
Extracting Web Data Using Instance-Based
Learning

Yanhong Zhai and Bing Liu

Department of Computer Science
University of Illinois at Chicago

851 S. Morgan Street, Chicago, IL 60607
yzhai,liub@cs.uic.edu

Abstract. This paper studies structured data extraction from Web pages,
e.g., online product description pages. Existing approaches to data ex-
traction include wrapper induction and automatic methods. In this pa-
per, we propose an instance-based learning method, which performs ex-
traction by comparing each new instance (or page) to be extracted with
labeled instances (or pages). The key advantage of our method is that it
does not need an initial set of labeled pages to learn extraction rules as
in wrapper induction. Instead, the algorithm is able to start extraction
from a single labeled instance (or page). Only when a new page can-
not be extracted does the page need labeling. This avoids unnecessary
page labeling, which solves a major problem with inductive learning (or
wrapper induction), i.e., the set of labeled pages may not be represen-
tative of all other pages. The instance-based approach is very natural
because structured data on the Web usually follow some fixed templates
and pages of the same template usually can be extracted using a single
page instance of the template. The key issue is the similarity or distance
measure. Traditional measures based on the Euclidean distance or text
similarity are not easily applicable in this context because items to be
extracted from different pages can be entirely different. This paper pro-
poses a novel similarity measure for the purpose, which is suitable for
templated Web pages. Experimental results with product data extrac-
tion from 1200 pages in 24 diverse Web sites show that the approach is
surprisingly effective. It outperforms the state-of-the-art existing systems
significantly.

1 INTRODUCTION

Web data extraction is the problem of identifying and extracting target items
from Web pages. It is important in practice because it allows one to integrate
information or data from multiple sources (Web sites and pages) to provide
value-added services, e.g., customizable Web information gathering, comparative
shopping, meta-search, etc.

In this paper, we focus on regularly structured data which are produced by
computer programs following some fixed templates. The contents of these data
records are usually retrieved from backend databases, and then converted to

HTML documents by programs and published on the Web. One such example
is the product description pages. Each merchant who sells products on the Web
needs to provide a detailed description of each product. Fig.1 shows an example
page. One may want to extract four pieces of information from this page, product
name, product image, product description, and product price, for comparative
shopping. Note that each of the items is marked with a dash-lined box in Fig.1.
We call each required piece of information a target item (or simply item).

Fig. 1. An example product description page

Existing research on Web data extraction has produced a number of tech-
niques ([1–10]). The current dominate technique is wrapper induction based on
inductive machine learning. In this approach, the user first labels or marks the
target items in a set of training pages or a list of data records in one page. The
system then learns extraction rules from these training pages. The learned rules
are then applied to extract target items from other pages. An extraction rule for
a target item usually contains two patterns [11, 8]: a prefix pattern for detecting
the beginning of a target item, and a suffix pattern for detecting the ending
of a target item. Although there are also automatic approaches to extraction
based on pattern finding, they are usually less accurate and also need manual
post-processing to identify the items of interest. In Sec.2, we discuss these and
other existing approaches further.

A major problem with inductive learning is that the initial set of labeled
training pages may not be fully representative of the templates of all other pages.
For pages that follow templates not covered by the labeled pages, learnt rules
will perform poorly. The usual solution to this problem is to label more pages
because more pages should cover more templates. However, manual labeling is
labor intensive and time consuming (still no guarantee that all possible templates

will be covered). For a company that is interested in extracting all product
information from most (if not all) merchant sites on the Web for comparative
shopping, this represents a substantial work. Although active learning helps [12],
it needs sophisticated mechanisms.

In this paper, we propose an instance-based learning approach to data extrac-
tion that is able to deal with this problem effectively. In classic instance-based
learning, a set of labeled instances (more than 1) is stored first (no induction
learning is performed). When a new instance is presented, it is compared with
the stored instances to produce the results. The approach is commonly used in
classification. The most popular instance-based learning methods are k-nearest
neighbor and case-based reasoning [13]. However, we cannot directly apply these
classic approaches because we will still need an initial set of many labeled in-
stances, and thus will have the same problem as inductive learning.

