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1 Introduction
Figure 1 shows a graphic of death rates against birth

rates per 100,000 population for 27 selected countries in
a 1990 UN databank (Wilkinson, 1999). The contours in
show two concentrations of countries. One, to the left,
has relatively lower death rates and small-to-moderate
birth rates. The second, toward the upper right, has high
death rates and extraordinarily high birth rates. The
curve in the middle of the contours shows that the over-
all relation between death and birth rates is curvilinear.

Figure 1
Plot of 1990 death rates against birth rates for selected
countries.

The single plot in Figure 1 contains three graphs: (1)
a point graph (collection of points) whose labels show
country names, (2) a set of contours based on a kernel
density estimate (Silverman, 1986) that represents the
concentration of the countries, and (3) a LOESS
smoother (Cleveland and Devlin, 1988) . The graphic
also includes three guides for our understanding. The
first is a general geometric object called a form that is,
in this instance, a line delineating zero population
growth. Countries to the left of this line tend to lose pop-
ulation, and countries to the right tend to gain. The other
two are guides that demarcate axes for the represented
space. Other examples of guides are legends and titles.

Each of the constituent graphical elements in Figure 1
has a long lineage in the history of statistical charts.
Scatterplots of points and contours are at several centu-
ries old, and regression smoothers are at least a century
old. The use of a rectangular coordinate system to locate
graphs within a frame demarcated by axes predates by
centuries Decartes’ eponymous Cartesian coordinate
system. We will review briefly the history of statistical
graphics and charts.

The lines, colors, typography, proportions, and other
aspects of Figure 1 have been chosen to facilitate com-
munication of the ideas and models underlying the
chart. We need not resort to platitudes such as, "A pic-
ture is worth a thousand words" to understand that this
graphic comprises a relatively substantial analysis of the
data. We will review briefly the topic of graphics princi-
ples, which can help us devise effective ways to display
analyzed data.

The world of charts is enormous. Principles can guide
us through that world, but there are many alternatives
for representing one or more variables in a graphic. In
the final section, we will present some of these choices
and use them to derive additional guidelines for devel-
oping effective presentations.

2 History
The contours, or level curves, in Figure 1 represent a

map. This representation is based on a statistical func-
tion that maps birth rate and death rate onto a density.
Any value on this density can be derived from a corre-
sponding pair of birth rate and death rate values taken
from the domain of values within the frame bounded by
the two displayed scales. The geometric space in which
this mapping is embedded is three-dimensional. The
first two dimensions are birth rate and death rate, and
the third dimension is density.

The technical mathematical terms in the previous
paragraph (contours, level curves, map, function, onto,
density, value, domain, frame, bounded, scales, geomet-
ric space, dimensions) are derived from ordinary lan-
guage, often ancient, describing the physical world. This
correspondence between the world of charts and the
physical world is not coincidental. Charts are maps of
abstract worlds. The word chart and the word cartogra-
phy have the same root (Latin charta, a piece of paper or
papyrus). The Greek word for geometry means land
measurement. A scale (in Latin) is a ladder. We map in
order to organize our world in our mind. Our world is
larger than the domain of geography, however. As
Pinker (1997) has argued, abstract reasoning is built on
metaphors for reality. We manipulate abstractions by
making them analogous to concrete objects.

Statistical charts are maps, but it does not suffice to
describe them simply as abstract geography. The history
of statistical charts contains remarkable leaps from a
world of continuous rectangular (or spherical) space to
other worlds that are categorical (worlds with gaps),
multidimensional (worlds beyond three dimensions),
and topological (worlds in abstract coordinate systems).
Funkhouser (1937), Tilling (1975), Beniger and Robyn
(1978), Fienberg (1979), Robinson (1982), Stigler
(1983), Tufte (1983, 1990, 1997), Collins (1993),
Wainer (1997), and Wainer and Velleman (2001) docu-
ment these leaps. These references also contain numer-
ous examples of graphics, ancient and modern, that
represent significant landmarks in this history. The
remainder of this section will highlight a few.

