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The Pareto chart is a bar chart of frequencies sorted by fre-
quency. The most popular incarnation of the chart puts the high-
est bars on the left and includes a line showing the scores pro-
duced by adding the heights in order from left to right. This chart
is used widely in quality control settings to identify critical fac-
tors leading to failure or defects in a process. This article presents
revisions that remedy problems with the chart and improve its
usability in diagnostic settings.
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1. INTRODUCTION

Figure 1 shows a Pareto chart. The chart in the figure is adapted
from an example in Tague (2004), published by the American
Society for Quality. The horizontal axis represents six different
categories of customer complaints. The left vertical axis repre-
sents the counts of complaints in each category. The right vertical
axis represents cumulative counts expressed as percents of total
count.

The motivation for the Pareto chart can be traced to Juran
(1951, p. 39), who observed:

It is seen from these instances that there is some uni-
versal principle which underlies all these cases. The
losses are never uniformly distributed over the quality
characteristics. Rather, the losses are always maldis-
tributed in such a way that a small percentage of the
quality characteristics always contributes a high per-
centage of the quality loss.

Juran added in a note,

The economist Pareto found that wealth was nonuni-
formly distributed in the same way. Many other in-
stances can be found—the distribution of crime among
criminals, the distribution of accidents among haz-
ardous processes, etc.

Although the first edition of Juran’s Quality Control Hand-
book did not include the exact form of the chart in Figure 1, later
editions did. Juran added the cumulative line at the top of the
chart in order to make it easier to judge Pareto’s “80/20 rule.”
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Juran (1975) explained that he generalized Vilfredo Pareto’s ob-
servation that 80% of income in Italy was limited to 20% of
the population. Juran characterized the principle as the “vital
few and trivial many” among manufacturing defects; 80% of
defects in a process seemed to be accounted for by 20% of the
causes. The 80/20 rule is a consequence of the scale-invariance
of power distributions (Newcomb 1881; Zipf 1935). Pareto’s
choice of critical fractiles is, of course, arbitrary. Other choices
could have fit the distribution as accurately, but might not have
been as memorable.

The type of Pareto chart shown in Figure 1 is widely used
in Total Quality Management, Six Sigma, ISO9000, and other
approaches to quality assurance. If Google search frequencies
are an indication of popularity, it is one of the most popular
charts in the world. The Pareto chart has several problems that
limit its usefulness for quality applications, however.

First, the vertical axes for the plot are ill-defined. It is meaning-
less to superimpose a density and a distribution. More generally,
it is meaningless to plot a derivative and an integral in the same
frame. Some applications remedy this problem by making dual
vertical scales (count on the left and cumulative count on the
right, or percent on the left and cumulative percent on the right).
Dual scale plots are confusing, however, and the rationale for
aligning the scales in this particular way is arbitrary.

Second, forcing the counts for the bars and cumulative line
to align (as in Figure 1) limits the effective range of the graph.
When there are many categories, the cumulative line forces the
bars toward the bottom of the frame and makes it difficult to dis-
tinguish the bars. This is a well-known problem; experts advise
users to truncate the plot by making an “Other” category at the
right end of the horizontal scale, but this is rather ad hoc.

Third, there is no theoretical justification for representing the

Figure 1. Pareto chart.
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Figure 2. Juran’s revised pareto chart.

cumulative frequencies with an interpolated line element. Since
the categories cannot be assumed to be equally spaced on a scale,
we are not justified in interpreting the overall slope or segment
slopes in this line. For similar reasons, we are not justified in
looking for “kinks” in this line to detect breakpoints or subgroups
of problem categories.

Finally, the chart makes it difficult to evaluate the sample dis-
tribution of frequencies because there is no reference distribution
in the plot. To apply Juran’s logic of attacking the “vital few,”
we need to know if our data plausibly fit a Pareto or similar
power distribution. If the frequencies are essentially random,
then there is little programmatic justification for attacking the
problems with the largest frequency first, especially when costs
of remedies are not uniform.

