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Abstract
Many important structured prediction prob-
lems, including learning to rank items,
correspondence-based natural language process-
ing, and multi-object tracking, can be formulated
as weighted bipartite matching optimizations.
Existing structured prediction approaches have
significant drawbacks when applied under
the constraints of perfect bipartite matchings.
Exponential family probabilistic models, such
as the conditional random field (CRF), provide
statistical consistency guarantees, but suffer
computationally from the need to compute
the normalization term of its distribution over
matchings, which is a #P-hard matrix permanent
computation. In contrast, the structured support
vector machine (SSVM) provides computational
efficiency, but lacks Fisher consistency, meaning
that there are distributions of data for which it
cannot learn the optimal matching even under
ideal learning conditions (i.e., given the true
distribution and selecting from all measurable
potential functions). We propose adversarial
bipartite matching to avoid both of these limita-
tions. We develop this approach algorithmically,
establish its computational efficiency and Fisher
consistency properties, and apply it to matching
problems that demonstrate its empirical benefits.

1 Introduction
How can the elements from two sets be paired one-to-one
to have the largest sum of pairwise utilities? This maximum
weighted perfect bipartite matching problem is a classical
combinatorial optimization problem in computer science.
It can be formulated and efficiently solved in polynomial
time as a linear program or using more specialized Hungar-
ian algorithm techniques (Kuhn, 1955). This has made it an
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attractive formalism for posing a wide range of problems,
including recognizing correspondences in similar images
(Belongie et al., 2002; Liu et al., 2008; Zhu et al., 2008;
Rui et al., 2007), finding word alignments in text (Chan &
Ng, 2008), and providing ranked lists of items for informa-
tion retrieval tasks (Amini et al., 2008).

Machine learning methods seek to estimate the pairwise
utilities of bipartite graphs so that the maximum weighted
complete matching is most compatible with the (distribu-
tion of) ground truth matchings of training data. When
these utilities are learned abstractly, they can be employed
to make predictive matchings for test samples. Unfor-
tunately, important measures of incompatibility (e.g., the
Hamming loss) are often non-continuous with many local
optima in the predictors’ parameter spaces, making direct
minimization intractable. Given this difficulty, two natural
desiderata for any predictor are:

• Efficiency: learning from training data and mak-
ing predictions must be computed efficiently in (low-
degree) polynomial time; and

• Consistency: the predictor’s training objectives must
also minimize the underlying Hamming loss, at least
under ideal learning conditions (given the true distri-
bution and fully expressive model parameters).

Existing methods for learning bipartite matchings fail in
one or the other of these desiderata; exponentiated potential
fields models (Lafferty et al., 2001; Petterson et al., 2009)
are intractable for large sets of items, while maximum mar-
gin methods based on the hinge loss surrogate (Taskar et al.,
2005a; Tsochantaridis et al., 2005) lack Fisher consistency
(Tewari & Bartlett, 2007; Liu, 2007). We discuss these lim-
itations formally in Section 2.

Given the deficiencies of the existing methods, we con-
tribute the first approach for learning bipartite matchings
that is both computationally efficient and Fisher consis-
tent. Our approach is based on an adversarial formula-
tion for learning (Topsøe, 1979; Grünwald & Dawid, 2004;
Asif et al., 2015) that poses prediction-making as a data-
constrained zero-sum game between a player seeking to
minimize the expected loss and an adversarial data approx-
imator seeking to maximize the expected loss. We present
two approaches for solving the corresponding zero-sum
game arising from our formulation: (1) using the double
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oracle method of constraint generation to find a sparsely-
supported equilibrium for the zero-sum game; and (2) de-
composing the game’s solution into marginal probabilities
and optimizes these marginal probabilities directly to ob-
tain an equilibrium saddle point for the game. We then es-
tablish the computational efficiency and consistency of this
approach and demonstrate its benefits experimentally.

2 Previous Inefficiency and Inconsistency

2.1 Bipartite Matching Task

Figure 1. n = 4 bi-
partite matching task.

Given two sets of elements A
and B of equal size (|A| =
|B|), a maximum weighted bi-
partite matching π is the one-to-
one mapping (e.g., Figure 1) from
each element in A to each ele-
ment in B that maximizes the sum
of potentials: maxπ∈Π ψ(π) =
maxπ∈Π

∑
i ψi(πi). Here πi ∈

[n] := {1, 2, . . . , n} is the entry in B that is matched
with the i-th entry of A. The set of possible solutions Π
is simply all permutation of [n]. Many machine learning
tasks pose prediction as the solution to this problem, in-
cluding: word alignment for natural language processing
tasks (Taskar et al., 2005b; Padó & Lapata, 2006; Mac-
Cartney et al., 2008); learning correspondences between
images in computer vision applications (Belongie et al.,
2002; Dellaert et al., 2003); protein structure analysis in
computational biology (Taylor, 2002; Wang et al., 2004);
and learning to rank a set of items for information retrieval
tasks (Dwork et al., 2001; Le & Smola, 2007). Thus, learn-
ing appropriate weights ψi(·) for bipartite graph matchings
is a key problem for many application areas.