Physical coordinates were used by Egyptian survey-
ors as early as the third millenium B.C.E. for locating
points on land (Beniger and Robyn, 1978). By the
beginning of the second millenium C.E., coordinates
were used to locate non-geographic entities. Funkhouser
(1936) shows an example of a line graphic of planetary
movements on a space-time grid produced by an
unknown astronomer in the 10th or 11th century. Not
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surprisingly, one of the "planets" is the Sun.
Cartesian coordinates were devised by Descartes for

locating points in abstract space, particularly for repre-
senting equations underlying his analytic geometry
(Funkhouser, 1937). Relatively few 17th or 18th century
embeddings of observed data points in Cartesian coordi-
nates have been found, however (Tilling, 1975, Funk-
houser 1937). Scientists of the Enlightenment
sometimes regarded graphics as dilettantish, and if they
used them at all, it was for geometrical diagrams or
maps of algebraic functions rather than for plots of raw
data (Beniger and Robyn, 1978). Social scientists of this
period focused on collecting tables of state statistics that
could be perused in detail without resort to graphical
approximation (Beniger and Robyn, 1978, although see
Stigler, 1983). Beniger and Robyn (1978) and Wainer
and Velleman (2001) discuss notable exceptions to these
observations (graphics by Wren, Halley, Huygens, Plot,
Lister, Priestley) but conclude that the important variet-
ies of what we now call the statistical chart did not arise
until the work of Playfair in the late 18th century.

Playfair graphed the data of the state, the root of the
word statistics. He invented the pie chart, the circle
chart, the categorical bar chart, the area chart, and he
adapted other geometric forms in novel ways to graph
data over time and space. Wainer and Spence (1997)
provide a brief biography of Playfair’s fascinating life
and the charts he created.

Other widely used graphical forms were developed in
the 19th and early 20th centuries. Beniger and Robyn
(1978) and Stigler (1983) summarize a number of these.
Density bars were used by Guerry in 1833 to display
crime by age groupings. Pearson adopted this form for
representing a frequency distribution and named it a his-
togram. Minard developed a number of schematic maps
overlaying statistical data on geography. Florence
Nightingale introduced polar area charts. The age-sex
pyramid (a dual histogram) was introduced by F.A.
Walker, Superintendent of the U.S. Census in 1874. The
sample cumulative distribution plot was introduced by
Galton in 1875.

If charts are maps of abstract worlds, we might con-
clude that guiding principles for graphics usage could be
derived from the psychology of perception and cogni-
tion in the physical world. Indeed, recent psychological
research has tended to support the simple statement that
the more graphics adhere to the rules of the physical
world, the more likely we are to extract and process the
information in them reliably and accurately. The follow-
ing section covers this area.

3 Principles
Over the centuries of their history, various charts have

emphasized communication (e.g., Snow’s map of chol-
era deaths in London, reproduced in Tufte, 1983), per-
suasion (Fletcher’s map of the distribution of ignorance
in 19th century England and Wales, reproduced in

Wainer, 1997), and graphic design (e.g., Playfair’s chart
of imports and exports of England to and from North
America, reproduced in Tufte, 1983). These criteria are
not exclusive, of course. Some charts incorporate all
three (e.g., Minard’s compound chart of Napoleon’s
troop losses in the Russian campaign, reproduced in
Tufte, 1983).

Not surprisingly, modern critics of charts have tended
to align themselves along these same dimensions. Com-
municators (e.g., Cleveland, Kosslyn) have conducted
experiments to determine rules that improve the transfer
of information from chart-maker to chart-viewer. Per-
suaders (e.g., Holmes, 1991) have evaluated charts on
the basis of their psychological impact. Designers (e.g.,
Herdeg, 1981) have applied aesthetic criteria. Others
(e.g., Tufte, 1983) have adopted the criteria of the com-
municator, and the methods of the designer. None of
these approaches can claim exclusive validity. Since sci-
entists are more interested in rules that foster accurate
communication of replicable results, however, this sec-
tion will focus on communication.

Evaluating graphical communication has been the
province of psychology, in the subdisciplines of human-
factors, ergonomics, and applied cognitive science. For
almost a century, human factors psychologists have
developed methods and criteria for evaluating graphics.
Military psychologists, for example, have conducted
randomized experiments to test the effectiveness of air-
craft cockpit displays.

Psychologists gave much less attention to the percep-
tion of statistical graphics until a statistician, William
Cleveland, published a series of experiments designed to
identify aspects of charts that helped or hindered accu-
rate decoding of quantitative data (Cleveland and
McGill, 1984). (Beniger and Robyn, 1978, cite a num-
ber of statisticians’ informal studies of the effectiveness
of popular charts in the 1920’s, but these did not induce
many psychologists to study the topic more formally).