2. REVISION

Juran solved one of these problems in a simple modification of
his chart. As Figure 2 shows, Juran reshaped the Pareto diagram
to be a cumulative bar chart. This appealing simplification was
not widely adopted by the quality community, even though it
more closely achieves Juran’s goals than the version in Figure 1.
Juran’s revision eliminates the dual-scale problem, but it does
not take care of the other two problems mentioned above.

2.1 Acceptance Intervals

Recall that the motivation for the Pareto chart was Juran’s in-
terpretation of Pareto’s rule, that a small percent of defect types
causes most defects. To identify this situation, Juran sorted the
Pareto chart by frequency. Post-hoc sorting of unordered cate-
gories by frequency induces a downward trend on random data,
however, so care is needed in interpreting heights of bars. Why
not provide acceptance limits derived from assuming that all
categories are equally probable before sorting occurs?

There are asymptotic results for the order statistics of a multi-
nomial distribution (Ivchenko 1971), but it is simple to compute
exact integer values on small samples with Monte Carlo. For each
sample, we assign 40 defects randomly to the six categories in

Figure 3. Pareto dot plot with acceptance intervals.

Figure 1. Then we sort the six categories by frequency. We do
this a few thousand times and compute the lower α/2 and upper
(1 − α/2) frequency values for each of the six categories. We
continue sampling until none of the order statistics change. The
process converges quickly for small samples because it is mea-
sured on the integers. Figure 3 shows the result (for α = 0.05).
We see that the first category falls outside the acceptance inter-
val. We conclude that our efforts should be devoted to reducing
Category 1 defects.

We use dots and intervals instead of bars because the accep-
tance intervals are closed on the positive integers. Consider the
first category. It is impossible for the lower bound of this interval
to be less than n/k, where n is the total count and k is the num-
ber of categories. And it is impossible for its upper bound to be
greater than the total count. This bounding is a consequence of
the post-hoc sorting that is the basis for the Pareto plot. Thus, it
is useful to see both lower and upper bounds represented in the
graph in order to assess the overall multinomial distribution.

3. APPLICATIONS

Acceptance limits can save us remedial effort and/or force us
to collect more data before we attack problems. Figure 4 shows
a Pareto dot plot of the frequences of attributed causes of patient
falls in a hospital. The source of these data is a Pareto chart on
the Web site of the University of Texas Health Sciences Center
at Houston. As the dot plot reveals, there’s little reason to apply

Figure 4. Pareto dot plot of hospital falls.
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Figure 5. Pareto dot plot of 2004 Summer Olympics gold medals.

the Pareto principle here. And it is the third category, not the
first, that falls outside of the acceptance limits.

What does a Pareto dot plot look like for data that do fit a
(discretized) Pareto distribution? Figure 5 shows a transposed
Pareto dot plot of the number of gold medals awarded to each of
the top 25 countries participating in the 2004 Summer Olympics.
The first five countries are outside the acceptance intervals.

4. CONCLUSION

The Pareto dot plot has been designed to address a particu-
lar applied problem in quality assurance. In practice, data on

frequencies of failure are collected for a set of discrete factors.
These frequencies are sorted and problems associated with the
largest frequencies are attacked first. The justification for this
procedure is Juran’s observation that most of the failures in
manufacturing processes are caused by a few factors. Implicit
additional assumptions are that the cost of remedies may be ig-
nored (as being uniform across alternatives) and that side effects
of remedies (on other failures, on efficiencies, etc.) may be ig-
nored. In such a context, it is important to assess whether the
trend in failures observed is an artifact of the post-hoc sorting
used in making a Pareto chart. If it appears to be an artifact,
then other considerations should be made before attacking the
problems. The Pareto dot plot makes this strategy possible.

The procedure developed here is easy to implement in com-
puter software and may be readily added to the list of charts
available in statistics packages used in the quality field. If widely
used, the Pareto dot plot could help prevent wasted effort and
could encourage practitioners to collect enough data to devise
an effective solution strategy.
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