DRIVE - Disseminating Resource Information in VEHicular and other mobile peer-to-peer networks

Bo Xu
Ouri Wolfson

University of Illinois at Chicago

wolfson@cs.uic.edu
DRIVE objective

- Enable dramatic improvement of the travel experience – based on information

- Real-time information to traveler has not changed much in 40 years
Sensor-networked Transportation

Vehicle sensors: speed, fuel, cameras, airbag, anti-lock brakes
Infrastructure sensors: speed detectors on road, parking slots, traffic lights, toll booth
Wireless Networking: tens Mbps, 50-100 meters (802.11, UWB, Bluetooth, CALM)
Application examples

- **Safety**
 - Vehicle in front has a malfunctioning brake light
 - Vehicle is about to run a red light
 - Patch of ice at milepost 305
 - Vehicle 100 meters ahead has suddenly stopped
 - Replay accident based on sensor traces
 - Infrastructure transmits speed-limit; dependent on vehicle type (works in France)
Application examples (cont.)

- Improve efficiency/convenience/mobility:
 - What is the average speed a mile ahead of me?
 - Are there any accidents ahead?
 - What parking slots are available around me?
 - Taxi cab: what customers around me need service?
 - Customer: What Taxi cabs are available around me?
 - Transfer protection: transfer bus requested to wait for passengers
 - Cab sharing opportunities
Ride sharing – untapped potential

- 4% increase in ridesharing – offset 2000 congestion increase
- Example – most arriving airport passengers go downtown
- Initial efforts
 - Washington DC “slugging”
 - Illinois ride-sharing program at UIC, Prof. Nelson’s lab
- Wireless/short-range Peer-to-Peer communication enables real-time matchmaking
 - Eliminates need for 3rd party mediation, business model
Beyond transportation:

- Sighting of enemy vehicle in downtown Mosul in last hour?
- Cockroach robots in disaster areas
- Disseminate ticket-availability before a sporting event
How to enable these applications?

- Develop product that performs them
- Develop standards to build them
- Develop a platform for building them
Platform components

- Communication system: Intra-vehicle, vehicle-to-vehicle, and vehicle-to-infrastructure
 - Prototypes: Cartalk, UC Irvine

- Data Management: collect, organize, integrate, model, disseminate, query

- Software tools:
 - Data mining
 - Travel-time prediction
 - Trip planning
 - Regional planning
 - …..
Research issues in data management

- Sensor data acquisition, modeling, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration of sensor and higher level information (maps, trip plans, ride-sharing profiles)
The players

- Moving/stationary objects with processing and communication power
 - Personal digital assistants (pda’s)
 - Computers in vehicles
 - Processors embedded in the infrastructure

- Resources -- examples
 - Gas stations
 - Parking slots
 - Cabs
 - Ride-share partners
 - Malfunctioning brake-light
 - Accident at a time/location

Resource reports are generated by infrastructure or moving objects sensors
Spatial and Temporal Resources

- **Spatial resources**
 - Examples: gas station at 342 State st., patch of ice at milepost 97, Italian restaurant at 300 Morgan St.
 - The importance/relevance of information decays with distance
 - Possible relevance function: $-\beta \cdot d$

- **Temporal resources**
 - Examples: Price of IBM stock at 2pm, DJI average at 10am
 - The importance/relevance of information decays with age
 - Possible relevance function: $-\alpha \cdot t$
Spatio-temporal Resources

Spatio-temporal resources: specific to time and location
- Traffic conditions, available parking spaces, occurrence of car accidents, taxi cab customers, ride-share partners
- The importance/relevance of a resource-availability report decays with age and distance
- Possible relevance function: $-\alpha \cdot t - \beta \cdot d$
- Each resource-availability report includes create-time and home-location --- sensor fusion tool
Relevance-ranked resource-type lists

Moving Object Memory:

<table>
<thead>
<tr>
<th>Hazards and alerts</th>
<th>Parking Information</th>
<th>Traffic Conditions</th>
<th>Taxi cab customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>location</td>
<td>time</td>
<td>location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each resource list keeps top K resources
Opportunistic Resource Dissemination (ORD)

- Each vehicle has an interest profile:
 - ranked list of resource-types
 - relevance-threshold in each type

