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Dot plots represent individual observations in a batch of
data with symbols, usually circular dots. They have been
used for more than 100 years to depict distributions in de-
tail. Hand-drawn examples show their authors’ efforts to
arrange symbols so that they are as near as possible to their
proper locations on a scale without overlapping enough to
obscure each other. Recent computer programs that attempt
to reproduce these historical plots have unfortunately re-
sorted to simple histogram binning instead of using meth-
ods that follow the rules for the hand-drawn examples. This
article introduces an algorithm that more accurately repre-
sents the dot plots cited in the literature.
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density estimation.

1. INTRODUCTION

Dot plots have a long history. Jevons (1884) used dot
plots to graph the weight of British Sovereign coins by year.
Dot plots have appeared in statistical texts such as Tippett
(1944), Tukey (1977), Box, Hunter, and Hunter (1978), and
Mosteller and Hoaglin (1991), as well as in various scien-
tific sources (e.g., Uman 1969). They have been widely used
in the medical literature (e.g., Krieg, Beck, and Bongiovanni
1988; Chastre et al. 1988).

The dot plot discussed in this article displays individ-
ual observations on a continuous scale using a dot or other
symbol. Its distinguishing feature is the use of local dis-
placement in a direction orthogonal to the scale in order
to prevent dots from overlapping. This displacement is ei-
ther symmetric, which produces a string of dots resem-
bling a belt of beads, or asymmetric, which produces a
stack of dots resembling a density. Figure 1 shows exam-
ples of these two types of dot plots: the symmetric dot
plot and the asymmetric dot plot (or dot density). The
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data are from Allison and Cicchetti (1976), available at
http://lib.stat.cmu.edu/datasets/sleep. The variable plotted
represents hours of slow-wave (nondreaming) sleep per day
among 62 selected mammals. There is one dot in each plot
for each of the 48 mammals with nonmissing data. The
only difference between the two plots in the figure is that
the dots in the upper panel are stacked on the axis and the
dots in the lower are symmetrically aligned.

Dot plots now appear in several commercial statistical
packages. These programs do not correctly reproduce the
dot plots existing in the literature. Instead, they use regu-
lar binning to produce plots that resemble the line printer
asterisk histograms in older mainframe statistics packages.
Sasieni and Royston (1996), for example, described a dot
plot algorithm that is based on regular binning. Their results
are histograms, not dot plots. They can be reproduced by
specifying a particular (large) number of bars to a histogram
program. For reference, I will call these histogram plots (in
their asymmetric or symmetric form) histodot plots, because
they are histograms whose bars are drawn as stacks of dots.
Histodot plots are recognizable by their regular horizontal
spacing of the dots, which is determined by the histogram
binning.
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Figure 1.. Asymmetric dot plot (upper panel), symmetric dot plot
(lower panel).
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Instead of histograms, it is more useful to think of
dot plots as horizontal, one-dimensional scatterplots where
tied values are perturbed or displaced vertically (Cleve-
land 1985). When points overlap, we may displace them
by adding a small amount of uniform random error (Cham-
bers, Cleveland, Kleiner, and Tukey 1983), we may displace
them systematically in a textured pattern (Tukey and Tukey
1990), or we may displace them in increments of one dot
width (the method used in the cited hand-drawn examples).
These three methods are usually called, respectively, jit-
tered plots, textured dot strips, and dot plots. Unlike histodot
plots, all three of these methods position an outlier (or any
case separated from the rest of the data) exactly where it
should be on the scale rather than at a lattice point defined
by binning.

Because dot plots are different from histograms, produc-
ing them on a computer involves different algorithms. I will
present closed-form expressions for dot densities and dis-
cuss smoothing and determining dot size based on sample
size. The result of these procedures (using symmetric or
asymmetric displacement) is a plot that reproduces those
appearing in the literature and which has a theoretical basis
in the density estimation literature.

2. DENSITY PLOTS

To understand dot plots, it is most helpful to compare and
contrast them with histograms and kernel density estimates.
I will use a common notation that reveals similarities and
differences in all three types of displays. For each, I will
take the approach of representing a density by counts rather
than framing it as a probability density estimation problem.
Dot plots are designed and used for displaying data values
directly; they were not intended as density estimators and
would be ill-suited for this purpose.