2.2 Performance Evaluation and Fisher Consistency

Given a predicted permutation, π′, and the “ground truth”
permutation, π, the Hamming loss counts the number of
mistaken pairings: lossHam(π, π′) =

∑n
i=1 1(π′i 6= πi),

where 1(·) = 1 if · is true and 0 otherwise. When the
“ground truth” is a distribution over permutations, P (π),
rather than a single permutation, the (set of) Bayes optimal
prediction(s) is: argminπ′

∑
π P (π) lossHam(π, π′). For a

predictor to be Fisher consistent, it must provide a Bayes
optimal prediction for any possible distribution P (π) when
trained from that exact distribution using the predictor’s
most general possible parameterization (e.g., all measur-
able functions ψ for potential-based models).

2.3 Exponential Family Random Field Approach

A probabilistic approach to learning bipartite graphs
uses an exponential family distribution over permutations,

Pψ(π) = e
∑n
i=1 ψi(πi)/Zψ , trained by maximizing train-

ing data likelihood. This provides certain statistical con-
sistency guarantees for its marginal probability estimates
(Petterson et al., 2009). Specifically, if the potentials ψ are
chosen from the space of all measurable functions to maxi-
mize the likelihood of the true distribution of permutations
P (π), then Pψ(π) will match the marginal probabilities of
the true distribution: ∀i, j, Pψ(πi = j) = P (πi = j). This
implies Fisher consistency because the MAP estimate un-
der this distribution, which can be obtained as a maximum
weighted bipartite matching, is Bayes optimal.

The key challenge with this approach is its computational
complexity. The normalization term, Zψ , is the perma-
nent of a matrix defined in terms of exponentiated poten-
tial terms: Zψ =

∑
π

∏n
i=1 e

ψi(πi) = perm(M) where
Mi,j = eψi(j). For sets of small size (e.g., n = 5), enu-
merating the permutations is tractable and learning using
the exponential random field model incurs a run-time cost
that is acceptable in practice (Petterson et al., 2009). How-
ever, the matrix permanent computation is a #P-hard prob-
lem to compute exactly (Valiant, 1979). Monte Carlo sam-
pling approaches are used instead of permutation enumera-
tion to maximize the data likelihood (Petterson et al., 2009;
Volkovs & Zemel, 2012). Though exact samples can be
generated efficiently in polynomial time (Huber & Law,
2008), the number of samples needed for reliable likeli-
hood or gradient estimates makes this approach infeasible
for applications with even modestly-sized sets of n = 20
elements (Petterson et al., 2009).

2.4 Maximum Margin Approach

Maximum margin methods for structured prediction seek
potentials ψ that minimize the training sample hinge loss:

min
ψ

Eπ∼P̃
[
max
π′
{loss(π, π′) + ψ(π′)} − ψ(π)

]
, (1)

where P̃ is the empirical distribution. Finding the opti-
mal ψ is a convex optimization problem (Boyd & Vanden-
berghe, 2004) that can generally be tractably solved using
constraint generation methods as long as the maximizing
assignments can be found efficiently. In the case of per-
mutation learning, finding the permutation π′ with highest
hinge loss reduces to a maximum weighted bipartite match-
ing problem and can therefore be solved efficiently.

Though computationally efficient, maximum margin ap-
proaches for learning to make perfect bipartite matches
lack Fisher consistency, which requires the prediction
π∗ = argmaxπ ψ(π) resulting from Equation (1) to mini-
mize the expected risk, Eπ∼P̃ [loss(π, π′)], for all distribu-
tions P̃ . We consider a distribution over permutations that
is an extension of a counterexample for multiclass classi-
fication consistency analysis with no majority label (Liu,
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2007): P (π = [1 2 3]) = 0.4;P (π = [2 3 1]) =
0.3; and P (π = [3 1 2]) = 0.3. The potential function
ψi(j) = 1 if i = j and 0 otherwise, provides a Bayes
optimal permutation prediction for this distribution and an
expected hinge loss of 3.6 = 0.4(3 − 3) + 0.3(3 + 3) +
0.3(3 + 3). However, the expected hinge loss is optimally
minimized with a value of 3 when ψi(j) = 0,∀i, j, which
is indifferent between all permutations and is not Bayes op-
timal. Thus, Fisher consistency is not guaranteed.

3 Approach
To overcome the computational inefficiency of exponential
random field methods and the Fisher inconsistency of max-
imum margin methods, we formulate the task of learning
for bipartite matching problems as an adversarial structured
prediction task. We present two approaches for efficiently
solving the resulting game over permutations.

3.1 Permutation Mixture Formulation

The training data for bipartite matching consists of triplets
(A,B, π) where A and B are two sets of nodes with equal
size and π is the assignment. To simplify the notation,
we denote x as the bipartite graph containing the nodes A
and B. We also denote φ(x, π) as a vector that enumer-
ates the joint feature representations based on the bipartite
graph x and the matching assignment π. This joint fea-
ture is defined additively over each node assignment, i.e.,
φ(x, π) =

∑n
i=1 φi(x, πi).

Our approach seeks a predictor that robustly minimizes the
Hamming loss against the worst-case permutation mixture
probability that is consistent with the statistics of the train-
ing data. In this setting, a predictor makes a probabilistic
prediction over the set of all possible assignments (denoted
as P̂ ). Instead of evaluating the predictor with the empirical
distribution, the predictor is pitted against an adversary that
also makes a probabilistic prediction (denoted as P̌ ). The
predictor’s objective is to minimize the expected loss func-
tion calculated from the predictor’s and adversary’s proba-
bilistic predictions, while the adversary seeks to maximize
the loss. The adversary (and only the adversary) is con-
strained to select a probabilistic prediction that matches the
statistical summaries of the empirical training distribution
(denoted as P̃ ) via moment matching constraints on joint
features φ(x, π). Formally, we write our formulation as:

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] s.t. (2)

Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]
.