We propose a different instance-based method that is more suitable to data
extraction from Web pages. It does not need an initial set of labeled pages.
Instead, the algorithm can begin extraction from a single labeled page. Only
when a new page cannot be extracted does the page need labeling. This avoids
unnecessary labeling and also ensures that all different templates are covered.

We believe that instance-based learning is very suitable for structured data
extraction because such Web data are presented by following some fixed layout
templates (see Fig.1). Pages from the same template can be extracted using a
single page instance of the template.

The key to our instance based learning method is the similarity or distance
measure. In our context, it is the problem of how to measure the similarity
between the corresponding target items in a labeled page and a new page. Tra-
ditional measures based on the Euclidean distance or text similarity are not
easily applicable in this context because target items from different pages can
be entirely different. We propose a natural measure that exploits the HTML
tag context of the items. Instead of comparing items themselves, we compare
the tag strings before and after each target item to determine the extraction.
This method is appropriate for templated pages because a template is essentially
reflected by its sequence of formatting tags. Our technique works as follows:

1. A random page is selected for labeling.
2. The user labels/marks the items of interest in the page.
3. A sequence of consecutive tags (also called tokens later) before each labeled

item (called the prefix string of the item) and a sequence of consecutive tags
after the labeled item (called the suffix string of the item) are stored.

4. The system then starts to extract items from new pages. For a new page d,
the system compares the stored prefix and suffix strings with the tag stream
of page d to extract each item (this step is involved and will be clear later).
If some target items from d cannot be identified (i.e., this page may follow
a different template), page d is passed to step 2 for labeling.

We have implemented an extraction system, called Ide (Instance-based Data
Extraction) based on the proposed approach. The system has been tested using
1200 product pages from 24 Web sites. Our results show that Ide is highly

effective. Out of the 1200 pages, only 6 pages were not extracted correctly, and
only one of the items in each page was extracted incorrectly. For most Web sites,
the user only needs to label 2-3 pages. We also compared Ide with the Fetch
[14] system, which is the commercial version of the state-of-the-art research
system Stalker [11, 8, 15, 12]. Our results show that Ide outperforms Fetch in
our experiments. Our proposed approach is also efficient.

2 RELATED WORK

The closely related works to ours are in the area of wrapper generation. A
wrapper is a program that extracts data items from a Web site/page and put
them in a database. There are two main approaches to wrapper generation. The
first approach is wrapper induction (or learning), which is the main technique
presently. The second approach is automatic extraction.

As mentioned earlier, wrapper learning works as follows: The user first man-
ually labels a set of training pages or data records in a list. A learning system
then generates rules from the training pages. These rules can then be applied
to extract target items from new pages. Example wrapper induction systems in-
clude WIEN [6], Softmealy [5], Stalker [8, 15, 12], BWI [3], WL2 [1], and etc [9].
A theoretical study on wrapper learning is also done in [16]. It gives a family of
PAC-learnable wrapper classes and their induction algorithms and complexities.

WIEN [6] and Softmealy [5] are earlier wrapper learning systems, which
were improved by Stalker [11, 8, 15, 12]. Stalker learns rules for each item and
uses more expressive representation of rules. It does not consider ordering of
items but treat them separately. This is more flexible but also makes learning
harder for complex pages because local information is not fully exploited. Recent
research on Stalker has added various active learning capabilities to the system
to reduce the number of pages to be labeled by the user. The idea of active
learning is to let the system select the most useful pages to be labeled by the
user and thus reduces some manual effort.

Existing systems essentially learn extraction rules. The rules are then used
directly to extract each item in new pages. Our work is different. Our technique
does not perform inductive learning. Instead, it uses an instance-based approach.
It can start extraction from a single labeled page. Although [17] can learn from
one page (two for single-record pages), it requires more manual work because if
the system does not perform well the user who monitors the system needs to
change some system thresholds.