2.1 Histograms

Histograms can be viewed as a binning procedure where
the bins are connected intervals. In the following expression
for the frequency histogram, the w function serves as an
indicator for the bin in which a given value of z falls. In
the ordinary histogram, the bin intervals are of equal width.

f(@) =ij(£ihi(f’—))
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Figure 2. Histogram.

and

glz)=z0+h [:1: xoj ,
h
and h = bin width, and z is a location parameter.

The histogram has an arbitrary location parameter, z.
Ordinarily, this parameter is 0, so that one cutpoint is lo-
cated at O on the scale. This location parameter affects the
shape of the histogram. The averaged shifted histogram
(ASH) was devised by Scott (1985) to ameliorate this scale-
shape dependency. The ASH is produced by varying g
within an h-wide interval and averaging the heights of the
bars resulting from each value of z.

Figure 2 shows a histogram for five observations using
equal width bins and zy = a, an arbitrary location. All
the bars are the same height for these data. If zq is set to
approximately a + h/2, however, the second bar from the
left will double in height because X, and X3 are closer
together than one bin width (k). Consequently, the third
bar from the left will be empty and the histogram will have
a different shape from that in the figure.

2.2 Kernel Densities

Kernel densities are produced by using a kernel function
K for the w function. The simplest form is a uniform ker-
nel, which acts as a local accumulator. Like the histogram,
the uniform kernel produces a step function for the density.
Unlike the ordinary histogram, the width of the steps pro-
duced is not uniform. The formula presented here has been
called a “naive method” (Silverman 1986) because it uses
a simple counting kernel instead of a probability density

function.
f@) =3 w(X55D),

i=1
where X; € X, a finite set of n values, _with
w(u) = { 1if Jul<.b

]

0 otherwise

and h = kernel width, and g(z) = .

Figure 3 shows a uniform kernel data density for the same
observations used in Figure 2. Notice that the kernel pro-
duces steps of different widths, depending on the location
of the data.

2.3

Dot densities use an indicator function for accumulation,
like the uniform kernel and histogram, but the reference
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Figure 3. Uniform kernel density.
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Figure 4. Dot density.

point varies depending on the data. We use a locator func-
tion g(z) to compute a reference point relative to any z.
Specifically, for any x we look below it for a data point
which is separated from all points below itself by more
than h (which may end up being the smallest data point
in the set). If this point is separated more than A from z,
then we must move recursively toward « from the initially
selected data point X; in steps i wide until we find a data
point X, above it which is within A distance below z. The
twiddle value v used in the locator function g(z) centers
a dot stack at the middle of the interval between X, (the
smallest value in the stack) and X, (the largest value in the
stack) as long as there is room to do so.

n

@)= 3ow (2522,

=1

where X; € X, a finite ordered set of n + 1 sorted values,
including Xy = —o0, and

w(u) = 1if jul<.5
~ 1 0 otherwise °’

h = dot diameter, and g(z) = X}, + v, where

.X,)‘ = max [X, Xy <z and X; — Xi1> h],
I i<i<n
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Figure 5. Overlapping asymmetric dot plot (upper panel), symmetric
dot plot (lower panel).
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and

X, = min [Xi rx—X;+h [Xi_XjJ < }L:l ,
1<i<n h
and
X; = max [X;: X; — X < h],
1<i<n
and

(X[—Xk)/Q if Xp—Xp_1>h
v = . .
0 otherwise

Here is a summary of the algorithm:

1. Start with the smallest data value, X; = X;. The first
stack of dots always begins here.

2. Count the number of values, n;, within one dot’s width
(h) to the right of X.

3. Place n; dots above X, or offset to the right of X
by v if the n; data values differ.

4. Move right to the next largest data value not included
in the current stack of dots.

5. Repeat steps 2—4 until there are no data values left to
plot.

There is one more step we can add to the algorithm. To
reduce variance among the stacks (see Section 2.6), we can
do a moving average smooth on the stacks of dots. This
smoothing procedure serves a second purpose: it tends to
remove differences between a left-to-right and right-to-left
implementation of the segmentation algorithm. The smooth
proceeds from left to right on all adjacent stacks of dots:

fnle) = F(z) + ML’;—M J ,

for all m = 1,..., ¢ adjacent stacks.

Adjacency is defined as two dot stacks within h/4 dis-
tance of each other. This amounts to exchanging dots be-
tween adjacent stacks to minimize differences. The floor
function ensures that the exchange preserves the direction
of the difference for odd counts of dot differences.

