
ABSTRACT
We describe a system, called nViZn, that implements a lan-
guage for quantitative graphics. The structure of this system
differs from existing statistical graphics, visualization, and
mapping systems. Instead of treating a graphics display as a
viewer for underlying data, nViZn treats data as an acces-
sory to viewing a graph. nViZn is based on the mathemati-
cal definition of the graph of a function and uses that
definition to organize data linked to the graph.
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INTRODUCTION
This paper outlines a framework called nViZn, which we
have developed as a language for presenting graphics on the
World Wide Web. Although nViZn is tailored to the Inter-
net, it reflects a number of ideas that are independent of
computing environment. First, it is based on an assumption
that statistical procedures serve graphics; graphics are not
incidental displays of statistical results, but are means for
perceiving statistical relationships directly [5], [6], [11].
Second, it assumes that graphical elements are alive; wher-
ever possible, graphical features such as points, lines, bars,
legends, and axes are connected to data, metadata, or statis-
tics in a way that allows users to drill-down, link, rotate, fil-
ter, brush and zoom directly in the display [9], [1], [16],
[20], [18], [17]. Third, it is based on a formal model of
graphics [21]; individual displays are not ad hoc visual
arrangements of data, but reflect instead a quantitative or
qualitative algebraic model of the variables in the display.

OVERVIEW
Figure 1 contains a diagram of the temporal model underly-
ing nViZn, one of several architectural views the system.
The shaded rectangles represent functional objects. The
rounded rectangles represent the sets on which these func-
tions operate. This view derives from data-flow and pipe-

l ine  models  devised for  sc ient i f ic  and s ta t is t ical
visualization systems [3], [19].

The data for the graphic in Figure 1 are described in [4].
The climate variables (Precipitation and Growing Degree
Days) were computed from an analytic method called
Parameter-elevation Regressions on Independent Slopes
Model (PRISM) developed in [7]. Data sets and further
details can be found at www.ocs.orst.edu/prism. Carr et al.
[4] used micro-gridded PRISM summaries for the time
period 1961-1990 to develop graphics characterizing the
spatial variation of climatic parameters within ecoregions.
They associated each grid cell with an Omernik level II
ecoregion [12], [13] using a point-in-polygon matching
procedure. Figure 1 shows panels for three of the Omernik
ecoregions (Ozark/Ouachita Appalachian Forests, Chihua-
huan Desert, and West-Central Semi-Arid Praries).

The horizontal axis of each panel represents the average
yearly precipitation in millimeters over the three decades.
The vertical axis represents average annual growing degree
days, a measure of the number of degrees in daily average
temperature above 50 degrees summed over all days with a
daily average temperature above 50. There are 78,766 grid
cells underlying Figure 1.

A graphical system like nViZn needs to be able to represent
these data points in real time, in a Web browser, in a distrib-
uted data environment, with instant access to associated
metadata through pop-up annotations and other viewers.
Any element in the graphic, including legend items, scale
values, labels, smoothers, etc., can be queried for its associ-
ated metadata. nViZn also offers real-time controllers and
widgets (sliders, buttons, list boxes, etc.) for transforming,
manipulating, and selecting subsets of the underlying data.

COMPONENTS
The diagram in Figure 1 summarizes how this functionality
is accomplished. The remainder of this paper is a walk
through Figure 1. In each of the following sections, we will
step successively through each functional object to see how
it operates.

nViZn: An Algebra-Based Visualization System

Leland Wilkinson
SPSS, Inc.

233 South Wacker Drive
Chicago, IL 60606 USA

+1 312 651 3270
leland@spss.com

Matt Rubin
SPSS, Inc.

233 South Wacker Drive
Chicago, IL 60606 USA

+1 312 651 3270
mrubin@spss.com

Dan Rope
Illumitek, Inc.

Reston, VA 20191 USA
+1 571-203-1310

dan_rope@mnsinc.com

Andrew Norton
SPSS, Inc.

233 South Wacker Drive
Chicago, IL 60606 USA

+1 312 651 3270
anorton@spss.com



Data Views
The nViZn data source is an abstraction. Avoiding concrete
data formats and structures encourages us to define a
greater variety of graphs than is customary in relational
databases or statistical packages. Having the graph organize
the data, rather than having the data organize the graph,
frees us from having to limit graph types to the particular
structures we find in our data sources. Moreover, an
abstract DataView allows us to connect our graph to hetero-
geneous and distributed sources of data. For example, we
can collect the tuples defining 25 points in an XY plot from
25 different Web sites in a live feed to our DataView.