Cleveland used paper--and--pencil tests containing
simple graphical elements -- points, lines, angles, areas,
colors -- generated randomly by a computer. His sub-
jects gave magnitude estimates of the values generating
the instances of each element. From these estimates, he
derived and analyzed error rates. Figure 2 summarizes
the main result of these experiments. The top of the fig-
ure (BEST) represents elements that resulted in fewer
errors and the bottom (WORST) represents those with
more.

Cleveland’s hierarchy gives us a start in designing
effective displays. All other things being equal, we
might choose to use a bar chart instead of a pie chart
because judgments of position on a common scale and
judgments of length are both more accurate than judg-
ments of angle. There are exceptions to these rules,
however (see the discussion of Figure 3 below). A chart
is more than the sum of its parts; elements interact in the
context of a chart to suppress or enhance errors. Kosslyn
(1994) summarizes relevant psychological studies in the
extensive notes at the end of his book.



Others have provided numerous general rules for
effective graphical communication. The following
guidelines are derived from Bertin(1981), Tufte (1983),
Cleveland(1994), and Kosslyn(1994).
• Avoid clutter. Especially, do not clutter the data

region inside the plotting frame demarcated by axes.
Tufte constructs a data/ink ratio and urges us to maxi-
mize it by removing irrelevant detail. This exhorta-
tion has value as long as we do not remove redundant
features that can reinforce an accurate perception.
Most writers agree that one should avoid jazzy tex-
tures (especially stripes), gratuitous colors, excessive
tick marks and grid lines, ornate fonts, and unneces-
sary embellishment. Avoid visual illusions due to
pseudo-3D and other gratuitous use of color, angles,
area, or volume in a 2D plotting world.

• Seek simple geometric forms -- straight lines, cir-
cles, triangles, squares. When it helps to simplify a
relationship, use transformations (logs, square roots)
to convert curves to straight lines, for example. Use
polar coordinates when variables are cyclical (astro-
nomical, perceptual, directional).

• Sort and organize. This is especially important for
complex graphics. Usually, one should sort the values
of a dependent variable (the range of the graph), but
other sorts can help viewers navigate and perceive
structure. Bertin(1981) has numerous examples
showing the value of simple and multivariate data
sorts.Figure 12 below shows an example.

• Annotate extensively. Make legends comprehensive
and informative. Figure captions should describe the
source of the data and explain the relation of the data
to the graphic. Note exceptions (see Figure 6).

Figure 2 
Cleveland (1994) graphical features hierarchy.

4 Choices
Rules guide, but examples instruct. We need to con-

sider specific choices for specific problems to under-
stand exceptions to rules. The graphic representation
problem is often expressed as one of choosing the
proper chart type for a given set of data. This is an
unhelpful way to express the problem, however. As
Wilkinson(1999) shows, different chart types with their
own popular names are often mirror images or simple
transformations of each other. Instead, we will examine
several basic problems confronting the designer of a sci-
entific graphic: geometry (choosing the type of graphi-
cal element for a chart), coordinates (choosing a
coordinate system for the chart), and uncertainty (rep-
resenting random error).

4.1 Geometry
The following examples were selected to illustrate

principles, not exhaust possibilities. It is organized by
the configuration and number of variables, categorical
and continuous, that we wish to graph.

4.1.1 One Variable
Figure 3 shows five different ways of representing

values on one categorical variable. The data are from
1606 respondents to the 1993 General Social Survey
(Davis, Smith, and Marsden, 1993). Respondents were
asked, "How many sex partners have you had in the last
12 months?" Those reporting more than 4 partners
(some reported up to 100) were consolidated into the
last category. There were 1466 responses in the resulting
6 categories.

The upper left graphic is a bar chart of the frequen-
cies of occurrence of each category. Bars are most suited
for displaying either magnitudes referenced against zero
(anchored bars, as in this figure) or a range of values on
a continuous scale (range bars, as in Figure 7).