This follows a recent line of work for adversarial classifi-
cation under additive (Asif et al., 2015) and non-additive

(Wang et al., 2015) loss functions that has been employed
for chain-structured prediction (Li et al., 2016) and robust
cut learning (Behpour et al., 2018). Using the method
of Lagrangian multipliers and strong duality for convex-
concave saddle point problems (Von Neumann & Morgen-
stern, 1945; Sion, 1958), The optimization in Eq. (2) can
be equivalently solved in the dual formulation:

min
θ

Ex,π∼P̃ min
P̂ (π̂|x)

max
P̌ (π̌|x)

Eπ̂|x∼P̂
π̌|x∼P̌

[
loss(π̂, π̌)+ (3)

θ ·
n∑
i=1

(φi(x, π̌i)− φi(x, πi))
]
,

where θ is the Lagrange dual variable for the moment
matching constraints. We refer the reader to Appendix A
in the supplementary materials for a more detailed explana-
tion of this construction (i.e., the transformation from Eq.
(2) to Eq. (3)). In this paper, we use Hamming distance,
loss(π̂, π̌) =

∑n
i=1 1(π̂i 6= π̌i), as the loss function.

Table 1 shows the payoff matrix for the game of size n = 3
with 3! actions (permutations) for the predictor player π̂
and for the adversarial approximation player π̌. Here, we
define the difference between the Lagrangian potential of
the adversary’s action and the ground truth permutation as
δπ̌ = ψ(π̌)− ψ(π) = θ ·

∑n
i=1 (φi(x, π̌i)− φi(x, πi)) .

Table 1. Augmented Hamming loss matrix for n=3 permutations.
π̌ = 123 π̌ = 132 π̌ = 213 π̌ = 231 π̌ = 312 π̌ = 321

π̂=123 0 + δ123 2 + δ132 2 + δ213 3 + δ231 3 + δ312 2 + δ321

π̂=132 2 + δ123 0 + δ132 3 + δ213 2 + δ231 2 + δ312 3 + δ321

π̂=213 2 + δ123 3 + δ132 0 + δ213 2 + δ231 2 + δ312 3 + δ321

π̂=231 3 + δ123 2 + δ132 2 + δ213 0 + δ231 3 + δ312 2 + δ321

π̂=312 3 + δ123 2 + δ132 2 + δ213 3 + δ231 0 + δ312 2 + δ321

π̂=321 2 + δ123 3 + δ132 3 + δ213 2 + δ231 2 + δ312 0 + δ321

Unfortunately, the number of permutations, π, grows facto-
rially (O(n!)) with the number of elements being matched
(n). This makes explicit construction of the Lagrangian
minimax game intractable for modestly-sized problems.

3.2 Optimization by Constraint Generation

Our first approach for taming the factorial computational
complexity of explicitly constructing games for larger
matching tasks is a constraint-generation approach known
as the double oracle method (McMahan et al., 2003). It
obtains the equilibrium solution to the adversarial predic-
tion game without explicitly constructing the entire game
matrix (Table 1). Based on the key observation that the
equilibrium of the zero-sum game is typically supported by
a relatively small number of permutations, it seeks to ef-
ficiently uncover this sparse set of permutations for each
player.
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Algorithm 1 Double Oracle Algorithm for Adversarial Bi-
partite Matching Equilibria.
Input: Lagrangian potentials Ψ(·); Initial label πinitial
Output: The (sparse) Nash equilibrium (Š, Ŝ, P̂ , P̌ )

1: Š ← Ŝ ← {πinitial}
2: repeat
3: (P̂ , P̌ , V̌ )← solveGame(Ψ(Š), lossHam(Ŝ, Š))
4: (π̌new,Vmax)←argmaxπ̌Eπ̂∼P̂ [lossHam(π̂, π̌)+Ψ(π̌)]
5: if (V̌ 6= Vmax) then Š ← Š ∪ π̌new
6: (P̂ , P̌ , V̂ )← solveGame(Ψ(Š), lossHam(Ŝ, Š))
7: (π̂new, Vmin)← argminπ̂ Eπ̌∼P̌ [lossHam(π̂, π̌)]

8: if (V̂ 6= Vmin) then Ŝ ← Ŝ ∪ π̂new
9: until V̌ = Vmax = V̂ = Vmin

10: return (Š, Ŝ, P̂ , P̌ )

Algorithm 1 produces this set of “active” permutations for
each player, Ŝ and Š (subsets of rows and columns in Table
1), and the associated Nash equilibrium (P̂ , P̌ ). Starting
from an initial permutation, πinitial (Line 1), it repeatedly
obtains the Nash equilibrium solution (P̂ , P̌ ) with value
V̂ or V̌ for the zero-sum game defined only by permuta-
tions in Ŝ and Š (Lines 3 and 6). This is efficiently accom-
plished using a linear program (Von Neumann & Morgen-
stern, 1945). The algorithm then obtains the other player’s
best response to either P̂ or P̌ (Lines 4 and 7) with val-
ues Vmax and Vmin using the Kuhn-Munkres (Hungarian)
algorithm in O(n3) time for sets of size n. These best re-
sponses, π̌new and π̂new, are added to the set of active per-
mutations (i.e., new rows or columns in the game matrix) if
they have better values than the previous equilibrium values
(Lines 5 and 8). This is repeated until no game value im-
provement exists for either player (Line 9), at which point
a Nash equilibrium for the full game has been obtained.