Figure 4 shows a dot density for the data used in the
previous figures. Dots have been superimposed to illustrate
their placement. Because there are no adjacent stacks, no
averaging would occur if we were to apply the final aver-
aging step.

2.4 Overlapping Dots

Some authors draw dot plots with partially overlapping
dots. This helps locate dots closer to their actual data value
on a scale and produces slightly different stacking patterns.
Overlapping up to half a dot width is customary. Producing
half-overlapping plots requires changing A to h/2 in the dot
plot algorithm. The plotting symbols remain /4 wide and h
tall. Figure 5 shows the result of this modification to the
same data used in Figure 1. For small samples, overlapping
distinguishes true dot plots even more from histodot plots.
A similar modification could be made to allow dots to over-
lap vertically, perhaps to change the aspect ratio of the plot.
I have not seen this done in published applications.



AR A

BRI LI R,

Figure 6 Dot densities. kernels. empirical densities. and histograms
supernimposed (histogram in upper panel 1s based on gap binning. lower
1s based on regular binning).

2.5 Comparing Densities

Figure 6 shows dot densities of the sleep data superim-
posed on other density graphics. Below each density is a
stripe density plot (empirical density function) showing the
location of the data. An Epanechnikov kernel smooth (Sil-
verman 1986) is superimposed on both plots.

The lower plot, an ordinary equal-width bins histogram,
fails to reveal the gaps in the data. The upper plot, a gap
histogram, is produced by cutting the distribution at the k
largest gaps between data points and using these cutpoints
to construct bars whose areas are proportional to the counts
in them. The gap histogram helps illustrate the spirit of the
dot plot. Like the uniform kernel smooth, it follows the
shape of the dot plot more closely than the ordinary his-
togram. The Epanechnikov probability kernel smooth, on
the other hand, is intended as a density estimator. On small
samples, dot plots reveal the data. On large samples, ker-
nel smooths reveal the theoretical distribution. Combining
smooths with dot plots on medium sized samples can exploit
the advantages of both methods and replace histograms, ex-
cept where regular bin cutpoints are needed to highlight
fractiles of a distribution.

2.6 Choice of Dot Size (h)

In the context of density estimation, h is called a smooth-
ing parameter, because it controls the smoothness of the fit-
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ted density for a given sample size. The density estimation
literature has investigated this parameter extensively for
histograms (e.g., Sturges 1926; Doane 1976; Freedman and
Diaconis 1981; Scott 1992) as well as for kernel estimates
(Silverman 1986; Scott 1992; Wand and Jones 1995). The
literature suggests that for roughly symmetric, unimodal
densities, the optimal value of the histogram smoothing pa-
rameter is of order n~'/3, With a normal distribution, for
example, Scott (1979) suggested h = 3.5sn~1/3, where s is
the sample standard deviation. A smaller value is needed
for asymmetric distributions.

We need to approach the problem from a different di-
rection, however. Because dot plots are like tallies, the dot
size parameter h affects not only the smoothness of the dot
plot but also its shape. The larger the dots, the taller the
dot density. We cannot change the aspect ratio of a dot plot
without changing the shape of its dots. Assuming we wish
to use circular dots, then we need a dot size on the order
of n=1/2, The argument for this is simple: the rectangular
packing of n dots inside a unit square requires a dot diame-
ter of n=1/2, If we represent a standard normal density ¢(z)
inside the same square so that a z scale from —4 to 4 spans
the bottom of the square and the maximum height of ¢(2)
is approximately 1/5 its width (a fairly typical aspect ratio
for normal distributions in textbooks), then we need a dot
size of approximately .25n~1/2, This calculation is based on
rounding the ordinate of the normal density at O to .4 and its
area between (—4,4) to 1. Although it is based on the nor-
mal, this dot size works well for a variety of distributions
because it is small enough to prevent overflowing a plotting
window in the face of moderate skewness. Nevertheless, a
well-written dot plot program should automatically down-
size dots when extreme overflow occurs.

Figure 7 shows the result of this dot size for n’s up to
10,000 using a normal distribution. This strategy tends to
produce more dot stacks than the optimal estimates sug-
gested for histograms. This was the motivation for adding
the smoothing procedure to remove some of the random
spikes from the display.