Anchoring bars at zero can sacrifice resolution when
no data values exist near zero; this creates substantial
white space in the plotting area (Cleveland, 1994). In
these cases, dots are preferable to bars because we do
not need to include zero on the scale. The upper right
graphic shows a dot plot of the same variable. In this
case, we would prefer the bar version because there are
several values near zero and it is easier to anchor the
bars visually on the partner categories. The locations of
both the dots and the tops of the bars are easily decoded
on the vertical scale.

The third graphic in the figure is a pie chart of the
proportions of total category frequencies. The general
antipathy statisticians have toward pie charts is misin-
formed. Pie charts are not always bad, although the
issues on when to use them are complex. In general, bar
charts are more suited to absolute judgments and pie
charts are more suited to judging proportions (Simkin
and Hastie, 1987). Pie sectors near a fourth or half of a
pie in size are judged especially accurately. When there
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are many sectors, however, pies are not usually appro-
priate. In this example, the bar chart would be more suit-
able.

The fourth graphic is a divided bar chart, which is
nothing more than a pie chart in rectangular coordinates.
Divided bars do worse than pies in studies of graphical
perception (e.g., Simkin and Hastie, 1987). Cleveland
(1994) provides several examples to show why they are
generally a bad choice.

The fifth graphic is a 3D pie chart. This is probably
the worst of the popular ways to represent proportions.
Three dimensional graphics are not in themselves harm-
ful. What creates the problem with the 3D pie chart is
the distortion of angles that the perspective projection
produces. In the 3D pie, the single partner category
seems to cover almost 75 percent; the actual coverage is
68 percent.

Some users and computer programs apply line or area
elements (see Figure 7) to categorical variables. Popular
examples are line graphics of means in analysis of vari-
ance, or area graphics of profiles across categories.
These elements should generally be avoided with cate-
gorical data. Spacings between categories (even ordered
categories) are not fixed, so slopes of line segments or
profiles between categories are meaningless.

Figure 4 shows five ways of representing one contin-
uous variable. The data are per-capita consumption of
spirits for each of the 50 US states (Bureau of the Cen-
sus, 1986).The top graphic is a classic histogram over-
laid with a kernel density estimate (Silverman, 1986).
Histogram bars look like ordinary bars, but they mea-
sure areas rather than intervals and they rest on a contin-
uous scale rather than on a set of categories. Histograms
are more useful than kernels when we are interested in
displaying frequencies within intervals, especially when
the intervals themselves are bounded by meaningful,
round units. Kernels are more useful than histograms
when we are looking for a smooth estimate of a continu-
ous distribution.

The next lower graphic is a dot histogram (Chambers
et al, 1983, Wilkinson, 1999). This display represents
each observation with a dot located at its scale value. If
several values coincide on the scale, the dots are stacked
vertically. This display is most suited for small samples,
when every value is to be displayed.

The next lower graphic is a stripe plot (Chambers et
al, 1983). A vertical stripe occurs at each data value.
This display can handle more cases than the dot plot,
although it is not suitable for large datasets.

The next lower graphic is a jittered density (Cham-
bers et al, 1983). Random error is added to each value so
that the plotting symbols do not overlap. This display is
designed to handle rougly the same conditions as the
stripe plot.

The last graphic in Figure 4 is a box plot, or sche-
matic plot (Tukey, 1977). As Tufte (1983) notes,
Tukey’s plot is based on an earlier display that repre-
sents the quartiles of a distribution. In that earlier plot,
the whiskers cover the range and the box covers the

midrange. Tukey improved on this design by scaling the
whiskers to allow for outliers. The display in Figure 4
shows how important this feature can be. Two states
(Nevada and New Hampshire) have unusually large val-
ues (see Figure 6), possibly due to gambling and cheap
liquor respectively. The box plot is a clean representa-
tion of the summary values we usually want to see – the
median, the 25th and 75th centiles (hinges), the extreme
values (usually bounding the range), and possible outli-
ers (outside values).

4.1.2 Two variables
Figure 5 shows four ways of representing two cate-

gorical variables crossed. The data are from the 1993
General Social Survey used in Figure 3. The additional
variable is general happiness, as measured by the
response to the question, "Taken all together, how would
you say things are these days – would you say that you
are very happy, pretty happy, or not too happy?"

The upper left plot shows a 3D bar chart of happiness
against number of sexual partners. The vertical scale is
the proportion of respondents within each partner cate-
gory. This graphic has the disadvantage that short bars
tend to be hidden by long ones. It generally should be
avoided.