We solve the convex optimization of Lagrange parameters
θ in Eq. (3) using the results of Algorithm 1. We em-
ploy AdaGrad (Duchi et al., 2011) with the gradient cal-
culated as the difference between expected features under
the adversary’s distribution and the empirical training data:
Ex∼P̃ ;π̌|x∼P̌ [

∑n
i=1 φi(x, π̌i)]− Ex,π∼P̃ [

∑n
i=1 φi(x, πi)].

In contrast with SSVM, which compute the hinge loss for
each training instance using only a single run of the Hun-
garian algorithm, our double oracle method must solve this
problem repeatedly to find the equilibrium. Though in
practice the total number of active permutations is much
smaller than the n! possibilities, no formal polynomial
bound is known—and, consequentially, the run time of the
approach as a whole cannot be characterized as polynomial.

3.3 Marginal Distribution Formulation

Our second approach, which significantly improves the ef-
ficiency of solving the adversarial bipartite matching game,

leverages the key insight that all quantities of interest for
evaluating the loss and satisfying the constraints depend
only on marginal probabilities of the permutation’s value
assignments. Based on this, we employ a marginal distri-
bution decomposition of the game.

Table 2. Doubly stochastic matrices P and Q for the marginal de-
compositions of each player’s mixture of permutations.

1 2 3
π̂1 p1,1 p1,2 p1,3

π̂2 p2,1 p2,2 p2,3

π̂3 p3,1 p3,2 p3,3

1 2 3
π̌1 q1,1 q1,2 q1,3

π̌2 q2,1 q2,2 q2,3

π̌3 q3,1 q3,2 q3,3

We begin this reformulation by first defining a matrix rep-
resentation of permutation π as Y(π) ∈ Rn×n (or simply
Y) where the value of its cell Yi,j is 1 when πi = j and
0 otherwise. To be a valid complete bipartite matching or
permutation, each column and row of Y can only have one
entry of 1. For each feature function φ(k)

i (x, πi), we also
denote its matrix representation as Xk whose (i, j)-th cell
represents the k-th entry of φi(x, j). For a given distribu-
tion of permutations, P (π), we denote the marginal prob-
abilities of matching i with j as pi,j , P (πi = j). We
let P =

∑
π P (π)Y(π) be the predictor’s marginal prob-

ability matrix where its (i, j) cell represents P̂ (π̂i = j),
and similarly let Q be the adversary’s marginal probability
matrix (based on P̌ ), as shown in Table 2.

The Birkhoff–von Neumann theorem (Birkhoff, 1946;
Von Neumann, 1953) states that the convex hull of the set
of n× n permutation matrices forms a convex polytope in
Rn2

(known as the Birkhoff polytope Bn) in which points
are doubly stochastic matrices, i.e., the n×nmatrices with
non-negative elements where each row and column must
sum to one. This implies that both marginal probability
matrices P and Q are doubly stochastic matrices. In con-
trast to the space of distributions over permutation of n
objects, which grows factorially (O(n!) with n! − 1 free
parameters), the size of this marginal matrices grows only
quadratically (O(n2) with n2 − 2n free parameters). This
provides a significant benefit in terms of the optimization.

Starting with the minimax over P̂ (π̂) and P̌ (π̌) in the per-
mutation mixture formulation, and using the matrix nota-
tion above, we rewrite Eq. (3) as a minimax over marginal
probability matrices P and Q with additional constraints
that both P and Q are doubly-stochastic matrices, i.e., P ≥
0 (elementwise), Q ≥ 0, P1 = P>1 = Q1 = Q>1 = 1
where 1 = (1, . . . , 1)>). That is:

min
θ

EX,Y∼P̃ min
P≥0

max
Q≥0

[n−〈P,Q〉+〈Q−Y,
∑
k θkXk〉]

s.t. : P1 = P>1 = Q1 = Q>1 = 1, (4)

where 〈·, ·〉 denotes the Frobenius inner product between
two matrices, i.e., 〈A,B〉 =

∑
i,j Ai,jBi,j .
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3.3.1 OPTIMIZATION

We reduce the computational costs of the optimization in
Eq. (4) by focusing on optimizing the adversary’s marginal
probability Q. By strong duality, we then push the max-
imization over Q in the formulation above to the outer-
most level of Eq. (4). Note that the objective above is a
non-smooth function (i.e., piece-wise linear). For the pur-
pose of smoothing the objective, we add a small amount of
strongly convex prox-functions to both P and Q. We also
add a regularization penalty to the parameter θ to improve
the generalizability of our model. We unfold Eq. (4) by re-
placing the empirical expectation with an average over all
training examples, resulting in the following optimization:

max
Q≥0

min
θ

1

m

m∑
i=1

min
Pi≥0

[
〈Qi −Yi,

∑
k θkXi,k〉 − 〈Pi,Qi〉

+ µ
2 ‖Pi‖2F −

µ
2 ‖Qi‖2F

]
+ λ

2 ‖θ‖
2
2

s.t. : Pi1 = P>i 1 = Qi1 = Q>i 1 = 1, ∀i, (5)

where m is the number of bipartite matching problems in
the training set, λ is the regularization penalty parameter, µ
is the smoothing penalty parameter, and ‖A‖F denotes the
Frobenius norm of matrixA. The subscript i in Pi,Qi,Xi,
and Yi refers to the i-th example in the training set.

