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Prediction trees classify cases by successively splitting them into groups based on their 
values on a set of predictor variables.  Morgan and Sonquist (1963) proposed a simple 
method for fitting these trees to data; they called it “automatic interaction detection” 
(AID).  Kass (1980) extended the methodology to categorical data, calling it “chi-square 
AID” (CHAID).  Breiman, Friedman, Olshen and Stone (1984) developed new algorithms 
and gave the previously ad-hoc methods more formal grounding in probability theory. 
Their computer program handled both categorical and continuous dependent variables, so 
they termed it “classification and regression trees” (CART).  Quinlan (1986) developed 
independently a set of tree splitting algorithms based on information theory (ID3).  

Graphical displays for these methods have not kept up with the pace of their numerical 
development.  Most of the programs use standard tree displays derived from organiza-
tional chart software.  One exception is the S system (Clark and Pregibon, 1992), which 
displays trees that can be modified dynamically. The S trees can also be vertically scaled 
to represent attributes such as split node importance.  Another excepton is the classifica-
tion tree display of Dirschedl (1991), also cited in Lausen et al. (1994) and Vach (1995), 
which represents subclass size by the width of a tree branch.  The Dirchedl display is a 
variant of Hartigan and Kleiner’s (1974) clustering tree icon.

Figure 1 shows a typical classification tree for predicting median home prices from a set 
of environmental variables.  This dataset was used in Breiman et al. (1984) to illustrate 
regression trees.  It was originally collected by Harrison and Rubinfeld (1978) and used in 
Belsley, Kuh, and Welsch (1980) for demonstrating regression diagnostics.  The variables 
in the dataset are:

•  MEDV     median value of owner-occupied homes in $1000's
•  CRIM     per capita crime rate by town
•  ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
•  INDUS    proportion of non-retail business acres per town
•  CHAS     Charles River dummy variable (1 if tract bounds river; 0 otherwise)
•  NOX      nitric oxides concentration (parts per 10 million)
•  RM       average number of rooms per dwelling
•  AGE      proportion of owner-occupied units built prior to 1940
•  DIS      weighted distances to five Boston employment centers
•  RAD      index of accessibility to radial highways
•  TAX      full-value property-tax rate per $10,000
•  PTRATIO  pupil-teacher ratio by town
•  B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
•  LSTAT    % lower status of the population

The loss function used for splitting nodes was based on ordinary least squares.  Thus, the 
goodness of fit at each node is Fit=1-W/T, where W is within group sum-of-squares and T 
is total sum-of-squares on the dependent variable..

The first split is on RM (rooms).  It separates 430 tracts with an average median value of 
19.9 from 76 tracts with an average median value of 37.2.  The left branch is then split by 
LSTAT (percent lower status of the population).  The right branch is split by RM again.  
And so on. 
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FIGURE 1. 
Classification tree for Boston Housing Data

This display has several drawbacks.  It is difficult to discern the number of tracts in each 
node without reading text.  Moreover, the effectiveness of the splits in classifying cases is 
not readily apparent.  

Figure 2 remedies these two deficiencies.  It is called a “mobile” because it balances 
nodes.  If the terminal nodes were boxes and each case (tract) in a terminal node were a 
marble, then the tree would balance as shown.  Several asymmetries are immediately 
apparent.  The first split separates a relatively small proportion of high-valued tracts to the 
right of the tree.  The most asymmetric split is at the lower left of the tree, where only 5 
high-valued tracts are separated by DIS (distance to employment centers).  

Mean=22.533

SD=9.197

N=506

Mean=45.580

SD=9.883

N=5

Mean=22.905

SD=3.866

N=250

Mean=14.956

SD=4.403

N=175

Mean=23.350

SD=5.110

N=255

Mean=45.097

SD=6.156

N=30

Mean=32.113

SD=6.497

N=46

Mean=37.238

SD=8.988

N=76

Mean=19.934

SD=6.353

N=430

MEDV

RM<6.943

LSTAT<14.430

DIS<1.413

RM<7.454



Mobiles 4

FIGURE 2. 
Regression Mobile for Boston Housing Dataset

Figure 3 adds one more useful feature to the tree: a dot plot. This reveals the distribution 
of the dependent variable at each node.  Dot plots are especially useful for this purpose 
because they work for continuous or categorical variables.  Continuous variable dot plots 
resemble histograms or stem-and-leaf diagrams.  Categorical dot plots look like bar charts.  
Furthermore, dot plots behave like a collection of marbles, which is consistent with the 
mobile metaphor. Coloring the dots according to the terminal node they end up in also 
helps reveal the stratification in the pooled dot plot at the top.
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FIGURE 3. 
Graphical Regression Mobile for Boston Housing Dataset

Conclusion

As Hartigan (1975) points out, the AID algorithm with a least squares loss function is 
prone to splitting off singeltons or outliers.  Whether this is a defect or advantage in a 
given context, mobiles will reveal this behavior and assist in pruning.  Interestingly, the 
Boston data mobile becomes fairly symmetric when 20 percent trimmed means are used 
for the loss function.  Finally, graphical mobiles are especially suitable for large trees 
because text is not needed to reveal the conditional distributions.
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