The graphic to the right is a tiled bar chart. This
graphic uses color or gray scale to indicate the relative
frequency of each category combination. As Cleveland’s
research has shown, however, the use of color or gray
scale to encode continuous values is problematic (Cleve-
land, 1994).

The next graphic below shows a paneled categorical
plot. Instead of using an extra dimension in 3D, we use
an extra categorical dimension in 2D to panel the plot.
This is probably the most effective method for handling
the extra dimensionality required for representing the
frequencies plus the two categories.The bottom panel
shows a multiple divided bar chart. This layout has the
same problems as the single divided bar chart (see Fig-
ure 3). Cleveland (1985) shows an example of this
graphic and offers a more effective dot plot alternative.

Figure 6 shows the most popular way of representing
two continuous variables crossed with each other – the
scatterplot. The data are per-capita consumption of spir-
its for each of the 50 US states, used in Figure 4 (Bureau
of the Census, 1986). The additional variable is number
of deaths from chronic liver disease and cirrhosis per
100,000 people by state. This scatterplot has been
enhanced in a number of ways. The bordering box plots
help us to assess the marginal distributions of the vari-
ables and highlight the Nevada and New Hampshire out-
liers. The smoother shows the conditional mode of
deaths (estimated mode of deaths given consumption).
This was computed through kernel regression (Scott,
1992). This particular smoother limits itself to areas
where there are relatively more data values, so it pro-
vides a conservative estimate of trend. 



Figure 3
 Reported number of sexual partners (General Social
Survey, 1993).

Figure 4 
Consumption of spirits in gallons per capita by US state,
1986.
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Figure 5 
Number of reported sexual partners during previous
year by reported level of happiness among 1462
respondents to 1993 General Social Survey. Third
variable is proportion of respondents in each sexual
partner category.

Figure 6 
Consumption of spirits in gallons per capita by US state
vs. Number of deaths from chronic liver disease and
cirrhosis per 100,000 by US state, 1986

Time series data require special treatment. Figure 7
shows four examples. The data are number of US pat-
ents issued in the century from 1880 to 1980 (Wilkin-
son, Blank, and Gruber, 1996). The top panel shows a
line element representing the series. Lines are most use-
ful when a series is relatively smooth. The next panel
shows a point element with a superimposed LOESS
smoother. Points are best when we supplement them
with a smoother; they tend to obscure time order if used
alone, unless the series is especially smooth. The third
panel shows spikes. These are vertical lines best used to
reveal deviation from a constant level. This panel dis-
plays the residuals from the LOESS smooth. The lowest
panel shows an area chart for the raw series. This high-
lights trend but prevents the use of confidence intervals
and other enhancements to the plot. It should generally
be avoided. Cleveland (1994) discusses other graphical
representations for time series data.

Figure 7 
US Patents issued from 1880 to 1980.

Figure 8 shows three ways of representing a categori-
cal variable crossed with a continuous variable. The data
are based on 80 graduate students over a ten year period
in a US psychology department (Wilkinson, Blank, and
Gruber, 1996). Graduate Record Examination Advanced
Psychology Test scores are plotted against whether or
not the students eventually received their Ph.D.
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Figure 8 
Advanced Psychology Graduate Record Examination
(GRE) scores for 80 students taken from 10 years of a
graduate psychology program. Students are grouped by
whether or not they were awarded a Ph.D.

The first graphic employs a dot for the mean and a
range bar to represent a 95 percent confidence interval
on the mean. The bars do not overlap, which suggests
that the advanced test can help identify those who
achieve a Ph.D. (Interestingly, neither the Verbal nor
Quantitative test scores predicted graduation in this
sample.)

The second graphic is a notched box plot (McGill,
Tukey, and Larsen, 1978). This is a variation on the box
plot that not only conveys more of the important data
landmarks than the classic confidence interval plot but
also provides an approximate confidence interval of its
own. If the data are independent samples from identi-
cally distributed populations that are lumpy in the mid-
dle (approximately normal in their midrange), then
comparing the notches yields an approximate 95 percent
test of the null hypothesis that the true medians in the
population are equal. In this example, the notches do not
overlap, reinforcing what we concluded from the confi-
dence intervals on the means.  Because it relies on the
median instead of the mean, the notched box plot proce-
dure is more robust against outliers.