In recent years, researchers also studied automatic extraction, i.e., no user
labeling is involved. [18] proposes a method for finding repetitive patterns from
a Web page, and then uses the patterns to extract items from each object in
the page. [19] shows that this technique performs unsatisfactory in extraction.
[20, 21, 7] propose two other automatic extraction methods. However, these au-
tomatic methods are less accurate than the systems that ask the user to label
training pages. Manual post-processing is also needed for the user to identify
what he/she is interested in. In [10], a more accurate technique is proposed

based on tree matching. However, it is only for list pages (each page contains
multiple data records). [22, 19] propose some techniques for finding data objects
or data records. However, they do not perform data extraction from the records.

Another related research is information extraction from text documents [23,
24, 2–4, 25, 26]. Our work is different as we mainly exploit structural information
in a Web page for extraction, which requires different techniques. Finally, a
number of toolkits to facilitate users to build wrappers are reported in [27–29].

3 INSTANCE-BASED EXTRACTION

We now present the proposed approach. As mentioned earlier, given a set of
pages from a Web site, the proposed technique first (randomly) selects a page
to ask the user to label the items that need to be extracted. The system then
stores a certain number of consecutive prefix and suffix tokens (tags) of each
item. After that, it starts to extract target items from each new page. During
extraction, if the algorithm is unable to locate an item, this page is given to
the user to label. This process goes on until all the pages from the given site
have been processed. Below, Sec.3.1 presents the overall algorithm and the page
labeling procedure. Sec.3.2 presents the similarity measure used for extraction.
Sec.3.3 presents an efficient algorithm for implementation.

3.1 The Overall Algorithm

Let S be the set of pages from a Web site that the user wants to extract target
items from. Let k be the number of tokens in the prefix or suffix string to be
saved for each target item from a labeled page. In practice, we give k a large
number, say 20. The setting of this value is not important because if it is too
small, the system can always go back to the labeled page to get more tokens.
Fig.2 gives the overall algorithm.

Algorithm ()
1

// is the set of pages.S, k S
.. = randomSelect(); // Randomly select a page from p S p S

22. = <>;
3. labelPage(

// initializationTemplates
Templatees, p, k p);

4. each remai
// the user labels the page

for nning page in
5. (extract())

d S
Templates, d

do
if ¬ theen

e

6. labelPage()
7.
8.

Templates, d, k
end - if

nnd- for

Fig. 2. The overall algorithm

In line 1, the algorithm randomly selects a page p from S. This page is
given to the user for labeling (line 3). A user-interface has been implemented
for the user to label target items easily. Variable Templates (line 2) stores the
templates of all labeled pages so far. For example, in the page of Fig.1, we are

interested in extracting four items from a product page, namely, name, image,
description and price. The template (T) for a labeled page is represented as
follows: T =< patname, patimg, patdescription, patprice >

Each pati in T consists of a prefix string and a suffix string of the item
i(also called the prefix-suffix pattern of i). For example, if the product image is
embedded in the following HTML source:

...<table><tr><td> </td><td></td>...
then we have:

patimg.prefix = <<table ><tr><td>> patimg.suffix = <</td><td></td>>
Here, we use k = 3 (in our experiments, we used k = 20, which is sufficient).

In this work, we treat each page to be labeled as a sequence of tokens. A
token can be any HTML element, a HTML tag, a word, a punctuation mark,
etc. Not all kinds of tokens before or after a target item will be saved as a part
of the prefix or suffix string. All tags and at most one word or punctuation mark
right before (or after) the target item are regarded as part of the prefix (or suffix)
string. Basically, we mainly rely on HTML tags to locate each target item.

After page p is labeled by the user, the algorithm can start extraction from
the rest of the pages (lines 4-8). The extraction procedure, extract() (line 5),
extracts all the items from page d.

To label a page, the user marks the items to be extracted in the page. This
procedure is given in Fig3. A user-interface makes this process very easy. Basi-
cally, only mouse clicks on each target item are needed.

A requirement for the first page p is that it must contain all target items.
The reason for this requirement is that if there is one or more missing items in
this page, the extraction system will not know that additional items are needed.
Selecting such a page is not difficult as most pages have all target items. Another
important issue is the handling of missing items (see below).