Not all variables found in charts are well-defined in the
conventional domain of a relation. Figure 2, for example,
contains a tiling of the elements of a Pearson correlation
matrix. A correlation matrix is symmetric, with k rows/col-
umns, one for each variable. The graphic in Figure 2, on the
other hand, is two-dimensional. We require two variables
(row, column), not k variables, to define this plot. DataView
is an object capable of indexing datasets to fit the domain
definitions of variables required in a plot.

Analytics
Analytics involve filtering, recoding, aggregating, segment-
ing, modeling, or summarizing data. nVizn Analytics are
transformations that operate on an object called a StatTree.
A StatTree contains a snapshot of a DataView plus, option-
ally, the results of dependent analyses. Because they are
transformations, nVizn Analytics can be chained. And
because their domain is a StatTree, they offer a relatively
high degree of flexibility in a relatively simple object.

A tree has several advantages over other modeling data
structures (such as cyclic and acyclic directed graphs). In
addition to its relative simplicity, aStatTree is easily
encoded in extensible markup language (XML) for use as a
portable Web resource. This makes a StatTree easy to work
with in a distributed network environment containing a
variety of protocols.

A StatTree is a rooted tree whose nodes hierarchically alter-
nate between data nodes containing data objects and depen-
dent analysis nodes that identify analytic methods. This
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Figure 1: Data-flow view of nViZn analytical graphics system. Data for graphic are from [4]. Precipitation and Growing
Degree Days computed from data in [7].



simple structure allows us to walk a StatTree to locate a
particular analysis or sequence of analyses. We can also
determine both the input to an analytic method (a data
object) and its output (one or more data objects).

Data nodes of the tree contain a data object identifiable by
the label of the node. Instances of this object contain an
array of numerical data, an array of associated string data,
as well as optional resources such as case weights and
metadata. Thus, a node can contain resources such as raw
data, parameter estimates, fit statistics, confidence inter-
vals, diagnostics, and model comparison statistics or infor-
mation measures. All data in a StatTree must be derivable
from the data at the ROOT node. Thus, descendent data
nodes are either proper subsets of the ROOT data or are the
results of sequences of analyses on the ROOT data.

One consequence of this architecture is that we can anno-
tate graphics with goodness-of-fit statistics, model expres-
sions, and other metadata from a StatTree without making
additional passes through a data source to compute them.
Data passes can be expensive, so it is worth collecting and
persisting relatively cheap calculations even when they are
not known in advance to be needed in a graphic.

Because Analytics can have StatTrees as their input and
output, we may collect them in a transformation chain.
Each Analytic adds one or more children to a StatTree.
Thus, we can build graphics from compound analyses (e.g.,
cluster analyses on principal components), while maintain-
ing case IDs, weights, and other information we need to
perform brushing, linking, and sensitivity analysis.

Another benefit of transformation-chains is in handling
large datasets. An abstract DataView can be used to hand
Analytics chunks of data, one row or table at a time, to be
aggregated by rectangular or hexagonal binning. With bin-
ning, we can process datasets with millions of cases, main-
tain case weights, and compute weighted statistics on the
aggregates. This is how we handled the relatively bulky
ecoregion data in Figure 1. The computationally intensive
LOESS smoothers in Figure 1 were computed from pre-

aggregated hex-bin data. Computing this type of smoother
on a dataset this size would be otherwise impractical.

Analytics in nVizn currently include statistical methods like
cluster analysis, regression, multidimensional scaling, cor-
respondence analysis, and principal components analysis.
nVizn Analytics also include organizing methods such as
merging StatTree data nodes, reshaping matrices, recoding
variables, partitioning variables, bootstrapping (random
sampling with replacement), simple random sampling, and
laying out directed and undirected graphs.

VarMap
VarMap extracts one data node from a StatTree and outputs
a table called a VarSet. A VarSet is a set of variables, a
matrix whose columns are variables and whose rows are
instances of values on those variables. We need VarMap to
make a VarSet because Algebra operates on variables, not
on raw data.

VarMap finds the source table to make a VarSet through a
simple StatTree addressing mechanism: a string represent-
ing the path from root to node. For example, the path
ROOT/PCA/SCORES/CLUSTER/MEMBERS points to
data that result from a cluster analysis on principal compo-
nents. StatTree paths encapsulate what has been done to
data before graphing. The StatTree path for the graphic in
Figure 1 is ROOT/AGGREGATE/AGGREGATION. The
AGGREGATION data object contains the coordinates and
counts for the hex bins.

Algebra
The graph  is a
subset of R2. To display G, we choose a bounded region of
R2, , and we physically

represent the set of points  by choosing a coor-
dinate system and making a graphic with ink or some other
perceivable medium.