The third graphic is a dot plot (Wilkinson, 1999).
Used frequently in the medical literature, this plot shows
every data point. In a small sample (e.g., clinical case
study), a dot plot can be useful for readers who wish to
consider every data value. It is of little use in making
informal graphical inferences concerning group differ-
ences, however. It is best to think of grouped dot plots as
unadorned one--dimensional scatterplots within catego-
ries.

4.1.3 Three variables
Figure 9 shows a triple crossing of categorical vari-

ables. The data are from the 1993 General Social Survey
used in Figure 3 and Figure 5. The additional variable is
gender (observed by the interviewer, not reported by the
respondent). We ask whether the relationship between
reported happiness and number of sexual partners dif-
fers by gender.

The top plot in the figure shows a paneled graphic.
The format is similar to a Trellis display (Becker, Cleve-
land, and Shyu, 1996), but the labeling of the paneling
variables (happiness and gender) is placed outside the
plotting area to improve readability.

The middle plot collapses happiness into a legend in
order to reduce the number of panels. This is a popular
method for saving space, particularly when representing
factorial layouts in ANOVA and other designs. It has
several problems. First, the line segments used to high-
light trends have slopes that depend on the particular
spacing and arrangement of partner categories. Unless
we employ an external scaling procedure to determine
the spacing of the partners categories, we have scant jus-
tification for using these lines. Second, the collapsing
introduces a symbol choice problem. It is difficult to
find symbols that are easily distinguishable for more
than a few categories. The symbols collide, as well, at
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the upper end of the horizontal scales.

Figure 9 
Number of reported sexual partners during last year by
reported level of happiness among 1462 respondents to
1993 General Social Survey. Third variable is
proportion of respondents in each sexual partner
category.

The bottom plot introduces an even less appealing
alternative. Clustered bar charts are used widely, but
they have several defects. First, it is difficult to discern
separate patterns for the categories. One needs to focus
on one set of bars to do this, but there is visual interfer-
ence from the other bars in each cluster. Second, these
bars can become quite thin with more than a few catego-
ries. Decoding this graphic is problematic.

Figure 10 shows a triple crossing of continuous vari-
ables. The data are from the UN databank used in Figure
1. The additional variable is literacy (percentage of the
population that can read). We ask whether literacy is
related to birth and death rates taken together.

Figure 10 Birth rate and death rate vs. literacy for
selected countries.

The upper plot is a 3D frame that includes a con-
toured regression surface and a scatterplot. The contours
(as opposed to a wire-frame or rendered surface) help
viewers discern literacy levels in different elevations of
the plot and keep the surface from hiding the data. Col-
oring the contours improves the coherence of the sur-
face.

The lower plot is a 2D frame that includes the same
contoured surface plus a scatterplot of symbols whose
size is proportional to literacy. This plot makes it easier
to decode specific xyz triplets.

Some critics tend to eschew 3D surface plots, but they
have their uses. As Wilkinson (1999) argues, surfaces
elicit a wholistic impression of a function. They are less
useful for decoding individual values. Perhaps the best
compromise is to present both displays simultaneously
to provide different structural views. Another alternative
is to categorize one or more of the variables and display
the results in a paneled plot such as those in Figure 9.

4.2 Coordinates
We do not ordinarily think of charts being embedded

in different coordinate systems, except for certain scien-
tific graphics such as polar plots. Some chart types, such
as radar charts, pie charts, and horizontal bar charts are
nothing more than popular charts in unusual coordinate
systems. Wilkinson (1999) provides numerous exam-
ples.
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Figure 11 
Difference between death month and birthday by
occupational category.

Figure 11 shows two different graphics in different
coordinate systems, based on data from Andrews and
Herzberg (1985), contributed by C. O’Brien. The data
are months since their last birthday during which mem-
bers of different social groups died. The upper plot
shows a paneled horizontal area chart produced by rotat-
ing a vertical area chart 90 degrees (exchanging x and y
coordinates in this case). This graphic reminds us that
horizontal bar charts are a coordinate transformation of
a vertical bar chart, not a new chart type.

If it makes sense to consider a death one month
before a birthday as being more similar to a death one
month after than to one six months after, then we might
want to plot these variables in polar coordinates. The
lower plot shows a profile plot of the same results.