In the formulation above, given a fixed Q, the inner mini-
mization over θ and P can then be solved separately. The
optimal θ in the inner minimization admits a closed-form
solution, in which the k-th element of θ∗ is:

θ∗k = − 1

λm

m∑
i=1

〈Qi −Yi,Xi,k〉 . (6)

The inner minimization over P can be solved indepen-
dently for each training example. Given the adversary’s
marginal probability matrix Qi for the i-th example, the
optimal Pi can be formulated as:

P∗i = argmin
{Pi≥0|Pi1=P>i 1=1}

µ
2 ‖Pi‖2F − 〈Pi,Qi〉 (7)

= argmin
{Pi≥0|Pi1=P>i 1=1}

‖Pi − 1
µQi‖2F . (8)

We can interpret this minimization as projecting the matrix
1
µQi to the set of doubly-stochastic matrices. We will dis-
cuss our projection technique in the upcoming subsection.

For solving the outer optimization over Q with the doubly-
stochastic constraints, we employ a projected Quasi-
Newton algorithm (Schmidt et al., 2009). Each iteration of
the algorithm optimizes the quadratic approximation of the
objective function (using limited-memory Quasi-Newton)
over the the convex set. In each update step, a projection to
the set of doubly-stochastic matrices is needed, akin to the
inner minimization of P in Eq. (8).

The optimization above provides the adversary’s optimal
marginal probability Q∗. To achieve our learning goal, we
recover θ∗ using Eq. (6) computed over the optimal Q∗.
We use the θ∗ that our model learns from this optimization
to construct a weighted bipartite graph for making predic-
tions for test examples.

3.3.2 DOUBLY-STOCHASTIC MATRIX PROJECTION

The projection from an arbitrary matrix R to the set of
doubly-stochastic matrices can be formulated as:

min
P≥0
‖P−R‖2F , s.t. : P1 = P>1 = 1. (9)

We employ the alternating direction method of multipliers
(ADMM) technique (Douglas & Rachford, 1956; Glowin-
ski & Marroco, 1975; Boyd et al., 2011) to solve the opti-
mization problem above. We divide the doubly-stochastic
matrix constraint into two sets of constraints C1 : P1 = 1
and P ≥ 0, andC2 : P>1 = 1 and P ≥ 0. Using this con-
struction, we convert the optimization above into ADMM
form as follows:

min
P,S

1
2‖P−R‖2F + 1

2‖S−R‖2F + IC1
(P) + IC2

(S)

s.t. : P− S = 0. (10)

The augmented Lagrangian for this optimization is:

Lρ(P,S,W) = 1
2‖P−R‖2F + 1

2‖S−R‖2F + IC1
(P)

+ IC2
(S) + ρ

2‖P− S + W‖2F , (11)

where ρ is the ADMM penalty parameter and W is the
scaled dual variable. From the augmented Lagrangian, we
compute the update for P as:

Pt+1 = argmin
P

Lρ(P,St,Wt) (12)

= argmin
{P≥0|P1=1}

1
2‖P−R‖2F + ρ

2‖P− St + Wt‖2F

= argmin
{P≥0|P1=1}

‖P− 1
1+ρ

(
R + ρ

(
St −Wt

))
‖2F .

The minimization above can be interpreted as a projection
to the set {P ≥ 0|P1 = 1} which can be realized by pro-
jecting to the probability simplex independently for each
row of the matrix 1

1+ρ (R + ρ (St −Wt)). Similarly, the
ADMM update for S can also be formulated as a column-
wise probability simplex projection. The technique for pro-
jecting a point to the probability simplex has been stud-
ied previously, e.g., by Duchi et al. (2008). Therefore, our
ADMM algorithm consists of the following updates:

Pt+1 = ProjC1

(
1

1+ρ

(
R + ρ

(
St −Wt

)))
(13)

St+1 = ProjC2

(
1

1+ρ

(
R + ρ

(
Pt+1 + Wt

)))
(14)

Wt+1 = Wt + Pt+1 − St+1. (15)
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We run this series of updates until the stopping conditions
are met. Our stopping conditions are based on the primal
and dual residual optimality as described in Boyd et al.
(2011). In our overall algorithm, this ADMM projection
algorithm is used both in the projected Quasi-Newton al-
gorithm for optimizing Q (Eq. (5)) and in the inner opti-
mization for minimizing Pi (Eq. (8)).

3.3.3 CONVERGENCE PROPERTY

The convergence rate of ADMM is O(log 1
ε ) thanks to the

strong convexity of the objective (Deng & Yin, 2016). Each
step inside ADMM is simply a projection to a simplex,
hence costing Õ(n) computations (Duchi et al., 2008).

