
EDA and the Internet

Leland Wilkinson �

February 7, 2001

Abstract

John Tukey's book, Exploratory Data Analysis, introduced a new way

of analyzing data. Although written for those using pencils, its deepest

e�ects have been on the computing community. Tukey has in
uenced not

only how we write programs, use programs, and write about programs,

he has also shaped the way we think about computing. The Internet

o�ers new possibilities for extending Tukey's work, but at the same time

presents diÆcult challenges.

1 Introduction

EDA, like FDA, or WWW, or JWT, is one of those acronyms that some people
imagine themselves to understand simply because they know the words behind
the letters. Acronym means a name viewed from on high. Unfortunately, EDA
is not something that one can understand from on high. The details matter.

I do not fully understand EDA, despite many years of experience program-
ming parts of John Tukey's famous orange book with that title. But I do know
something. EDA, like IRS and INS, is an abused acronym. I say "abused" be-
cause it is used by many to express feelings rather than ideas. To stop discussion
rather than to start it. For example, every statistics package I am acquainted
with claims to do EDA, even though there is only one (Data Desk) of which I
would say, "If you liked the book, you'll love the movie." People want to believe
they are doing EDA even when they are, in spirit and practice, doing anything
but EDA. Many people explore. Many analyze data. Few do EDA.

Why few? Perhaps because for EDA, there is more thinking than doing.
More than a set of analytic methods, John Tukey has given us a way of thinking
about inquiry - as a process of successive surprise and re�nement. Tukey's
scientist approaches data with many questions and few answers. After exploring,
she has some answers and more questions. It is a diÆcult enterprise. Perhaps

�Leland Wilkinson is Sr. VP, SYSTAT Products, SPSS, Inc., 233 So. Wacker Drive,

Chicago, IL 60606 and Adjunct Professor of Statistics, Northwestern University, Evanston,

IL; e-mail: leland@spss.com. This talk was given at the Chicago chapter of the American

Statistical Association Spring Conference, "The Impact of Tukey's Exploratory Data Analysis"

May 5, 2000

1



more diÆcult, however, is dealing with colleagues and reviewers - hostile and
friendly - who have a di�erent methodological agenda. They come in many
guises: one has all the answers, one has no questions, one asks questions that
have no answers. Many say they are explorers, but instead are bureaucrats.

This may be part of a larger problem: many people who use statistics place
technology before science. Science is about knowing, technology is about fash-
ioning. Both are respectable. I hope so, because I am a technologist, not a
scientist - a tool and die maker. I write the songs. I don't sing them. This cir-
cumstance has given me the opportunity to learn how researchers use statistics.
Pat Fleury, head of tech support at SYSTAT, a very patient man, listened once
as a researcher yelled over the phone, "I don't care what the program says, �nd
a way to make my result signi�cant."

Worship of statistical technology has many unfortunate consequences. First,
it can make scientists suspend their disbelief; complex methods can freeze a
scientist's judgment as surely as headlights freeze deer. Second, researchers are
too often willing to frame questions to �t models rather than to frame models
to �t questions. Third, statistics are too often used to intimidate rather than
to inform - to de
ect criticism rather than to encourage it. Fourth, statistics
printed on paper by a computer are paradoxically more durable than inscriptions
in granite - especially if they have lots of digits. Many of you doubtless have
other examples. We have seen enough of them to know that in statistics, as
Dostoevsky said of religion, we seek miracle, mystery, and authority.

I say this having had the privilege of serving recently on a committee ad-
vised by John Tukey. Howard Wainer, here today, was also on the commit-
tee. We were commissioned by the American Psychological Association to look
into a proposal to ban signi�cance tests in psychology journals. Our �nal re-
port avoided this extreme, but along the way, we learned something about how
statistics are used by psychologists. This is not a statistically naive group.
Psychologists tend to study a lot of statistics in graduate school.

I was suprised to �nd, however, that after a 25 year vacation from reading
psychology journals, I saw few changes in the way psychologists analyzed data.
The graphics (or lack thereof) and statistics in these journals were pretty much
the same as they were when I was in graduate school in the early 1970's. In
my simple survey of APA journals, I could not �nd a boxplot. Medians, if they
appeared at all, were used to split a sample in order to make a binary variable.
(It seems that binary splits continue to be one of the most popular methods for
discarding information: data = split plus ignore)

I am less quali�ed to speak of the in
uence of John Tukey on statistics
than I am to speak of his in
uence on graphics and computing. The subject of
graphics could be a talk in itself, and I suspect Howard Wainer will do just that
better than I can. A few people imagine that Tukey's graphical thinking com-
prises box-plots and stem-and-leaf diagrams. Those who do should consult the
Tukey collected works graphics volume edited by Bill Cleveland and published
by Wadsworth some years ago.

