Stochastic Petri Net
Ben, Yue (Cindy)
2013/05/08
To study a formal model (personal view)

- Definition (and maybe history)
- Brief family tree: the branches and extensions
 - Advantages and disadvantages for each
 - Applications for each
- Relation to other models
Questions

- How came Stochastic PN (SPN)?
- SPN and Markov Chain (MC)?
- Application of SPN?
- Conclusion
History (in the 1980s or earlier)

- Performance Evaluation (PE) area
 - Modeling in the design phase

- Modeling requirement
 - integration of formal description, proof of correctness, and performance evaluation

Petri Net + Markov Chain = Stochastic Petri Net (SPN) //Markov-SPN
Petri Net (PN)

- A Petri Net is a directed bipartite graph \(N = \langle P, T, F \rangle \)
 - Elements: \(P \) for places, \(T \) for transitions; \(P \) and \(T \) are disjoint
 - Flow relations: \(F \subset (P \times T) \cup (T \times P) \) for arcs

- Execution
 - Token \(\rightarrow \) Transitions fire
 - Marking \(M \): a mapping which assigns tokens to each place
 - Reachability Graph (RG): illustrating marking transformation
Introduce temporal specifications in PN

- Concerns:
 - Associate timing with the PN elements
 - Places, or transitions
 - The semantics of the firing in the case of timed transitions
 - Atomic firing, or firing in three phases
 - The nature of the temporal specification
 - Deterministic, or probabilistic
Stochastic Petri Net (SPN)

- Transitions fire after a probabilistic delay
- Atomic firing

Formally, a SPN is a five-tuple \(<P, T, F, M_0, \Lambda> \):

- \(<P, T, F, M_0> \) is a PN with initial marking \(M_0 \).
- \(\Lambda \) = is the array of firing rates \(\lambda \)'s associated with the transitions in \(T \); each \(\lambda \) is a random variable, or a function \(\lambda(M) \) of current marking.
Different SPNs

- Different firing time probability density functions (pdf)

1) constant: \(X \sim \text{Const}(c), c \geq 0 \iff \Pr\{X \leq \theta\} = 0 \)
 if \(\theta < c \), 1 if \(\theta \geq c \).

2) geometric: \(X \sim \text{Geom}(p, \sigma), 0 < p \leq 1, \sigma \geq 0 \iff \Pr\{X \leq \theta\} = 1 - (1 - p)^{[\theta]} \),
 where \(\sigma \) is the length of the unit step. The constant distribution is a special case: \(\text{Const}(c) \) is equivalent to \(\text{Geom}(1, c) \).

3) discrete: \(X \sim \text{Disc} \iff \) the distribution function of \(X \) is obtained as a weighted sum of a (finite or countably infinite) number of constant distributions. The geometric distribution is a special case. It is possible to approximate any distribution arbitrarily well by using either a sufficiently large number of polynomials of small degree (e.g., constants, as for the discrete distributions) or by using a single polynomial of sufficiently large degree.

4) exponential: \(X \sim \text{Expo}(\lambda), \lambda > 0 \iff \Pr\{X \leq \theta\} = 1 - e^{-\lambda \theta} \). This distribution approaches \(\text{Const}(0) \) as \(\lambda \) increases.

5) uniform: \(X \sim \text{Unif}(a, b), b > a \geq 0 \iff \Pr\{X \leq \theta\} = 0 \) if \(\theta < a, (\theta - a)/(b - a) \) if \(a \leq \theta \leq b \), and 1 if \(\theta \geq b \). This distribution approaches \(\text{Const}(b) \) as \(a \) approaches \(b \).

6) polynomial: \(X \sim \text{Poly} \iff \) the distribution function of \(X \) is piecewise defined by polynomials in \(\theta \) (expressions of the form \(\sum_{i=0}^{n} a_i \theta^i, a_i \in \mathbb{R} \) and has finite support \([\theta_{\text{min}}, \theta_{\text{max}}]\). The finite discrete and uniform distributions are special cases. It is possible to approximate any distribution arbitrarily well by using either a sufficiently large number of polynomials of small degree (e.g., constants, as for the discrete distributions) or by using a single polynomial of sufficiently large degree.

7) expolynomial: \(X \sim \text{Expoly} \iff \) the distribution function of \(X \) is piecewise defined by expopolynomials in \(\theta \) (expressions of the form \(\sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} \theta^i e^{-\lambda_i \theta}, a_{ij} \in \mathbb{R}, \lambda_{ij} \in [0, +\infty) \)). The polynomial and exponential distributions are special cases.
Markov SPN

- CTMC-SPN: negative exponential pdfs $e^{-\lambda_i \tau}$
- \subseteq Markov SPN
- Assumption: CTMC (Continuous-time MC)
- Mature steady-state analysis for PE solution
The reachability graph (RG) of Markov SPN can be mapped directly to a Markov process.
Markov SPN - analysis

- Disadvantages:
 - Complexity
 - Structural analysis of underlying PN
 - Compute other performance measures

∴ extensions of SPNs introduced
Generalized SPN (GSPN) ⊂ SPN

- Allow “immediate” transitions (no firing delay)
 - Priority of firing: immediate transitions > timed transitions
 - Weight or Probabilities of immediate transitions
 - To determine the firing probability in case of conflicting immediate transitions.

- Advantage: better structural analysis of underlying PN
A small branch of the SPN family tree

CTMC-SPN
- Negative exponential pdfs

GSPN
- Immediate transitions allowed
- Constant timing = 0

DSPN
- Exponentially distributed and constant timing
Modern Application of SPN

- Stochastic Petri Net Identification for the Fault Detection and Isolation of Discrete Event System (DES) - 2011

- NSPN: SPN with normal and exponential transitions

- Methodology
 - Learn reference model from output sequences
 - Use reference model for fault detection and isolation
 - Consider NSPNs to represent faulty behaviors
Conclusion

A lot of ways to extend PN with time phase, SPN is one of them...

A lot of ways to define SPNs w.r.t. the firing delay, Markov SPN is one of them...

“Largeness problem”; active in DES study
Main Reference

Thank you!
Questions?
Continuous-time Markov Chain (CTMC)

A stochastic/random process \(\{X(t), t \in T\} \)
+ Markovian property (memoryless)
\[\text{= Markov Process} \]
+ discrete state space
\[\text{= Markov Chain (MC)} \]
+ continuous time parameter \(t \)
\[\text{= Continuous-time MC (CTMC)} \]
A stochastic process \(\{X(t), t \in T\} \) is a family of random variables defined over the same probability space, taking values in the state space \(S \), and indexed by the parameter \(t \), which assumes values in the set \(T \); normally \(T = (0,\infty) \).
Markov Models

<table>
<thead>
<tr>
<th>Markov Models</th>
<th>Do we have control over the state transitions?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markov Models</th>
<th>Are the states completely observable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markov Chain</td>
<td>YES</td>
</tr>
<tr>
<td>MDP</td>
<td>YES</td>
</tr>
<tr>
<td>Hidden Markov Model</td>
<td>NO</td>
</tr>
<tr>
<td>Partially Observable</td>
<td>NO</td>
</tr>
</tbody>
</table>

CTMC