In terms of optimization on Q, since no explicit rates of
convergence are available for the projected Quasi-Newton
algorithm (Schmidt et al., 2009) that finely characterize
the dependency on the condition numbers, we simply il-
lustrate the

√
L/µ log 1

ε rate using Nesterov’s accelerated
gradient algorithm (Nesterov, 2003), where L is the Lip-
schitz continuous constant of the gradient. In our case,
L = 1

m2λ

∑
k

∑m
i=1 ‖Xi,k‖2F + 1/µ.

Comparison with Structured SVM (SSVM) Conven-
tional SSVMs for learning bipartite matchings have only
O(1/ε) rates due to the lack of smoothness (Joachims et al.,
2009; Teo et al., 2010). If smoothing is added, then simi-
lar linear convergence rates can be achieved with similar
condition numbers. However, it is noteworthy that at each
iteration we need to apply ADMM to solve a projection
problem to the doubly stochastic matrix set (Eq. (9)), while
SSVMs (without smoothing) solves a matching problem
with the Hungarian algorithm, incurring O(n3) time.

3.4 Consistency Analysis

Despite its apparent differences from standard empirical
risk minimization (ERM), adversarial loss minimization
(Eq. (3)) can be equivalently recast as an ERM:

min
θ

E x∼P
π|x∼P̃

[
ALperm

fθ
(x, π)

]
where ALperm

fθ
(x, π) ,

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Eπ̂|x∼P̂
π̌|x∼P̌

[
loss(π̂, π̌) + fθ(x, π̌)− fθ(x, π)

]

and fθ(x, π) = θ ·
∑n
i=1 φ(x, πi) is the Lagrangian poten-

tial function. Here we consider fθ as the linear discrimi-
nant function for a proposed permutation π, using parame-
ter value θ. ALperm

fθ
(x, π) is then the surrogate loss for input

x and permutation π.

As described in Section 2.2, Fisher consistency is an im-
portant property for a surrogate loss L. It requires that un-
der the true distribution P (x, π), the hypothesis that min-
imizes L is Bayes optimal (Tewari & Bartlett, 2007; Liu,

2007). For the cases of multiclass classification and ordi-
nal regression, Fisher consistency for adversarial surrogate
loss has been established by Fathony et al. (2016; 2017). In
our setting, the Fisher consistency ofALperm

f can be written
as

f∗ ∈ F∗ , argmin
f

Eπ|x∼P
[
ALperm

f (x, π)
]

(16)

⇒ argmax
π

f∗(x, π) ⊆ Π� , argmin
π

Eπ̄|x∼P [loss(π, π̄)].

Note that in Eq. (16) we allow f to be optimized over the
set of all measurable functions on the input space (x, π).
In our formulation, we have restricted f to be additively
decomposable over individual elements of permutation,
f(x, π) =

∑
i gi(x, πi). In the sequel, we will show that

the condition in Eq. (16) also holds for this restricted set
provided that g is allowed to be optimized over the set of
all measurable functions on the space of individual input
(x, πi). We start by establishing Fisher consistency for the
case of singleton loss minimizing sets Π� in Theorem 1 and
then for more general cases in Theorem 2.

Theorem 1. Suppose loss(π, π̄) = loss(π̄, π) (symmetry)
and loss(π, π) < loss(π̄, π) for all π̄ 6= π. Then the adver-
sarial permutation loss ALperm

f is Fisher consistent if f is
over all measurable functions and Π� is a singleton.

Theorem 2. Suppose loss(π, π̄) = loss(π̄, π) (symmetry)
and loss(π, π) < loss(π̄, π) for all π̄ 6= π. Furthermore if
f is over all measurable functions, then:

(a) there exists f∗ ∈ F∗ such that argmaxπ f
∗(x, π) ⊆

Π� (i.e., satisfies the Fisher consistency requirement).
In fact, all elements in Π� can be recovered by some
f∗ ∈ F∗ .

(b) if argminπ
∑
π′∈Π� απ′ loss(π′, π) ⊆ Π� for

all α(·) ≥ 0;
∑
π′∈Π� απ′ = 1, then

argmaxπ f
∗(x, π) ⊆ Π� for all f∗ ∈ F∗. In this

case, all f∗ ∈ F∗ satisfy the Fisher consistency re-
quirement.

These assumptions of loss functions in the theorems above
are quite mild, requiring only that wrong predictions suffer
higher loss than correct ones. We refer the reader to Ap-
pendix B for the detailed proofs of theorems. The key to
the proofs is the observation that for the optimal potential
function f∗, f∗(x, π) + loss(π, π�) is invariant to π when
Π� = {π�}. We refer to this as the loss reflective property.
Note that this generalizes the observation for the case of
ordinal regression loss (Fathony et al., 2017) into matching
loss functions, subject to the mild pre-conditions assumed
by the theorem.

Theorem 3. Suppose the loss is Hamming loss, and
the potential function f(x, π) decomposes additively by∑
i gi(x, πi). Then, the adversarial permutation loss

ALperm
f is Fisher consistent provided that gi is allowed to
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Figure 2. An example of bipartite matching in video tracking.

be optimized over the set of all measurable functions on the
space of individual inputs (x, πi).

Proof. Simply choose gi such that for each sample x in the
population, gi(x, πi) = −(πi 6= π�i ). This renders the loss
reflective property under the Hamming loss.