Graphics algebra provides a method for specifying F
(which we call a frame) when we wish to construct a
graphic based on some function of a set of data. Wilkinson
[21] presents three algebraic operators called cross (*), nest
(/), and blend (+), together with the rules for their use. They
are derived from the set operators product ( ), discrete
union ( ), and union ( ), respectively. We use cross to
construct a graphic of the error function in the example at
the beginning of this section. The algebraic expression for
the frame containing the bounded graph P is x*y, where x is
the bounded domain of the function and y is its bounded
range.

Graphics algebra is symbolically evaluated. For example,
the expression a*(b+c) is equivalent to a*b + a*c; nViZn
produces the same graphic when presented with either
expression. Wilkinson [21] discusses the procedure for
doing this symbolic evaluation, which resembles normal-
ization of relational query expressions.
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Figure 2: Tiling of correlation matrix. Color of cells rep-
resents magnitude of Pearson correlations
among combat symptoms in matrix. Data are
from [15].
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Statistics
The Statistics component of nViZn contains functions that
receive a VarSet from Algebra and output a statistical
graph, called an SGraph. The most familiar statistical
graphs are location statistics such as means. Statistical
graphs also include confidence regions, smoothers, densi-
ties, directed graphs such as trees, and other functions. The
term statistical is something of a misnomer, since our
requirement for this component is only that Statistics output
a unique tuple or set of tuples or collection of sets of tuples
for each input tuple. This more general definition of an
SGraph allows nViZn to produce a wide variety of graphics
not limited to statistical charts.

Figure 1 demonstrates that a frame may include more than
one SGraph. Our ecoregion example includes a hex-bin
density and a LOESS smoother. Each is computed from the
same VarSet. This architecture is ideally suited for a multi-
threaded environment in which certain tasks can be handled
simultaneously. The possibility of more than one SGraph in
a frame is one of the obvious ways nViZn differs from a
charting program. Standard charts have only one or two
hard-wired graphical elements per frame.

Computing statistical values requires a lot of housekeeping.
We must not only handle sample weights and missing data,
but we must also carry along the pointers necessary to link
geometric components to data. If we compute a box plot,
for example (see Figure 4), we need to maintain a list of
cases in the central box, whiskers, and possible outliers so
that a user can brush these objects and link them to other
graphs in real-time. If we compute a tessellation, we need
to maintain enough information to compute the perimeter
or area of a polygon if requested. Doing this in a general
and efficient way, for linear, order and other statistics, while
allowing for missing data and sample weights, is nontrivial.

The hex-bin Statistics element is not the same as the hexa-
gon binning Analytic. If we eliminated the hexagon binning
Analytic from our specification, we would have to compute
the hex-bin Statistic from the raw data. This would not have
taken more time (since the same algorithm is involved in
both computations), but it would have prevented us from
computing the LOESS smoother in reasonable time.
Instead, we pre-computed the bins in an Analytic and then
used the bin counts and locations to compute both the hex-
bin and LOESS Statistics. The same trade-offs exist for
other Statistics and Analytics. Where we choose to locate

Figure 3: Lensing coordinate transformations on Web data.



the computations depends on the functionality we want in
our application.

Geometry
Geometry converts an SGraph (a statistical graph) to a
GGraph (a geometric graph). The sub-classes of GGraph
include point, line, area, bar, histobar, schema, tile, con-
tour, path, and link. With the point geometry object, we can
represent a point estimate of a mean with a dot. With the
bar geometry object, we can represent the same point esti-
mate by locating one end of the bar at the coordinates of the
point. The graphic in Figure 1 employs two Geometrics:
line (for the LOESS smoother) and tile (for the hex-bins).

Sometimes, Geometry cannot produce a GGraph from a
particular SGraph it has been given. Undefined instances
(e.g., a histobar of a tree) result in null objects. These
instances are surprisingly rare. As elsewhere in the nViZn
system, modularity of function and orthogonality of design
increase the potential output of the system. This design
strategy also encourages us to think more broadly about
graphical representation.

Coordinates
We are accustomed to seeing graphics in rectangular coor-
dinates. Sometimes, as with pie charts, we are accustomed
to polar coordinates. We rarely expect to see bar charts in
spherical coordinates, however, or time series charts in
polar. Mathematicians, geographers, and spatial statisti-
cians are more inclined to transform their viewing space,
but others rarely encounter geometric objects in other coor-
dinate systems.

nViZn locates coordinate transformations in a separate
object and makes them work on most geometric graphs.
Coordinates convert one or more geometric graphs
(GGraph) to a composite graph (CGraph). A CGraph
embeds one or more geometric graphs in a single frame and
its associated coordinate system. The coordinate system
used in Figure 1 is rectangular. It embeds the density and
smoother graphics in the frame.