Procedure labelPage()
1. The user labels al

Templates, p, k
ll the required items in page ;

2. = <>; // initializat
p

T iion
3. each required item
4. item do

for do i
 iif ees not exist in page

5. insert into at
p

T
then

∅ the right end;
6.
7. prefix = extract

else
kk i p prefix tokens before item in ;

8. suffix = exxtract suffix tokens after item in ;
9. =

k i p
T iinsert < > into at the right end;

10.
prefix, suffix T

ennd - if
end - for
if then

11.
12. has missing item()
13.

p s
 = insert into at the end;

14.
Templates T Templates

else
15. = insert into before any tTemplates T Templates eemplate with missing item();
16.
17. output all the

s
end - if

 labeled items in ;p

Fig. 3. Labeling a page p

T is a new template that stores the prefix and suffix strings of every item
in page p. In lines 12-13, if page p has missing items, we put T at the end of
Templates, which stores all the templates of labeled pages. This is to ensure
that it will not be used before any other template is used to extract a page.

3.2 The Similarity Measure

The key to instance-based learning is the similarity or distance measure. In our
context, it is the problem of measuring whether an item in the new page (to
be extracted) is similar to or is of the same type as a target item in a labeled
page. As indicated earlier, we do not compare the items themselves. Instead, we
compare their prefix and suffix strings. The score is the number of marches.

Definition 1. (prefix match score): Let P =< p1, ..., pk > be the prefix string of
an item in a labeled page and A be the token string of page d (to be extracted).
A sub-string of A(=< a1, ...ai, ai+1, ..., ai+h, ..., an >) matches P with a match
score of h(h ≤ k) , if pk = ai+h, pk−1 = ai+h−1, ..., pk−h−1 = ai+1, and (pk−h 6=
ai or h = k)

Definition 2. (suffix match score): Let P =< p1, ..., pk > be the suffix string of
an item in a labeled page and A be the token string of page d (to be extracted).
A sub-string of A(=< a1, ...ai, ai+1, ..., ai+h, ..., an >) matches P with a match
score of h(h ≤ k) , if p1 = ai+1, p2 = ai+2, ..., ph = ai+h, and (ph+1 6= ai+h+1 or
h = k)

Note that the match starts from the right for the prefix match, and the left
for the suffix match. Fig.4 shows an example. Assume that we saved 5 tokens
<table><tr><td><i> in the prefix string of item price from a labeled page.
The HTML source of a new page d to be extracted is shown in the box of the
figure. From the figure, we see that there are 4 sub-strings in d that have matches
with the prefix string of price. These are shown in four rows below the prefix
string. The number within () is the sequence id of the token in page d. ”-” means
no match. The highest number of matches is 5, which is the best match score
for this prefix string. The best score can also be computed for the suffix string.

p re fix : < t a ble > < t r > < t d> < i> < b> pr i ce
 - < b> (10)

 - < i> (17) < b> (18)

 < t a ble > (21) < t r > (22) < t d> (23) < i> (24) < b> (25)

 - < i> (67) (68)

H T M L so ur c e
o f p a ge d
. . . < t d> < f o n t > < b> < t d> < f o n t > < i> . . .

8 9 1 0 1 5 1 6 1 7 1 8
. . . < t a ble >< t r > < t d> < i> $ 2 5 .0 0

 2 1 2 2 2 3 2 4 2 5
. . . < br > < f o n t > < i>
 6 5 6 6 6 7 6 8

Fig. 4. Example 1 - Prefix matching

3.3 The Extraction Algorithm

We now discuss the extraction algorithm based on match scores. Note that in
this paper, we are interested in extracting target items from pages that focus on
a single object per page, not a list of objects per page due to one of our practical
applications. A similar algorithm can be designed for list pages (we plan to do
this in our future work).

The basic idea of the algorithm is as follows: For a new page d to be extracted,
we try to use each labeled page (represented as a template of prefix and suffix
strings) to extract the required items from d. Using the prefix and suffix strings
of each item i, we can compute the prefix and suffix match scores of every item
in page d. If a particular item j in d has a unique best match score (≥ 1) for both
the prefix and suffix strings of a target item i in a template, item j is regarded
as i’s corresponding item in d and is extracted. After item j is extracted from
d, we use the token strings of d before j and after j to identify and extract the
remaining items. This process continues recursively until all items are extracted
or an item cannot be extracted (which indicates that page d needs labeling).
The detailed algorithm is more involved for efficiency reasons. This algorithm
has the following characteristics:

1. In determining which item to extract, the system does not choose the item
with the highest (prefix or suffix) match score among all items. Instead, it
chooses the item with the unique best match score for the item in d.

