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Abstract

It is shown that logistically distributed responses scaled in two or
more dimensions resemble a football, not a horseshoe. Further, the
stress of the scaled solution is a function of the slope of the response
functions, not the number of responses.

Kendall (1971) and others have noted that a quasi simplex scaled in two or more
dimensions frequently resembles a horseshoe because extreme distances are usually trun-
cated in real data. We show here that for data fitting a logistic response model (e.g.,
Rasch, 1960), squared Euclidean distances between items scale as a football, not a
horseshoe. Further, the stress of the scaled model is a function of the slope of the item
response functions, not the number of items. We use test theory terminology to motivate
the notation; other logistic response models fit with minor modification.

Consider a collection of N subjects divided according to ability into g groups consist-
ing of n1, n2, . . . , ng subjects, respectively. Assume they are tested on m items arranged
in increasing order of difficulty. Let aijk be a random variable which is the score (0 or
1) of the ith subject (1 < i < nj) in group j (1 < j < g) on item k (1 < l < m). We
assume that the probability that aijk is 1, denoted by pjk, is independent of i.

In the logistic response model,

pj,k =
eb(j−k)

1 + eb(j−k)
(1)

where b is a positive constant representing the slope of the item characteristic functions.
Now, let the squared Euclidean distance between items r and s so defined be
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dr,s =

g∑
j=1

nj∑
i=1

(aijr − aijs)
2/N (2)

In the following theorem, we show that the expected value of dr,s (r 6= s) can be
scaled to obtain a directed distance function on the set of items so that they lie on a
straight line. We will then compute the variance of these distances to inflate the straight
line to a football.

Theorem. Let aijk be a discrete set of random variables as defined above
and let dr,s be defined as in (2). Then the expected value of

δrs = tanh[(b/2)(r − s)]drs

is additive in the sense that, for any non-negative integers r, s, t ≤ m,

E(δrs) + E(δst) = E(δrt).

Proof. Using results in Lord and Novick (1968) and Guttman (1969), it can
be shown that the expected value of dr,s is

E(drs) = (1/N) coth[(b/2)(r − s)]

g∑
j=1

nj

(
1

1 + eb(s−j)
− 1

1 + eb(r−j)

)
(3)

And E(δrs) = tanh[(b/2)(r − s)]E(drs) , so

E(δrs) = (1/N)

g∑
j=1

nj

(
1

1 + eb(s−j)
− 1

1 + eb(r−j)

)
(4)

It follows from (4) that E(δrs) + E(δst) = E(δrt).

We now compute the variance.

σ2(drs) = (1/N2)

E

[ g∑
j=1

nj∑
i=1

(aijr − aijs)
2

]2
− [E( g∑

j=1

nj∑
i=1

(aijr − aijs)
2

)]2

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Because any two distinct aijk’s are independent,

σ2(drs) = (1/N2)

{
g∑

j=1

nj∑
i=1

E
(
(aijr − aijs)

4
)
−

g∑
j=1

nj∑
i=1

[
E
(
(aijr − aijs)

2
)]2}

= (1/N2)

g∑
j=1

nj

{
(pjr + pjs − 2pjrpjs)− (pjr + pjs − 2pjrpjs)

2
}

= (1/4N2)

g∑
j=1

nj

{
1− [1− 2(pjr + pjs − 2pjrpjs)]

2
}

But,

1− 2(pjr + pjs − 2pjrpjs) = 1− 2[pjr(1− pjs) + pjs(1− pjr)]

= 1− 2[eb(j−r) + eb(j−s)]

[1 + eb(j−r)][1 + eb(j−s)]

=
[1− eb(j−r)][1− eb(j−s)]

[1 + eb(j−r)][1 + eb(j−s)]

= tanh[(b/2)(j − r)] tanh[(b/2)(j − s)]

Thus, the variance of drs can be written as

σ2(drs) = (1/4N2)

g∑
j=1

nj

(
1− tanh2[(b/2)(r − j)] tanh2[(b/2)(s− j)]

)
(5)

The variance of the scaled distance is therefore

σ2(δrs) = tanh2[(b/2)(r − s)]σ2(drs) (6)

Finally, we show that for fixed r− s, as r is moved from 1 to k and when r becomes
sufficiently small or large compared to g, the variance decreases. We assume for this
demonstration that nj is a constant (say, n). Then

σ2(δr+1,s+1) = n(tanh2[(b/2)(r − s)]/4N2)
g∑

j=1

(
1− tanh2[(b/2)(r + 1− j)] tanh2[(b/2)(s + 1− j)]

)
= n(tanh2[(b/2)(r − s)]/4N2)

g−1∑
j=0

(
1− tanh2[(b/2)(r − j)] tanh2[(b/2)(s− j)]

)
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Therefore,

σ2(δr+1,s+1)− σ2(δr,s) = n(tanh2[(b/2)(r − s)]/4N2)

tanh2[(b/2)(r − g)] tanh2[(b/2)(s− g)]

− tanh2[(b/2)r] tanh2[(b/2)s]

If r, s < g/2, this is positive and if r, s > g/2 it is negative. If the interval between
r and s overlaps g/2, it can be of either sign. The football is now inflated.

A consequence of these results is that the stress of scaled squared Euclidean distances
between logistically distributed items does not depend on the number of items. The term
in the last brackets in (5) is positive and less than 1, so σ2(drs) is always less than 1/4N ;
the variance in (6) is likewise bounded by 1/4N . With N and b fixed, the variances of
the squared distances between a new item and the others are a function of its location on
the unidimensional scale. Thus, tables from Monte Carlo studies of the null distribution
of a stress statistic cannot be used to test unidimensionality of scaled logistic items.
Tables for this purpose should be conditioned on N and some estimate of the slope
parameter b or a function of it, such as the average biserial correlation among items.
Finally, since the logistic and normal CDF’s are so similar, these results should apply
in the latter case. For nonmetric scaling, they may apply to an even wider class of
monotonic characteristic functions.
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