I want to talk today, however, about how some aspects of computing have
a�ected EDA since the orange book and how EDA has a�ected computing since

2



the invention of the microcomputer. First, I will talk about the past. Then the
present. And I will �nish with the future.

2 The Past

My �rst exposure to EDA was in Bob Abelson's analysis of variance course at
Yale in 1970. Abelson was one of a few lucky psychologists (unlike me) to learn
from Tukey at Princeton. We had two texts in that course at Yale: the �rst
edition of Winer and the mimeographed EDA manuscript. Every week we had
to turn in a new problem set fromWiner, painstakingly calculated on our Friden
and Marchant machines. (Those of you who went through this experience know
what it is like, after a half hour of button presses, to lose in one moment the
precious string of digits in the Total Sum of Squares peeking through the tiny
windows of that device. One-arm-bandits are more forgiving.) Abelson used
Winer for nothing else. He recognized his obligation to tutor us in the methods
the psychology journal editors would demand.

But Abelson's heart was elsewhere. Abelson spent his lecture time on let-
ter values, median polish, additive models, conjoint measurement, monotone
ANOVA, and other topics that, even today, most research psychologists would
not recognize. We learned that EDA is about data = fit plus residuals. There
are two ways to look at this equation. In model �tting we look at residuals as
refractory and annoying. The devil is in the details. We do everything we can
to tame them and bring them into normality - by transformations, augmenting,
or changing our model. In EDA we look at residuals as our friends. God is in
the details. Because this is where we �nd where our theory is inadequate or
wrong.

The box plot is my favorite statistical graphic because it encapsulates this
idea. The essence of the box plot is not the center. It is not a density estimator.
Underlying the box plot are two collections of statistics: letter values, which are
the results of successive splits of a batch of data (not the same as quantiles),
and the fences, which tell us who is inside and who is outside. The surprises are
outside the fences - those little stars and circles we see.

The box plot and other graphics in EDA were designed to be drawn by hand.
Ironically, it is almost easier to compute them by hand than to do them on a
computer. As David Hoaglin showed some years ago, there are several pitfalls
when computing letter values on real data. One software company got the whole
thing wrong from the start. They implemented boxplots by placing the center
at the mean, the edges of the box at one sample standard deviation on either
side of the mean, and the ends of the whiskers at two standard deviations on
either side of the mean. To this company, it appears, symmetry is the highest
form of art.

Although EDA was written for hand calculation, its major in
uence has
been in the world of desktop computing. EDA and the robustness movement
coincided with what we now call the personal computing revolution. Some date
this revolution to the decade of the PC in the 1980's, but it really began in the

3



1970's with those of us who build our own machines. I built my �rst machine in
1977, under the tutelage of two friends Helmut Epp and Ernie Kent. Helmut's
machine was a mess of wires and sockets stapled to two-by-fours and plywood;
mine was Bauhaus pure, a black slab from 2001. Helmut left globs of solder
and dirt on his circuit boards; I soldered, �led, and polished my circuit boards.
Helmut put his computer on the 
oor of a messy oÆce, to be occasionally peed
on by the pet gerbils that wandered the house; I created a clean room for
mine, a ventilated closet, a household computing shrine. Helmut's computer
worked; mine crashed every two minutes. Helmut went on to found the school
of computer science at DePaul and is now its dean. Messy oÆces do not imply
messy minds.

By 1979, two years before the IBM PC was invented, my computer had 1
megabyte of RAM, two 8 inch 
oppy disk drives, each with 1.2 megabytes of
storage space, an 8 megahertz processor, a drum plotter for my 3D graphics
work, a 600 baud modem, and a dot matrix printer. Software included Word-
Star, BASIC, LISP, FORTRAN, Assembler, and an operating system that was
more powerful than the Seattle Computer Products imitation DOS that Mi-
crosoft famously bought and sold to IBM as MS-DOS. In a profound sense, the
IBM PC was a major step backward in the evolution of the personal computer
- both in IBM's choice of a processor and in its choice of an operating system.
We continue to feel the e�ects of this thoughtless decision today in the bugs and
antiquated architecture of Microsoft Windows.