2. There is no pre-specified sequence of items to be extracted. For example, the
user is interested in 4 items from each page. The ordering of items in the
HTML source is: image, name, price, and description. If at the beginning we
are able to find item price uniquely in the page, we then start from price
and search forward to find item description and search backward to find item
image and name. In searching for the remaining items, the same approach
is used. The final extraction sequence of items may be the one in Fig.5.

... imag e ... n ame p ric e ... d e s c rip t io n
 2 3 1 4 - e xt ra c t io n s e q u e n c e

Fig. 5. An example item extraction sequence

This method has a major advantage. That is, we can exploit local contexts.
It may be the case that from the whole page we are unable to identify a
particular item. However, within a local area, it is easy to identify it.

3. Ordering of items is exploited in extraction as shown above.

Fig.6 gives the extraction control procedure, which basically tries each saved
template T in Templates. T contains the prefix and suffix strings of each item
in a previously labeled page. d is the page to be extracted. If using a template
T , all the items can be extracted with the procedure extractItems() (line 2), it
returns true (line 4) to indicate that page d is successfully extracted. If none of

the template in Templates can be used to extract page d, the procedure returns
false to indicate that page d cannot be extracted using any previous T . ”1” is
the sequence id number of the first token of page d, and end id is the sequence
id of the last token of page d. These two id’s tell extractItems() where to locate
the target items. Note that each token has a sequence id, which enables the
algorithm to find every token quickly.

Procedure
for

 extract()
1. each template in

Templates, d
T Teemplates
T, d, 1, end_id

2. extractItems()
3.

do
if then

 output the extracted items from ;
4. ret

d
uurn

5.
6.
7. return ;

true
end- if

end- for
false

Fig. 6. The extraction control procedure

The extractItems() procedure is given in Fig. 7. It takes 4 parameters, which
have the same meanings as those in procedure extract(). start and end are the
start and end token id’s, which defines a region in d to look for target items.

Procedure
for

 extractItems()
1. each toke

T, d, start, end
nn of in sequence from to

2. eac
 t d start end do

for hh in
3. and its prede

pat T
pat t

i
i

 do
if and≠ ∅ ccessors match some prefix tokens in

4.
pati.prefix then

 record the string of id’s of the matching tokkens
5.
6.
7.
8. an

end- if
end- for
end- for
if item ’s beginning can be uniquely identified

9.
i then

 = the id of the immediate token on the right of idBi tthe prefix string of item ;
10. = find the e

i
idEiif nnding of item between and

11. extr
i idB endi then

aact and store item ;
12. before() is not

i
T, iif eempty

13. (extractItems(before(
then

if T, ii d, start, idBi),))
14. return

 then
fallse

end - if
end - if

15.
16.
17. after() is not empty
18.

if then
if

T, i
((extractItems(after(),))

19.
T, i d, idE , endi then

 return
20.
21.

false
end - if

22. return
23.
24.

end - if
else false
end - if

elsseif then every target item may be missing //indicated byy in every element of
// items25. do nothing

∅ T
 are not in the page

26. return
27.
28.

else false
 end - if
 return true

Fig. 7. The extractItems procedure

In line 1 of Fig.7, we scan the input stream of page d. From lines 2-6, we
try the prefix string in pati of each item i to identify the beginning of item i.
If token t and its predecessors match some tokens in the prefix string (line 3),
we record the sequence id’s of the matching tokens (line 4). pati 6= ∅ means
that item i is not missing. Let us use an example in Fig.4 to illustrate this
part. 5 tokens <table><tr><td><i> are saved in the prefix string of item
price from a labeled page (assume we have only one labeled page). After going
through lines 1 to 7 (Fig.7), i.e., scanning through the new page, we find four
’s, two <i> together, but only one <table><tr><td><i> together. We
see that the beginning of price can be uniquely identified (which is done in line
8 of Fig. 7) because the longest match is unique.

