewed scagnostic.

cskew = 1 −w(1 − qskew) (B.5)

• Sparse: The second edge-length statistic, Sparse,
measures whether points in a 2D scatterplot are
confined to a lattice or a small number of locations
on the plane. This can happen, for example, when
tuples are produced by the product of categorical vari-
ables. It can also happen when the number of points
is extremely small. We choose the 90th percentile of
the distribution of edge lengths in the MST. This is the
same value we use for the � statistic.

csparse = wq90 (B.6)

where w is the weight function in (B.1). In the
extremely rare event that this statistic exceeds unity
(for example, when all points fall on either of the two
diagonally opposing vertices of a square), we clamp the
value to 1.

• Clumpy: An extremely skewed distribution of MST
edge lengths does not necessarily indicate clustering
of points. For this, we turn to another measure based
on the MST: the RUNT statistic.53 The runt size of
a dendrogram node is the smaller of the number of
leaves of each of the two subtrees joined at that node.
Since there is an isomorphism between a single-linkage
dendrogram and the MST,54 we can associate a runt
size (rj) with each edge (ej) in the MST, as described

by Stuetzle.55 The RUNT graph (Rj) corresponding to
each edge is the smaller of the two subsets of edges
that are still connected to each of the two vertices in ej
after deleting edges in the MST with lengths less than
length(ej).
The RUNT-based measure responds to clusters with
small maximum intra-cluster distance relative to the
length of their nearest-neighbor inter-cluster distance.
In the formula below, j runs over all edges in T and k
runs over all edges in Rj.

cclumpy = max
j

[
1 − max

k
[length(ek)]/length(ej)

]
(B.7)

• Striated: We define coherence in a set of points as the
presence of relatively smooth paths in the minimum
spanning tree. Smooth algebraic functions, time series
and curves (for example, spirals) fit this definition. So
do points arranged in flows or vector fields. Another
common example is the pattern of parallel lines of
points produced by the product of categorical and
continuous variables.
We use a measure based on the number of adjacent edges
in the MST whose cosine is less than −0.75. Let V(2) ⊆
V be the set of all vertices of degree 2 in V and let I() be
an indicator function. Then

cstriate = 1
|V |

∑
v∈V(2)

I(cos �e(v,a)e(v,b) <− 0.75) (B.8)
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Shape measures
The shape of a set of scattered points is our next consider-
ation. We want to detect if a set of scattered points on the
plane appears to be connected, convex and so forth. Of
course, scattered points are by definition not these things,
so we need additional machinery (based on geometric
graphs) to allow us to make such inferences. In particular,
we will measure aspects of the convex hull, the alpha hull
and the minimum spanning tree.

• Convex: Our convexity measure is based on the ratio of
the area of the alpha hull and the area of the convex
hull. This ratio will be 1 if the non-convex hull and the
convex hull have identical areas.

cconvex = w[area(A)/area(H)] (B.9)

where w is the weight function in (B.1).
• Skinny: The ratio of perimeter to the area of a polygon

measures, roughly, how skinny it is. We use a corrected
and normalized ratio so that a circle yields a value of 0,
a square yields 0.12 and a skinny polygon yields a value
near 1.

cskinny = 1 − √
4�area(A)/perimeter(A) (B.10)

• Stringy: A stringy shape is a skinny shape with no
branches. We count vertices of degree 2 in the minimum

spanning tree and compare them to the overall
number of vertices minus the number of single-degree
vertices.

cstringy = |V(2)|
|V | − |V(1)| (B.11)

We cube the Stringy measure to adjust for negative skew
in its conditional distribution on n.

Association measure
We are interested in a symmetric and relatively robust
measure of association.

• Monotonic: We use the squared Spearman correlation
coefficient to assess monotonicity in a scatterplot. We
square the coefficient to accentuate the large values and
to remove the distinction between negative and posi-
tive coefficients. We assume investigators are most inter-
ested in strong relationships, whether negative or posi-
tive.

cmonotonic = r2spearman (B.12)

This is the only coefficient not based on a subset of the
Delaunay graph.
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