I wrote SYSTAT on the machine I built. Two characteristics of that ma-
chine had interesting consequences. First, it was an extremely fast development
environment but an extremely slow runtime environment because it was eÆ-
cient at integer register operations (needed for sorting, editing, and compiling)
but it lacked 
oating point registers. Thus, I could compile the entire SYS-
TAT package in a minute or two, but it could take an hour to compute a set
of principal components on a 25 by 25 matrix. Second, and more importantly,
the machine had only 64K of address space. Like the IBM PC, it could address
more by using pages of memory, but it was safer for me to write assuming users
had only 64K of memory for the operating system, the program, and the data.
Thanks to an overlay linkage editor called Plink, I was able to implement the
only full-featured statistics package ever to run in a small memory space. This
limitation had a profound e�ect on my thinking that remains with me today.
I dislike any subroutine, procedure, or method that has more than 100 lines of
code. I've written longer when I'm lazy, but I usually try to break things up in
smaller pieces. It often clari�es one's thinking.

It is hard to convey the excitement we had in owning our own computers
at that time. We built microcomputers to defy the authorities: the computer
center sta� who hid behind cement walls and plexiglass windows, the university
administrations who doled out tiny portions of "funny money" for cpu time,
and the mainframe companies who wrote canned software and largely shunned
Tukey's methods. We saw and envied what could be really done with computers,
notably by the group at Bell Labs. But we learned the hard way that the Bell
Labs BLNFY system meant for us, Bell Labs Not for You.

4



Anatomy is destiny. It is easy to ignore how hardware in
uences software.
Software is pure ideas. It should run anywhere. This seems to be true for legacy
systems - thirty year old software frozen, bandaged, wrapped, and dressed up
to look like new. But software has a real life that ties it to a platform in a way
that can be only super�cially disguised. This was especially true of SYSTAT. It
was written to be small for a small world. To my surprise, the largest group of
SYSTAT users was ecologists. They took their Kaypro portables to the Panama
jungles, African veldts, Australian outback, and Antarctica glaciers and did their
plots and analyses there.

Despite what some reviewers said, and despite my including box plots and
stem-and-leaf plots, SYSTAT was not an EDA package. It was Paul Velleman
who, in DataDesk, introduced the personal computing world to EDA. Velleman
was the �rst to see the EDA potential in the Macintosh. I remember John
Hartigan describing to me in the mid 1980's his ideal statistical computing
environment, and I remember thinking how hard it would be to rearchitect
SYSTAT to �t his vision. Months later, Velleman introduced DataDesk. It
incorporated many of the features Hartigan wanted.

There were other Mac programs at the time, but they were driven by dialog
boxes instead of widgets and tools. Dialog boxes are the curse of Mac and
Windows software that besets us even today. They enable people who do not
want to get involved with their computer - indeed, who dislike computers. Dialog
boxes and drop-down menus inhibit play and exploration. I nominate them for
the interface design most sti
ing and harmful to statistical computing and data
analysis.

3 The Present

It is time to move to the present. If the age of the personal computer put analysis
in the hands of ordinary people, the age of the Internet has put data in the hands
of people. The Internet is not about dot coms, it is about distributed computing
and access to data. A new language has arisen to enable this: Java. Despite
continuing and determined sabotage and subterfuge from Microsoft and despite
Sun's repeated attempts to shoot itself in the foot, Java has revolutionized the
capabilities of the Internet. Java is the only widely-used language designed for
distributed computing. And, unlike C++, its object-oriented capabilities have
been designed in from the start rather than grafted onto a foreign stalk.

The simplest way to illustrate the signi�cance of distributed computing is by
showing some examples. The �rst is a linked map and bar graphic. Note that
it incorporates brushing and linking in a manner similar to a desktop package,
but it is running in a Web browser. The sources of data may be anywhere on
the net.

The second is an ordinary application far from the world of statistics or data
analysis that is nevertheless derived from ideas introduced by Tukey almost 30
years ago. This graphic is an example of a new way to order airline tickets.
It looks like a bar graphic, but it is much more. We may link by departing

5



or arriving airport, airline, or other variables. And the �nal purchase is made
simply by clicking on one of the route bars. This takes one to the web site of
the airline for that speci�c 
ight.

Distributed computing means sharing data but it also means sharing com-
puting. I remember Tukey giving the keynote address at an Interface conference
some years ago. He suggested that statisticians begin devising diÆcult prob-
lems that would be amenable to time slicing in a distributed environment. As
an example, he suggested computing convex hulls on large datasets. This is one
method for identifying outliers in high-dimensional data, but it is impractical
on a single-processor machine. I am not sure if anyone has taken him up on his
idea, but I have seen similar ideas implemented. Some of you may have Berke-
ley screen savers on machines at home or the oÆce searching for signals from
extra-terrestrials at this moment, although why anyone would want to contact
beings whose �rst gesture would be to vaporize us is beyond my understanding.