The algorithm for finding the ending location of an item (line 10 in Fig. 7)
is similar to finding the beginning. This process will not be discussed further.

After item i is extracted and stored (line 11), if there are still items to be
extracted before or after item i (line 12 and 17), a recursive called is made
to extractItems() (line 13 and 18). idBi and idEi are the sequence id’s of the
beginning and the ending tokens of item i.

Extraction failures are reported in lines 14, 19, 22 and 26. Lines 24 and 25
say that if all target items to be extracted from start to end may be missing, we
do nothing (i.e., we accept that the page does not have these items).

The functions before() and after() obtain the prefix-suffix string patterns
for items before item i and after item i respectively. For example, currently T
contains prefix-suffix string patterns for items 1 to 4. If item 3 has just been
extracted, then before(T) should give the saved prefix-suffix string patterns for
items 1 and 2, and after(T) gives the saved prefix-suffix patterns of item 4.

Finally, we note that in lines 13 and 18 of Fig.7, both the start and end id’s
should extend further because the prefix and suffix strings of the next item could
extend beyond the current item. We omit this detail in the algorithm to simplify
the presentation.

4 EMPIRICAL EVALUATION

Based on the proposed approach, we built a data extraction system called Ide.
We now evaluate Ide, and compare it with the state-of-the-art system Fetch
[14], which is the commercial version of Stalker (the research version Stalker
is not publicly available). Stalker improved the earlier systems such as WIEN,
Softmealy, etc. The experimental results are given in Tab.1. Below, we first
describe some experimental settings and then discuss the results.
Web sites used to build IDE: We used pages from 3 Web sites in building
our system, i.e., designing algorithms and debugging the system. None of these
sites is used in testing Ide.
Test Web sites and pages: 24 e-commerce Web sites are used in our experi-
ments1. From each Web site, 50 product description pages are downloaded. All
1 We did not use the archived data from the RISE repository (http://www.isi.edu/info-

agents/RISE/) in our experiments because the data in RISE are mainly Web pages

the sites and pages are selected and downloaded by a MS student who is not
involved in this project. See Tab.1 for our test Web sites.

From each product page, we extract the name, image, description and price
for the product as they are important for many applications in Internet com-
merce, e.g., comparative shopping, product categorization and clustering.
Evaluation measures: We use the standard precision and recall measures to
evaluate the results of each system.
Experiments: We performed two types of experiments on Fetch:

1. The training pages of Fetch are the pages being labeled by the user using
Ide. These pages are likely to follow different templates and have distinctive
features. Thus, they are the best pages for learning. However, they give
Fetch an unfair boost because without Ide such pages will not be found.
Tab.1 shows the results of Fetch and Ide in this setting.

2. Use the same number of training pages as used by Ide. However, the training
pages are randomly selected (this is the common situation for inductive
learning). In this case, Fetch’s results are much worse (see Tab.2).

Tab.1 shows the results for experiment 1. Before discussing the results, we
first explain the problem descriptions used in the table:

– miss: The page contains the target item, but it is not found.
– found-no: The page does not contain the target item, but the system finds

one, which is wrong.
– wrong: The page has the target item, but a wrong one is found.
– partial err.: The page contains the target item, but the system finds only

part of it (incomplete).
– page err.: It is the number of pages with extraction errors (any of the 4 types

above).

We now summarize the results in Tab 1.

1. Ide is able to find all the correct items from every page of each Web site
except for Web site 4. In site 4, Ide finds wrong product images in 6 pages.
This problem is caused by irregular tags used before the image in many
pages. This site also requires a high number of labeled pages which shows
that this site has many irregularities. The Fetch system also made many
mistakes in this site.

2. For 15 out of 24 Web sites, Ide only needs to label one or two pages and
find all the items correctly.

3. We compute precision and recall in term of the number of items extracted.
We also give a page accuracy value, which is computed based on the number
of pages extracted correctly, i.e., every target item in these pages is extracted
correctly.

that contain a list of objects per page. Our current technique is designed to extract
data from pages that focus on a single object per page, which are important for
comparative shopping applications.