Figure 3 shows a lensing coordinate transformation [10] in
nViZn. The upper left panel of the figure shows an unrooted
tree graph. The upper right panel shows the tree distorted to
reveal local detail in the lower left area of the tree. The
lower left panel shows the same tree displayed in rooted
form, with the chosen root at the top. The lensing transfor-
mation is applied to the bottom-middle of the tree, to reveal
local detail in that area. Finally, the bottom right panel
shows a circular layout of the same graph with the lensing
focus in the upper left region of the graph. 

In all cases, the lensing tool works in real time as it is
moved around the display. This functionality works

because the coordinate transformation is applied only to the
geometric objects in the graph. No other aspect of the spec-
ification changes as the lensing tool is moved to a new
focus.

Aesthetics
Aesthetics convert a composite graph (CGraph) to a per-
ceivable graphic. When we colloquially call a chart a graph,
we are really speaking of the realization of a CGraph. A
CGraph is a mathematical graph; it is not visible or perceiv-
able. A graphic, on the other hand, is perceivable in some
sense.

nViZn includes a variety of Aesthetics that extend the work
of Bertin [2]. These are position, size, shape, rotation,
color, texture, blur, and transparency. In addition, nViZn
Aesthetics includes an attribute not generally thought of as
an aesthetic or visual variable: a label. A label is a text
object glued to an element of a graph. In a graphic, a label
functions like a color, texture, or other attribute to make a
graph perceivable to a reader.

The abstraction and localization of Aesthetics in nViZn
yields some interesting behaviors. First, nViZn can con-
struct tables of numerals or text by using a label attached to
an invisible geometric element such as a point or tile. Sec-
ond, a brushing event can be attached to any attribute such
as a label, color, rotation, or blur. Using a brush in one
frame, for example, can cause points in another linked
frame to show their labels, change their color, rotate, or
blur. Third, nViZn can be used to construct graphics that do
not even remotely resemble XY plots. These include such
images as appear in [8] and [14].

Controllers
A Controller is an object that connects a user gesture to a
function. For example, a brush is a controller that wires a
user-manipulatable brushing region (usually a rectangular
brush tool) to an Aesthetic through a graph-subsetting func-
tion. In subsetting a graph, we select a region that defines a
subset of the values on one or more variables. When we
drive this back through the pipeline, we select a subset of
our VarSet. Any Frame that is dependent on the same Var-
Set will receive brushing messages identifying elements in
the subset and these identifiers will be mapped to a selected
Aesthetic.

nViZn has over 30 controllers that allow a programmer to
connect functions in the graphics system to user widgets
such as sliders, list boxes, buttons, and modal cursor tools.
These controllers extend the scope of nViZn beyond visual-
ization, making it a system for manipulating as well as
viewing data.



Figure 4 shows drill-down and brushing controllers applied
to data from the 1990 US Census. The main graphic con-
sists of a set of box plots of the distribution of hourly earn-
ings among different educational groups. One controller at
the bottom of the main window allows the user to select the
type of graphic to be displayed. Figure 4 selects Distribu-
tion (a box plot) as opposed to a mean, median, or other
point statistic. 

The Sort button is attached to a controller that causes the
educational categories to be sorted by hourly earnings. This
facilitates interpretation of the earnings data across catego-
ries.

A drill-down controller was used to select Males only for
the main graphic. Prior to this display, the user clicked on
the males category in the aggregate display and the result
was to filter out Females. 

Finally, a brushing controller was used to link the pie chart
window with the box plot window. This controller was set
to use color (white) to highlight the brushed category (Pro-

fessional). We see that a relatively small proportion of the
population falls within the Professional postgraduate cate-
gory. By selecting the Professional sector of the pie chart,
we highlight the Professional box in the main display.

The brushing controller works from either window. We
could, for example, point to one of the outliers at the right
end of the box plot for the Bachelor group and find its cor-
responding location in the Pie chart. Any other chart win-
dow, whether or not it involved earnings or educational
category, could be linked similarity.

CONCLUSION

nViZn defines, organizes, and constructs a graphic in graph-
world rather than data-world. This might strike those accus-
tomed to relational database or object database worlds as
somewhat peculiar. As Wilkinson [21] stated, however,
"These definitions are embedded in the mathematical his-
tory that determined the evolution of statistical charts and
maps." In short, we begin by considering what is the range
and what is the domain of a graph underlying a graphic.

Figure 4: Drill Down and Brushing controllers. Third quartile of earnings by Males with bachelor degrees is high-
lighted in histogram of all earnings.



From there, we recurse our definitions until we reach a
specification of data underlying the graphic. For that speci-
fication, we construct an abstract DataView and link the
graphic to our data.
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