4 Experimental Evaluation
To evaluate our approach, we apply our adversarial bi-
partite matching model to video tracking tasks using public
benchmark datasets (Leal-Taixé et al., 2015). In this prob-
lem, we are given a set of images (video frames) and a list
of objects in each image. We are also given the correspon-
dence matching between objects in frame t and objects in
frame t + 1. Figure 2 shows an example of the problem
setup. It is important to note that the number of objects are
not the same in every frames. Some of the objects may en-
ter, leave, or remain in the consecutive frames. To handle
the this issue, we setup our experiment as follows. Let kt
be the number of objects in frame t and k∗ be the maximum
number of objects a frame can have, i.e., k∗ = maxt∈T kt.
Starting from k∗ nodes to represent the objects, we add k∗

more nodes as “invisible” nodes to allow new objects to
enter and existing objects to leave. As a result, the total
number of nodes in each frame doubles to n = 2k∗.

4.1 Feature Representation

We define the features for pairs of bounding boxes (i.e.,
φi(x, j) for pairing bounding box i with bounding box j)
in two consecutive video frames so that we can compute
the associative feature vectors, φ(x, π) =

∑n
i=1 φi(x, πi),

for each possible matching π. To define the feature vector
φi(·, ·), we follow the feature representation reported by
Kim et al. (2012) using six different types of features:

• Intersection over union (IoU) overlap ratio be-
tween bounding boxes, area(BBti ∩ BBt+1

j )/

area(BBti ∪ BBt+1
j ), where BBti denotes the bounding

box of object i at time frame t;
• Euclidean distance between object centers;
• 21 color histogram distance features (RGB) from

the Bhattacharyaa distance, 1
4 ln

(
1
4

(σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2
))

+

Table 3. Dataset properties

DATASET # ELEMENTS # EXAMPLES

TUD-CAMPUS 12 70
TUD-STADTMITTE 16 178
ETH-SUNNYDAY 18 353
ETH-BAHNHOF 34 999
ETH-PEDCROSS2 30 836

1
4

( (µp−µq)2
µ2
p+µ2

q

)
, between distributions from the his-

tograms of 7× 3 blocks, in which p and q are two
different distributions of the blocks at time frames t
and t + 1, µ and σ2 are the mean and the variance of
the distribution respectively;

• 21 local binary pattern (LBP) features from similar
Bhattacharyaa distances and bounding box blocks;

• Optical flow (motion) between bounding boxes; and
• Three indicator variables (for entering, leaving, and

staying invisible).

We explain this feature representation in more detail in Ap-
pendix C.

4.2 Experimental Setup

We compare our approach with the Structured SVM
(SSVM) model (Taskar et al., 2005a; Tsochantaridis et al.,
2005) implemented based on Kim et al. (2012) using
SVM-Struct (Joachims, 2008; Vedaldi, 2011). We
implement our marginal version of adversarial bipartite
matching using minConf (Schmidt, 2008) for performing
projected Quasi-Newton optimization.

We consider two different groups of datasets in our ex-
periment: TUD datasets and ETH datasets. Each dataset
contains different numbers of elements (i.e., the number of
pedestrian bounding box in the frame plus the number of
extra nodes to indicate entering or leaving) and different
numbers of examples (i.e., pairs of two consecutive frames
that we want to match). Table 3 contains the detailed infor-
mation about the datasets.

To avoid having test examples that are too similar with the
training set, we train the models on one dataset and test the
model on another dataset that has similar characteristics. In
particular, we perform evaluations for every pair of datasets
in TUD and ETH collections. This results in eight pairs of
training/test datasets, as shown in Table 4.

To tune the regularization parameter (λ in adversarial
matching, and C in SSVM), we perform 5-fold cross vali-
dation based on the training dataset only. The resulting best
regularization parameter is used to train the model over all
training examples to obtain parameters θ, which we then
use to predict the matching for the testing data. For SSVM
and the marginal version of adversarial matching, the pre-
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Table 4. The mean and standard deviation (in parenthesis) of the
average accuracy (1 - the average Hamming loss) for the adver-
sarial bipartite matching model compared with Structured-SVM.

TRAINING/
TESTING

ADV
DO

ADV
MARG. SSVM ADV DO

#PERM.

CAMPUS/
STADTMITTE

0.662
(0.09)

0.662
(0.08)

0.662
(0.08) 11.4

STADTMITTE/
CAMPUS

0.672
(0.12)

0.667
(0.11)

0.660
(0.12) 7.4

BAHNHOF/
SUNNYDAY

0.758
(0.12)

0.754
(0.10)

0.729
(0.15) 5.8

PEDCROSS2/
SUNNYDAY

0.760
(0.08)

0.750
(0.10)

0.736
(0.13) 8.2

SUNNYDAY/
BAHNHOF

0.755
(0.20)

0.751
(0.18)

0.739
(0.20) 9.8

PEDCROSS2/
BAHNHOF

0.760
(0.12)

0.763
(0.16)

0.731
(0.21) 10.8

BAHNHOF/
PEDCROSS2

0.718
(0.16)

0.714
(0.16)

0.701
(0.18) 8.5

SUNNYDAY/
PEDCROSS2

0.719
(0.18)

0.712
(0.17)

0.700
(0.18) 14.4

diction is done by finding the bipartite matching that max-
imizes the potential value, i.e., argmaxY 〈Y,

∑
k θkXk〉

which can be solved using the Hungarian algorithm. The
double oracle version of adversarial matching makes pre-
dictions by finding the most likely permutation from the
predictor’s strategy in the equilibrium.