Table 1. Experiment 1 results
Site No.of

labeled
pages

Ide Fetch

miss found-
no

wrong partial
err.

page
err.

miss found-
no

wrong partial
err.

page
err.

1 alight 2 0 0 0 0 0 1 0 0 0 1
2 amazon 5 0 0 0 0 0 13 2 1 0 15
3 avenue 2 0 0 0 0 0 1 0 0 0 1
4 bargainoutfitters 8 0 0 6 0 6 0 0 9 0 9
5 circuitcity 2 0 0 0 0 0 1 0 0 3 4
6 computer4sure 4 0 0 0 0 0 4 0 0 0 4
7 computersurplusoutlet 1 0 0 0 0 0 0 0 0 0 0
8 dell 7 0 0 0 0 0 3 0 0 0 3
9 gap 2 0 0 0 0 0 0 0 0 1 1
10 hp 2 0 0 0 0 0 1 0 7 13 21
11 kmart 3 0 0 0 0 0 0 0 0 0 0
12 kohls 5 0 0 0 0 0 1 0 0 0 1
13 nike 1 0 0 0 0 0 0 0 0 0 0
14 officemax 3 0 0 0 0 0 24 0 7 9 38
15 oldnavy 2 0 0 0 0 0 0 0 0 5 5
16 paul 2 0 0 0 0 0 0 0 0 0 0
17 reebok 2 0 0 0 0 0 11 0 0 0 11
18 sony 5 0 0 0 0 0 0 0 1 7 8
19 shoebuy 1 0 0 0 0 0 5 0 0 26 31
20 shoes 2 0 0 0 0 0 0 0 0 1 1
21 staples 5 0 0 0 0 0 0 0 10 0 10
22 target 2 0 0 0 0 0 24 0 0 1 25
23 victoriasecret 2 0 0 0 0 0 0 0 0 14 14
24 walmart 2 0 0 0 0 0 9 0 0 0 9

Total 72 0 0 6 0 6 98 2 25 80 212

Recall Precision Page accuracy
IDE: 99.9% 99.9% 99.5%
FETCH: 95.7% 97.8% 82.5%

Tab. 2 summarizes the results of experiment 2 with Fetch, which is the
normal use of Fetch. A set of pages is randomly selected and labeled (the same
number of pages as above). They are then used to train Fetch. The recall value
of Fetch drops significantly, and so does the page accuracy. Ide’s results are
copied from above.

Table 2. Experiment 2 results
Recall Precision Page accuracy

Ide 99.9% 99.9% 99.5%
Fetch 85.9% 96.8% 46.0%

Time complexity: The proposed technique does not have the learning step
as in Fetch and thus saves the learning time. The extraction step is also very
efficient because the algorithm is only linear in the number of tokens in a page.

5 CONCLUSIONS

This paper proposed an instance-based learning approach to data extraction
from structured Web pages. Unlike existing methods, the proposed method does

not perform inductive learning to generate extraction rules based on a set of
user-labeled training pages. It thus does not commit itself pre-maturely. Our
algorithm can start extraction from a single labeled page. Only when a new
page cannot be extracted does the page need labeling. This avoids unnecessary
page labeling, and thus solves a major problem with inductive learning, i.e.,
the set of labeled pages is not fully representative of all other pages. For the
instance-based approach is to work, we proposed a novel similarity measure.
Experimental results with product data extraction from 24 diverse Web sites
show that the approach is highly effective.

6 ACKNOWLEDGMENTS

This work was partially supported by National Science Foundation (NSF) under
the grant IIS-0307239. We would like to thank Steve Minton of Fetch Technolo-
gies for making the Fetch system available for our research.