Figure 12 contains a triangular coordinate plot. Mos-
teller and Tukey (1968), Bishop, Fienberg, and Holland
(1975), and Wainer(1997) show examples of this type of
plot. The data are from the UN dataset used in Figure 1.
The variables represent expenditures in US dollars per
person for health, education, and military.

The outside tick marks signify how to read the scales.
Grid lines collinear with ticks demarcate values on the
three scales. Iraq and Pakistan, for example, allocated
most to military spending and least to education and
health. Costa Rica spent more than 40 percent on educa-
tion, almost 50 percent on health, and less than 10 per-
cent on military. While triangular coordinates may be
used most frequently in analysis of mixture models in
industrial experiments, they also can be useful for social
science models involving tradeoffs or compensatory
mechanisms.

Figure 12 
Percentage per-captia spending on Education, Military,
and Health.

4.3 Uncertainty
There are two chief methods for representing error in

a graphic. The first is sharp: error bounds are repre-
sented by clear edges, points, or lines. The second is
fuzzy: error is represented by blurring an estimate.

Figure 13 shows two sharp ways of representing error
in a graphic. The data are from the 1993 General Social
Survey used in Figure 3. The additional variable is feel-
ings about the Bible, as measured by the response to the
question, "Which of these statements comes closest to
describing your feelings about the Bible?" The
responses coded are 1 (Word of God), 2 (Inspired word),
and 3 (Book of fables). We assume that the dependent
variable is continuous (biblical absolutism vs. relativ-
ism?) even though the responses are integers.

The upper plot shows error bars representing 95 per-
cent confidence intervals on the means by category.
Error bars are also used to represent one standard devia-
tion or one standard error. It is important to make clear
in accompanying titles or notes which type is used. If
the spacing of values on the independent variable is
meaningful, then we can fit a linear regression model to
our data. We will further assume the number of sex part-
ners to represent values of a continuous variable (pro-
miscuity?). Assuming the assumptions for inference
using a  t distribution are appropriate, we can fit continu-
ous confidence bounds on the regression line as in the
lower panel of the figure. This plot uses jittering to
reveal the concentration of data points where they are
tied.
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Figure 13 
Sex partners vs. feelings about Bible (GSS survey
responses)

Figure 14 shows one way to represent error by fuzzi-
ness. The data are from Gonnelli et al. (1996). They rep-
resent concentration of bone alkaline phosphatase
(BAP) in a sample of women of different ages. The
authors fit a linear regression (shown in the upper left
panel) to argue that BAP levels increase with age.

A modal regression in the upper right panel indicates
that there is a discontinuity in this relationship at age 45
or so, corresponding most likely to the onset of meno-
pause. Accordingly, we fit separate linear regressions to
the two subgroups split at age 45 (third panel). These
regressions appear to be sensitive to outliers, however,
so we fit linear models using robust regression with t
weighting (fourth panel). This fit indicates that a plausi-
ble model for predicting BAP from age involves level
differences but no slope differences.

It is not easy to compute confidence intervals on the
robust linear fits, so we resort to bootstrapping to pro-
vide an estimate of error. The bottom panel shows the
result of 20 bootstrap robust fits displayed as faint
dashed lines. The non-overlapping envelopes of the fits
indicates that our level-change model is reasonable.

Figure 14 
Bootstrapped data from Gonnelli et al. (1996)

5 Conclusion
Figure 15 shows the principal result of a survey  by

Cleveland (1984) on the use of graphics in scientific
articles.  The horizontal axis represents the percentage
of total page area devoted to graphs in 47 articles sam-
pled from the 1980-81 volumes of selected journals. As
Cleveland noted, the substantial differences among dis-
ciplines remain when one examines number of graphs
per article instead of page area.

Figure 15 
Use of graphics in journal articles (data from Cleveland,
1984).
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In Cleveland’s survey, social science journals ranked
lowest in the use of graphics. We might speculate that
this is a legacy of the aversion toward graphics among
18th century social scientists that Beniger and Robyn
(1978) describe. Whatever the reason, there is little jus-
tification for this to continue. Software packages such as
S-Plus, SAS, SPSS, and SYSTAT (used for the graphics
in this article) now offer statistical graphics. And pub-
lishing standards such as Adobe PDF format now make
it possible to display graphics as easily as text.
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