- Two vehicles exchange local database information when they encounter each other (i.e. come within transmission range)

- Least relevant resources that do not fit in allocated memory are purged out
Exchanging and purging resources

Cab customers

Before exchange

Sears Tower (NE), 10:30am
Halstead & Taylor, 10:24am

Navy Pier, 10:20am
Madison & Clark, 10:25am

After exchange

Sears Tower (NE), 10:30am
Madison & Clark, 10:25am

Sears Tower (NE), 10:30am
Madison & Clark, 10:25am
Localized spatio-temporal diffusion

Ensured by relevance-ranking and limited memory allocation
How fast/far a resource is disseminated?

In a pure Mobile Opportunistic p2p system, the answer depends on:

- Memory allocation to the resource type
- Relevance threshold
- Transmission (randevous) range
- Traffic speed
- Vehicle density
- Resource density
- Average resource availability time
Other possible relevance functions

- Nonlinear
- Other factors
 - Travel Direction (gas station, malfunctioning brake-light)
 - *Transmit*-time, in addition to *create*-time (analogous to transaction/valid time)
Advertising spatial resources

- Gas stations, restaurants, ATM’s, etc., announce continuously.
- An announced resource item is acquired by the vehicles within the wireless coverage of the stationary site.
- Different location-based-services paradigm than
 - Cellular-service provider database
 - Geographic web searching
Further research in data dissemination – mathematical model

- Spread resembles epidemiological models of (Bailey 75) but there are important differences
 - Spatio-temporal relevance function
 - Interaction of multiple infectious-diseases (resources)
- Should answer: given resource report generated at (0,0,0), what is the probability that a vehicle at (x,y,t) receives it
Further research in data acquisition (2)

- Data granularity/aggregation-level of sensor-data
 - Raw: multiple applications, more b/w
 - Abstractions/aggregations: less b/w, application specific

- Sensor fusion
 - Fuse sensors of same kind from different vehicles
 - Fuse different sensor-data, e.g. computer vision -- laser range-finding

- Resource-exchange modalities
 - Broadcast vs. 1:1
 - Push vs. pull
Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration, Moving Objects Databases
Another resource classification

- Competitive (parking slots, cab-customers)

- Semi-competitive (ride-sharing partners)

- Noncompetitive (malfunctioning brake lights, speed of a vehicle at (x,y,t))
Information by itself is not sufficient to capture resource

If move to obsolete resources may waste time compared to blind search
Strategies for capturing (semi-) competitive resources

- Example (Threshold Driven) – Go to the resource if its availability-report relevance is higher than a threshold th

- How much does TD save compared to Blind Search?
Information Guided Resource Discovery
On average, TD captures the resource up to twice as fast as BS
Another strategy example

- Consider spatial-clustering of resources
Further research in Spatio-temporal resource-capture strategies

- Develop and analyze information-guided spatio-temporal strategies (game theoretic approach?)
- How much does information improve resource utilization?
- Do invalidation messages help?
- If so, how should they be treated w.r.t. availability-reports?
Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration, Moving Objects Databases
Problem

- The mobile opportunistic p2p scheme heavily depends on wide participation

- Why should a vehicle/pda provide and transfer resources?
Possible incentive model

- Virtual currency -- tokens
- Producer-paid resources (road-emergency call, gas station)
 - Each report (advertisement) sent has a token-budget
 - On transfer between vehicles:
 - Carrier withdraws flat commission
 - Rest of budget split equally
- Consumer-paid resources (parking slots, cab customer, traffic-incident). 2 modes:
 - Consumer mode – pays amount proportional to relevance
 - Broker mode – cannot view resource, speculative
- Tamper-resistant security module
 - Stores resource-reports and tokens
 - Executes p2p protocol
Research in incentive models

- Other virtual currency models
- Pricing and negotiation
- Cost optimizations in such models
 - For example, minimize advertisement cost per potential customer
- Distributed reputation models
- Transactions and atomicity issues
- Security
 - eavesdropping
 - fake resources
 - tampering to gain unfair advantage, create havoc
Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Data integration, Moving Objects Databases
Spatio-temporal resource query modes

- Moving object queries local database

- Moving object queries a region R, i.e. all the moving objects in R
Examples and Issues

- Queries that find all the resources within a particular geographic area
 - find all the available parking spaces within the UIC eastern campus
 - find all the cab requests within five blocks of the Sears Tower
- How to determine the set of objects to which the query is sent?
- How to disseminate the query?
- How to collect the answers?
Determination of Query Destination Area – Possible answer

queried region

maximum boundary
Remote Query Approach

- **Query dissemination**
 - Query originator sends the query into the destination area.
 - The query is flooded to all the moving objects within the area.

