
Streaming Graphics

Andrew A. Norton, Leland Wilkinson ∗

December, 2000

Abstract

Streaming graphics, a cross between streaming video and dynamic
graphics, is a new approach to visualizing data. The goal is to integrate
and synchronize multiple streams of data in real time and display them
at rates of up to 20 frames per second. This article describes the design
of a system, called Dancer, that implements these ideas in Java.

1 Introduction

The term streaming graphics evokes the terms streaming media (e.g., Feamster,
2001) , and dynamic graphics (e.g., Cleveland and McGill, 1988). While similar
to both in its outword appearance, streaming graphics is basically different
from both. Streaming media systems are generally concerned with delivering
sound and video information in real time. Dynamic graphics are concerned with
using motion to reveal structure in static data. Streaming graphics systems
are concerned with displaying analyses (summaries) of streaming data in real
time. Applications of streaming graphics involve many different environments,
including real-time monitoring of manufacturing processes, health indicators,
financial statistics, and Web data.

2 Data

A streaming data source is fundamental to streaming graphics. In the simplest
streaming data model, data arrive in a fixed-length buffer (window) at equally
spaced time points. Upon the arrival of a new data packet, we lose one of the
packets already in the buffer (usually the last). When a new data packet arrives,
we refresh our display. We can also have a fixed-length buffer that receives data
packets at irregular time intervals. In this environment, the arrival of new data
can trigger a display refresh. There are many other prevalent streaming data
environments, however, particularly ones involving multiple, asynchronous data
events occurring simultaneously within multiple processing threads.

∗Andrew A. Norton is Senior Manager, SPSS, Inc., 233 So. Wacker Drive, Chicago, IL
60606; e-mail: anorton@spss.com. Leland Wilkinson is Sr. VP, SPSS, Inc., 233 So. Wacker
Drive, Chicago, IL 60606; e-mail: leland@spss.com.

1



2.1 Streaming vs. Static Data

A popular metaphor for the difference between streaming data sources and
static data warehouses is a stream versus a pool. In the massive data-mining
environment, we often hear this metaphor upgraded to a river versus an ocean.
The significance of this distinction, whatever the scale, is that our graphical and
statistical algorithms for mining a stream (to stretch the metaphor) must adapt
to its temporal nature. We must pay attention to speed of calculation, lest we
be swamped with new data packets before we can compute a displayable result.
We must allow calculations to persist wherever possible so that we do not waste
time redoing subsets of previous calculations. We must learn to sample our data
stream, or know how to bail-out of calculations when the results might be out-
of-date. We must synchronize our results, lest we mistakenly display summaries
of disparate events in the same time frame.

Many of these concerns do not apply to the traditional, static data mining
environment. The premier consideration in the static environment is scalability
with regard to the size of a dataset. We seek algorithms that scale comparatively
well, in the sense of computing time being a constant, linear, or logarithmic
function of the size of a dataset. In the streaming data environment, we need
to worry about scalability with regard to the momentum of a stream. The
momentum of a stream is its mass (the average size of data packets arriving
in a fixed interval) times velocity (the average number of packets arriving in a
fixed interval). This Newtonian physics metaphor is an over-simplification, but
it helps us to understand that attending to scalability with regard to the total
bulk of the data we encounter will not be sufficient for building a streaming
display system. Even a constant cpu-time calculation may still be too slow to
handle the real-time data stream we must display.

2.2 Multiple vs. Single Data Source

In the static data environment, we merge different data sources into a single
table before computing graphical and statistical summaries. We cannot employ
this simplification in the streaming environment. Instead, Dancer is designed
to handle multiple datasources. For example, we might want to attach a single
display to a live feed from a stock exchange and another live feed from a com-
modities exchange. There is no time to index and merge these two feeds into a
temporal database.

Multiple feeds imply a multi-threaded computing environment with event-
notification through broadcasters and listeners. The data feeds run simultane-
ously, and each broadcasts the arrival of new data it receives. The statistical
and graphical listeners attend to those messages and react as they choose. In
our financial example, the result is a display that shows a moving time-series of
a particular stock superimposed on a moving time-series of a related commodity.

2



2.3 Continuous vs. Discrete Time Scales

A consequence of this functional architecture is that Dancer operates on a con-
tinuous rather than discrete time scale. In theory, Dancer displays data at any
instant. Its time scale moves (at least perceptually) continuously. This is in
contrast to some time series displays, such as seen in traditional ARIMA (Box
and Jenkins, 1976) packages, that contain measurements indexed on equally
spaced time points.

Dancer has two time-scale modes. In the static-frame mode, geometric rep-
resentations of data (points, lines, etc.) move through a motionless frame (the
data area). We may clip the elements at the frame boundaries or let them pass
beyond.