References

1. Cohen, W., Hurst, M., Jensen, L.: A flexible learning system for wrapping tables
and lists in html documents. In: The Eleventh International World Wide Web
Conference WWW-2002. (2002)

2. Feldman, R., Aumann, Y., Finkelstein-Landau, M., Hurvitz, E., Regev, Y., Yaro-
shevich, A.: A comparative study of information extraction strategies. In: CICLing
’02: Proceedings of the Third International Conference on Computational Linguis-
tics and Intelligent Text Processing. (2002) 349–359

3. Freitag, D., Kushmerick, N.: Boosted wrapper induction. In: Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference
on Innovative Applications of Artificial Intelligence. (2000) 577–583

4. Freitag, D., McCallum, A.K.: Information extraction with hmms and shrinkage.
In: Proceedings of the AAAI-99 Workshop on Machine Learning for Informatino
Extraction. (1999)

5. Hsu, C.N., Dung, M.T.: Generating finite-state transducers for semi-structured
data extraction from the web. Information Systems 23 (1998) 521–538

6. Kushmerick, N.: Wrapper induction for information extraction. PhD thesis (1997)
Chairperson-Daniel S. Weld.

7. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites
for automatic segmentation of tables. In: SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD international conference on Management of data. (2004) 119–130

8. Muslea, I., Minton, S., Knoblock, C.: A hierarchical approach to wrapper induc-
tion. In: AGENTS ’99: Proceedings of the third annual conference on Autonomous
Agents. (1999) 190–197

9. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional
random fields. In: SIGIR ’03: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval. (2003)
235–242

10. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW
’05: Proceedings of the 14th international conference on World Wide Web. (2005)
76–85

11. Knoblock, C.A., Lerman, K., Minton, S., Muslea, I.: Accurately and reliably ex-
tracting data from the web: a machine learning approach. (2003) 275–287

12. Muslea, I., Minton, S., Knoblock, C.: Active learning with strong and weak views:
A case study on wrapper induction. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-2003). (2003)

13. Mitchell, T.: Machine Learning. McGraw-Hill (1997)
14. : (Fetch technologies, http://www.fetch.com/)
15. Muslea, I., Minton, S., Knoblock, C.: Adaptive view validation: A first step towards

automatic view detection. In: Proceedings of ICML2002. (2002) 443–450
16. Kushmerick, N.: Wrapper induction: efficiency and expressiveness. Artif. Intell.

(2000) 15–68
17. Chang, C.H., Kuo, S.C.: Olera: Semi-supervised web-data extraction with visual

support. In: IEEE Intelligent systems. (2004)
18. Chang, C.H., Lui, S.C.: Iepad: information extraction based on pattern discovery.

In: WWW ’01: Proceedings of the 10th international conference on World Wide
Web. (2001) 681–688

19. Lerman, K., Minton, S.: Learning the common structure of data. In: Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence. (2000) 609–614

20. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In:
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. (2003)

21. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases. (2001) 109–118

22. Embley, D.W., Jiang, Y., Ng, Y.K.: Record-boundary discovery in web documents.
In: SIGMOD. (1999)

23. Bunescu, R., Ge, R., Kate, R.J., Mooney, R.J., Wong, Y.W., Marcotte, E.M.,
Ramani, A.: Learning to extract proteins and their interactions from medline
abstracts. In: ICML-2003 Workshop on Machine Learning in Bioinformatics. (2003)

24. Califf, M.E., Mooney, R.J.: Relational learning of pattern-match rules for infor-
mation extraction. In: AAAI ’99/IAAI ’99: Proceedings of the sixteenth national
conference on Artificial intelligence and the eleventh Innovative applications of arti-
ficial intelligence conference innovative applications of artificial intelligence. (1999)
328–334

25. McCallum, A., Freitag, D., Pereira, F.C.N.: Maximum entropy markov models
for information extraction and segmentation. In: ICML ’00: Proceedings of the
Seventeenth International Conference on Machine Learning. (2000) 591–598

26. Nahm, U.Y., Mooney, R.J.: A mutually beneficial integration of data mining and
information extraction. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence. (2000) 627–632

27. Hammer, J., Garcia-Molina, H., Cho, J., Crespo, A., Aranha, R.: Extracting
semistructured information from the web. In: Proceedings of the Workshop on
Management fo Semistructured Data. (1997)

28. Liu, L., Pu, C., Han, W.: Xwrap: An xml-enabled wrapper construction system
for web information sources. In: ICDE ’00: Proceedings of the 16th International
Conference on Data Engineering. (2000) 611

29. Sahuguet, A., Azavant, F.: Wysiwyg web wrapper factory (w4f). In: WWW8.
(1999)