- **Answer delivery**
 - Each object in the destination area sends the answer back to the query originator.
 - Query originator consolidates the answers.
How is query originator v found?

- Via the infrastructure using node-id
 - May be costly

- In p2p mode
 - v sends future trajectory in query
Two Cases

- Each object knows the trajectories of each other object
 - Trajectories exchanged as resources
- Each object does not know the trajectories of other objects except that of the querying object
Known Trajectories

- Encounter graph: each edge represents the time interval during which two objects can communicate.
Known Trajectories

A revised Djikstra algorithm is used to find

- the shortest path between the querying moving object and the query destination area (for query dissemination)
- The shortest path between an object in the query destination area and the querying moving object (for answer delivery)
Question: How does a moving object decide whether or not to forward a message to its encountered neighbor?

Should I forward to B?

destination area
Answer: Forward iff θ is smaller than a certain threshold (critical angle)
Choosing the Critical Angle

![Graph showing the relationship between traffic density and minimum critical angle, with two curves representing different life times: one for 600 and another for 800. The graph has traffic density on the x-axis (in nodes/square mile) and minimum critical angle on the y-axis (in degrees).]
Query Processing Modes (1)

- Response to originator by each queried vehicle

Query originator/
consolidates
Response to *leader* by each queried vehicle; *leader* consolidates and responds to originator.
Query Processing Modes (3)

Hierarchical solution

Diagram showing subregions hierarchical relationships.
Further research in Remote Querying

- Comparison of query processing modes; coping with high mobility
- Other query types, aggregate/imprecise (average speed a mile ahead)
 - How to determine the set of objects to which the query is sent?
 - How to disseminate the query?
 - How to collect the answers?
- How/when to use cellular/infrastructure in communication of queries and answers?
Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Integration of sensor and higher level data
Moving Objects Database Technology

Query/trigger examples:
- During the past year, how many times was bus#5 late by more than 10 minutes at station 20, or at some station (past query)
- Send me message when helicopter in a given geographic area (trigger)
- Trucks that will reach destination within 20 minutes (future query)
- Taxi cabs within 1 mile of my location (present query)
- Average speed on highway, one mile ahead
- Tracking for “context awareness”
Applications

- Location Based Services e.g., “Closest gas station”
- Digital Battlefield
- Transportation (taxi, courier, emergency response, municipal transportation, traffic control)
- Supply Chain Management, logistics
- Context-awareness, augmented-reality, fly-through visualization
- Location- or Mobile-Ecommerce and Marketing
- Mobile workforce management
- Air traffic control (www.faa.gov/freeflight)
- Dynamic allocation of bandwidth in cellular network

Currently built in an ad hoc fashion
Further research in Moving Objects Databases

- Location modeling/management
- Linguistic issues
- Uncertainty/Imprecision
- Indexing
- Synthetic datasets
- Compression/data-reduction
- Joins and data mining (similarity of trajectories)
Relevant Work

- Resource discovering protocols
 - SLP, Jini, Salutation, UPnP
 - Rely on a dedicated directory server
 - Not suitable for high mobility environments
- Epidemic replication/routing (Demers 87, Vahdat 00, Khelil 02)
 - Regular data/messages, not spatial-temporal
- Sensor networks (Bonnet 00, Intanagonwiwat 00, Mandden 02)
 - Sensors are stationary
- Epidemiology (Bailey 75)
Conclusion

Sensor-rich-environment + short-range wireless

Computer Science research issues:

- Sensor data acquisition/fusion/dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Integration of sensor and higher level data
Future Work

- Privacy/security considerations
- Experiments based on a road network and Monarch/ns-2