2.7 Badness of Fit

The literature (e.g., Freedman and Diaconis 1981; Scott
1992) indicates that histograms have mean integrated
square error (MISE) on the order of n~2/% and that kernel
smooths have MISE on the order of n~%/5. We should ex-
pect dot densities to do somewhat worse than both. Figure 8
shows the results of a Monte Carlo simulation using the dot
plot algorithm presented previously on normal distributions
with a dot size of .25n~/2. Five replications were done at
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Figure 7. Large sample dot densities
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Figure 8. Dot density MISE as a function of N.

each sample size (100, 500, 1,000, 4,000, 10,000). The lower
curve shows the results when the final moving average dot
smoothing is applied and the upper curve shows the results
when it is not. The curves were fit with a power function
predicting MISE from N. The exponent for the upper curve
is —.56 and for the lower, —.53. The results suggest that,
for normal distributions, dot densities have MISE on the
order of n~1/2,

Following Freedman and Diaconis (1981) and Scott
(1992, p. 54), we can separate MISE into two parts: MISE =
IV +ISB, where IV is integrated variance and ISB is inte-
grated squared bias. Scott shows that for histograms having
bin width A of order n='/3,

IV~O0 (n_2/3) ,

If we use h of order n=*/2, as we do for dot plots, then
Scott’s formulas yield

IV~0 (n_l/2),
and
ISB~ O (n").

If dot plots follow roughly the histogram behavior, we
should expect that the dot plot has high variance and low
bias, exactly what we want for a data display as opposed to
a density estimator.

3. EXAMPLE USES OF DOT PLOTS

Dot plots are especially suited for supplementing other
graphics. Figure 9 shows dot-box plots (Wilkinson 1992)
bordering scatterplots of the Allison and Cicchetti (1976)
data on raw and decimal log scales. The scatterplots con-
sist of body weights and brain weights of the mammals.
The dot-box graphic superimposes a symmetric dot plot on
a Tukey box plot. The symmetric dot plots contribute shape
information to the box plots. Bordering the scatterplot with
dot-box plots can help guide the search for a normalizing
power transformation in an interactive computing environ-
ment. The dots fall at their proper locations regardless of
the power transformation applied to the scale. Figure 9 also
illustrates why histogram binning is unsatisfactory for con-
structing dot plots: a proper algorithm must ensure that the
single dots in the border plots align with those in the scat-
terplot.

Figure 10 shows a classification tree (Breiman, Fried-
man, Olshen, and Stone 1984) analysis of the sleep data.
The tree predicts a danger index (1 = unlikely to be killed
by a predator, 5 = likely to be killed) from type of sleep
(slow wave sleep and dreaming sleep) and the body and
brain weight variables in Allison and Cicchetti (1976). In
each frame node of the tree is a dot density. The advan-
tage of dot densities in this context is that they work well
for both continuous and categorical variables. Unlike ordi-
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Figure 9. Dot-box bordered scatterplot.
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nary histograms, dot densities have one stack of dots per
category because they bin only where the data are.

This tree is called a mobile (Wilkinson 1999). This dis-
play format gets its name from the hanging sculptures cre-
ated by Calder and other artists. If the squares were boxes,
the dots marbles, the horizontal branches metal rods, and
the vertical lines wires, the physical model would hang in
a plane as shown in the figure. This graphical balancing
format helps identify outlying splits in which only a few
cases are separated from numerous others. Each box con-
tains a dot density based on a proper subset of its parent’s
collection of dots. The scale at the bottom of each box is
the danger index running from 1 (left) to 5 (right). This
graphic is intended for a color display. Each dot is colored
according to its terminal node at the bottom of the tree so
that the distribution of predicted values can be recognized
in the mixtures higher up in the tree.
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Figure 10. Classification tree with dot histograms.

4. CONCLUSION

Like stem-and-leaf diagrams, dot plots are easier to draw
by hand than by computer. By defining dot plots using
density-estimation notation, we can explicitly formulate an
algorithm that produces plots that are closer to published
hand drawings than those produced by binning methods.
Moreover, this definition yields some insight into the be-
havior of dot plots. As high variance, low bias data repre-
sentations, they are ideally suited for displaying moderate
sized datasets when outliers and other irregularities are of
interest.

[Received December 1996. Revised December 1998.]
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