We have only begun to imagine what we can accomplish with distributed
computing - the sharing of data and analyses.

4 The Future

Now, a brief look at the future. I am excited to be involved in the latest
developments in Internet design and programming. One of the thrills is to be
able to work with people under 30. As surely as yellowed lecture notes signal
you are dead wood in academics, talking about the good old days of computing
to people under 30 signals you don't understand the Internet - that you don't
"get it." One thing my 30 years of computing has done, however, is to have
made me nervous about some recent developments.

I fear we may be returning to the era of the mainframe - to centralized control
of data and analysis. Commerce inevitably drives science and technology, and
the centralization we are beginning to see is a normal consequence of shakeouts
in technological revolutions. But those who say the architecture of the Internet
prevents governmental and corporate control have not lived in a time or place
of governmental or corporate control. It can happen and, in my mind, is the
most likely scenario for the future of the Internet.

To make my point, I will play some word games. Biblical scholars use the
terms exegesis and eisegesis to describe two di�erent ways of interpreting a word
or text. Exegesis means to interpret a term by uncovering its history, literally
to bring out its meaning in context, kind of what William Sa�re tries to do.
Eisegesis means to read into a term, literally to bring meaning to it. I want to
turn three terms on their head by doing eisegisis. These "hot" terms are thin
client, XML, and data mining.

First, thin client. Thin client is a term that computing executives say will
solve our Internet security problems. It provides a radical solution to security
by eliminating direct user access to server data and programs: keep programs
o� your laptop or palmtop and they can do no harm to the database back in
Cleveland. Now for the eisegesis. Thin Client means you can do only what

6



your browser allows you to do - more speci�cally, what Microsoft wants you
to do. Thin Client means keep Java o� the client. Put it only on the server,
which is to destroy the reason for Java's existence. Thin client means buttons
instead of sliders, pictures instead of graphs, little giggling ducks instead of real
3D rotation. Companies that tell you they are doing "thin client solutions"
are telling you they do not want you to explore data. Their solutions are your
conundrums.

XML means extensible markup language. It is being promoted as the method
for organizing data and analyses on the Internet. XML is simply a tree of text.
It began as a reasonable proposal for enriching HTML, the hypertext markup
language of Internet Web pages. Now for the eisegesis. XML is no substitute for
analytics. Those who would suggest that XML enables interactive exploration
are ignoring the fact that XML is a tree, not a program. XML is a �le format.
Nothing more. Exploratory data analysis is not about pre-organizing data or
pre-answering questions.

Finally, data mining is all too familiar to most of you already. If you haven't
changed your title from statistician to data miner, you are already too late.
Data Mining means having a programmer at Oracle, Microsoft, or IBM look
in a statistics book and program a procedure in Sequential Query Language.
Or, it means having a programmer at SPSS or SAS supply Oracle, IBM, and
Microsoft with code that can be packaged inside their database so that users
will no longer need SAS or SPSS. Data Mining means the database manager
controls the data and your analysis.

Data Mining means something else. The hottest word in mining right now
is "clickstream." These are the records of where you click on a Web page. Some
believe there is gold in sequences of clicks. There may be, but some enthusiasts
want to show you patterns without your own thinking or exploring. This has
nothing to do with EDA, although it has a lot to do with invasion of privacy.

5 Conclusion

Ed Tufte, Howard Wainer, Bill Cleveland, and others have campaigned against
"chart junk" and other excesses in graphics. I worry that the same obligatory
sancti�cation that Tufte's books have received has already befallen EDA. People
keep copies of Tufte's beautiful books on their home co�ee tables and go to work
and produce 3D pie charts in PowerPoint and Excel. People sing praises to EDA
and then use an automated data mining package to tell them that men who enter
supermarkets buy beer and diapers. They praise with equal enthusiasm neural
networks and EDA.

We will serve John Tukey best, I think, by continuing to be sceptical toward
those who apply the same model, or a hot new model, to every dataset they
see. John Tukey liberated us from canned computer programs and cookbook
statistics. We must be aware, however, that canned program peddlers have an
Orwellian tendency to use the term EDA to describe their wares.

Lastly, we must refuse to let corporations and governments de�ne our data

7



and our analytic tools. The seeming chaos of the Internet can lull us into
thinking it is inevitably liberating, but behind that liberty lies a very real threat
of control. This is a possibility we must work actively to prevent. If we do not,
it will surely happen.

References

[1] Tukey, J.W. (1977). Exploratory Data Analysis . Reading, MA: Addison-
Wesley.

8