In the dynamic-frame mode, geometric elements are continuously reposi-
tioned within a frame that is continuously scrolling forward or backward in
time. This mode requires careful programming to allow tick marks, grid lines,
and scale labels to scroll smoothly and continuously, in 2D or 3D as required.

3 Geometry

Dancer is based on a geometric model of statistical graphics described in Wilkin-
son (1999). That book contrasts the geometric model with the ”chart-centric”
model of statistical, business, and scientific graphics packages. In the geometric
model, elements such as points, lines, and intervals are embedded in a frame
defined by an algebra with three operators. These geometric elements are re-
alized (made viewable, hearable, etc.) through a set of aesthetics such as size,
shape, texture, and color. The nViZn system for rendering graphs on the Web
is based on the same model (Wilkinson, et al., 2000).

Unlike nViZn, Dancer can bind each geometric element to a different data
source. The behavior of every element in the frame is synchronized through the
functional data model. Special rendering technology is required to enable each
element to move up to 20 times a second based on incoming data.

3.1 Scene Tree vs. Geometric Primitives

A scene tree is a data structure that contains the information in a geometric
scene. Scene trees are frequently used in 3D modeling to organize the arrange-
ment and rendering of a collection of geometric objects. For example, if the
root of a tree is a body, then the root’s children could be torso, head, arms,
and legs. The children of arms could be upper arms, lower arms, and hands.
And the children of hands could be fingers and palms. The advantages of this
organization are several. First of all, children inherit attributes from parents,
including aesthetics (e.g., color, texture) and localized coordinates. Second,
adding objects to a scene (another body, for example) requires only appending
a new subtree to an appropriate node. Third, a tree is a simple object that can
be explored through depth-first or breadth-first search. This makes rendering

3



rapid and efficient. And it makes interactions with elements (editing, brushing,
linking) a simple matter of walking the tree to locate a selected element.

Wilkinson (1994) employed a graph tree model for constructing and ren-
dering statistical graphics in the SYSTAT package. The hierarchical nodes of
the tree were Window, Pane, Frame, Graph, and Element. With the Fisher-
Anderson Iris data, for example, SYSTAT plots three scatterplot matrices (three
species, four variables) in a window by assigning one Pane node to Window and
three Frame nodes to Pane. Each Frame contains sixteen Graph nodes. Each
Graph node contains two Element nodes (one for a cloud of points and one
for a smoother). The most important consequence of this architecture is that
SYSTAT has no scatterplot matrix routine. Instead, SYSTAT has a method for
assembling graphical elements in a structure of one or more graphs and frames.
Anything it can do inside a single scatterplot it can do simultaneously inside
multiple scatterplot matrices. For the same reasons, SYSTAT has no routine
for drawing a Trellis (Becker et al., 1996). Instead, SYSTAT constructs a Trellis
structure by assembling graphs in a hierarchy determined by values on catego-
rizing variables. Details of look-and-feel can be handled in display modules that
render this structure in different styles.

Scene trees and graph trees organize geometric primitives. They are essential
for creating efficient real-time streaming graphics systems for a variety of rea-
sons, some of which are evident in the SYSTAT architecture. Most important,
perhaps, scene tree architecture enables rapid rendering.

3.2 Supervised vs. Immediate Rendering

When we render a scene that is rapidly changing, we may re-render the entire
scene every time a change is detected or render only the parts that change. If
our goal is to render complex scenes that may change up to 20 times a second,
we choose the latter strategy.

In a graphics foundation like Java3D, the re-rendering housekeeping is taken
care of by the Java scene tree. When the scene tree is updated, only parts of the
screen that need updated are re-rendered. An added benefit is that foundations
like Java3D are designed to accommodate 3D hardware accelerators.

4 Statistics

Statistical graphics depend on the calculation of statistics – point estimates,
interval estimates, smoothers, summaries. In a static data environment we can
precompute these statistics before rendering a graph. The most prevalent exam-
ple of this strategy is in OLAP (On Line Analytic Processing) systems based on
ETL (Extracting, Transforming, Loading) technology. These systems aggregate
data from various sources, store them in a warehouse, and display graphics such
as pie and bar charts on the aggregates. The Temple MVV visualization system
of Milhalisin et al. (1995) works similarly.

4



4.1 Update/Downdate

Streaming graphics require a different type of statistical algorithm. In the sim-
plest case, such as accumulation of sums and sums of squares and cross-products,
we use an update/downdate strategy. When new data arrive in our computa-
tional buffer, we discard the oldest data item, downdate its contribution to the
accumulated statistics, and update the statistics from the new contribution.
This process can accumulate rounding error, so it is essential to recalculate
occasionally all values from the data in a window. This recalculation can be
scheduled to occur at convenient times, similar to the way garbage collection is
handled in an interpretive system.

Iterative calculations are not as simple. We can update and downdate Hes-
sians and Jacobians, but handling convergence in a real-time environment is
problematic. Other statistical algorithms present different problems. Guha et
al. (2000), Datar et al. (2002), and others are concentrating on these issues.

5 Visualization

The simplest display for streaming data reflects the current state of the stream.
Geometric elements such as points and lines move as the stream progresses.
Real-time is only one aspect of what Dancer does with streaming data, however.

5.1 Instant replay vs. animation

Whatever the time interval (seconds, minutes, hours, ...) we cannot expect a
viewer to observe a display continuously. A real-time system needs to incorpo-
rate alerts for out-of-bounds conditions. Visual and audio alerts are common in
control applications in military, health care, and manufacturing.

When an alert occurs, it is not always clear what antecedent conditions led
to its occurrence. Consequently, Dancer provides an instant replay feature to
allow a viewer to rewind a scenario and replay it as an animation. This is
an aspect of a more general Dancer feature allowing us to animate any data
series. Although designed for real-time applications, Dancer’s functional time
model can be applied to any indexed (ordered) variable so as to allow animation
of other variables. In this respect, Dancer can behave like exploratory systems
such as xGobi (Swayne et al., 1998) or DataDesk (Velleman, 1988) that animate
over a variable.

This type of archival animation needs to be distinguished from Dancer’s
normal real-time model, however. Archival animation offers the opportunity to
pre-process data that we do not have in real-time. In the extreme, animation
systems such as Flash (www.macromedia.com) can prepare bitmap frames that
are played in a media player. These animations are fundamentally different from
the architecture in Dancer.

5



5.2 Transformations of time

When we animate a sequence by buffering and replaying captured data, we
may transform time in a variety of ways. Reversing time helps us to untangle
sequential dependencies. Differencing time helps us to recognize rates. Double-
differencing time reveals acceleration/deceleration. Polarizing time (a cyclical
transformation) helps us to compare cycles. Logging time helps us to view order-
of-magnitude effects. Geologists and cosmologists often log time scales and, as
Graham Wills has pointed out (personal communication), ordinary people often
use a similar transformation when they look into the future on a day ... week
... month ... year time-scape.

6 Conclusion

Streaming data require streaming algorithms. Much of the technology for pro-
cessing these data is relatively new and much is yet to be done. Because statis-
tical graphics is more involved with processing data than with drawing pictures,
there is considerable technology transfer than can occur from related fields in
computer science.

An indication of the challenges involved in processing real-time data can be
seen in the contrasts between Dancer and its sibling nViZn . Both are based
on the graphics grammar model and both are programmed in Java to take
advantage of a Web environment. The two programs share not a line of code.

References

[1] Becker, R.A., and Cleveland, W.S., and Shyu, M-J. (1996). The Design and
control of Trellis display. Journal of Computational and Statistical Graph-
ics, 5, 123-155.

[2] Box, G.E.P., and Jenkins, G.M. (1976). Time Series Analysis: Forecasting
and Control. San Francisco: Holden-Day.

[3] Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983).
Graphical Methods for Data Analysis. Monterey, CA: Wadsworth.

[4] Cleveland, W.S. and McGill, M.E., Eds. (1988). Dynamic Graphics for
Statistics. Belmont, CA: Wadsworth Advanced Books.

[5] Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002) Maintaining
stream statistics over sliding windows. Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco.

[6] Feamster, N.G. (2001). Adaptive delivery of real-time streaming video.
Master’s thesis, Department of Electrical Engineering and Computer Sci-
ence, MIT. Online at http://nms.lcs.mit.edu/papers/feamster-thesis.pdf

6



[7] Guha, S., Mishra, N., Motwani, R., and O’Callaghan, L. (2000). Clustering
data streams. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS 2000).

[8] Mihalisin, T., Timlin, J., Gawlinski, E., and Mihalisin, J. (1995). Visual
analysis of very large multivariate databases. ASA Proceedings of the Sec-
tion on Statistical Graphics, 18-27.

[9] Swayne, D.F., Cook, D., and Buja, A. (1998). XGobi: Interactive Dynamic
Data Visualization in the X Window System. Journal of Computational
and Graphical Statistics, 7, 113-130.

[10] Velleman, P.F. (1988). Data Desk. Ithaca, NY: Data Description Inc.

[11] Wilkinson, L. (1994). SYSTAT, Version 6. Evanston: SYSTAT, Inc.

[12] Wilkinson, L. (1999). The Grammar of Graphics. New York: Springer Ver-
lag.

[13] Wilkinson, L., Rope, D.J., Carr, D.B., and Rubin, M.A. (2000) The
language of graphics. Journal of Computational and Graphical Statistics,
9,530-543.

7