4.3 Results

We report the average accuracy, which in this case is de-
fined as (1 − the average Hamming loss) over all examples
in the testing dataset. Table 4 shows the mean and the stan-
dard deviation of our metric across different dataset pairs.
We report the results for both the double-oracle (DO) and
marginal (MARG) versions of the adversarial model. Our
experiment indicates that both methods result in very sim-
ilar values of θ. The slight advantage of the double-oracle
version is caused by the difference in prediction techniques
between the double-oracle (argmax over predictor’s equi-
librium strategy) and marginal version (argmax over poten-
tials). We also observe that the double-oracle approach re-
quires only a small number of augmenting permutations to
converge as shown in the last column (the average number
of permutations) of Table 4. This indicates the sparseness
of the set of permutations that support the equilibrium.

To compare with SSVM, we highlight (using bold font)
the cases in which our result is better with statistical sig-
nificance (under paired t-test with α < 0.05) in Table 4.
Compared with SSVM, our proposed adversarial matching
outperforms SSVM in all pairs of datasets—with statistical

Table 5. Running time (in seconds) of the model for various num-
ber of elements n with fixed number of samples (m = 50)

DATASET # ELEMENTS ADV MARG. SSVM

CAMPUS 12 1.96 0.22
STADTMITTE 16 2.46 0.25
SUNNYDAY 18 2.75 0.15
PEDCROSS2 30 8.18 0.26
BAHNHOF 34 9.79 0.31

significance on all six pairs of the ETH datasets and slightly
better than SSVM on the TUD datasets. This suggests that
our adversarial bipartite matching model benefits from its
Fisher consistency property.

In terms of the running time, Table 5 shows that the
marginal version of adversarial method is relatively fast.
It only takes a few seconds to train until convergence in
the case of 50 examples, with the number of elements var-
ied up to 34. The running time grows roughly quadrat-
ically in the number of elements, which is natural since
the size of the marginal probability matrices P and Q also
grow quadratically in the number of elements. This shows
that our approach is much more efficient than the CRF ap-
proach, which has a running time that is impractical even
for small problems with 20 elements. The training time
of SSVM is faster than the adversarial methods due to two
different factors: (1) the inner optimization of SSVM can
be solved using a single execution of the Hungarian algo-
rithm compared with the inner optimization of adversarial
method which requires ADMM optimization for projection
to doubly stochastic matrix set; (2) different tools for im-
plementation, i.e., C++ for SSVM and MATLAB for our
method, which benefits the running time of SSVM. In ad-
dition, though the game size is relatively small, as indicated
by the final column in Table 4, the double oracle version of
adversarial method takes much longer to train compared to
the marginal version.

5 Conclusions and Future Work
In this paper, we have presented an adversarial approach
for learning bipartite matchings that is not only computa-
tionally efficient to employ but also provides Fisher con-
sistency guarantees. We showed that these theoretical ad-
vantages translate into better empirical performance for our
model compared with previous approaches. Our future
work will explore matching problems with different loss
functions and other graphical structures.
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Appendix A. Dual Permutation Mixture Formulation
Below is the detailed step-by-step transformation from the primal mixture formulation of the adversarial prediction task
for bipartite matching (Eq. (2)) to the dual formulation (Eq. (3)):

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] s.t. Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]
(17)

(a)
= max

P̌ (π̌|x)
min
P̂ (π̂|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] s.t. Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]
(18)

(b)
= max
P̌ (π̌|x)

min
θ

min
P̂ (π̂|x)

E(x,π)∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θT

(
n∑
i=1

φi(x, π̌i)−
n∑
i=1

φi(x, πi)

)]
(19)

(c)
= min

θ
max
P̌ (π̌|x)

min
P̂ (π̂|x)

E(x,π)∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θT

(
n∑
i=1

φi(x, π̌i)−
n∑
i=1

φi(x, πi)

)]
(20)

(d)
= min

θ
E(x,π)∼P̃ max

P̌ (π̌|x)
min
P̂ (π̂|x)

Eπ̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θ ·

n∑
i=1

(φi(x, π̌i)− φi(x, πi))

]
(21)

(e)
= min

θ
E(x,π)∼P̃ min

P̂ (π̂|x)
max
P̌ (π̌|x)

Eπ̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θ ·

n∑
i=1

(φi(x, π̌i)− φi(x, πi))

]
. (22)

The transformation steps above are described in the following:

(a) Flipping the min and max order using the minimax duality (Von Neumann & Morgenstern, 1945).

(b) Introducing the Lagrange dual variable θ.

(c) The domain of P̌ (π̌|x) is a compact convex set (i.e., permutation mixture distribution), whereas the domain of θ is
convex (i.e., Rd where d is the number of features). The objective is concave on P̌ (π̌|x) since a non-negative linear
combination of minimums of affine function is concave, while it is convex on θ. Sion’s minimax theorem (Sion, 1958)
says that a strong duality holds. Therefore, we can flip the order of P̌ (π̌|x) and θ in the optimization.

(d) Pushing the expectation over the empirical distribution outside the inner maximin, and changing the vector multipli-
cation notation into a vector dot product.

(e) Applying the minimax duality (Von Neumann & Morgenstern, 1945) again to flip the optimization order of the inner
minimax, resulting in Eq. (3).

Appendix B. Proofs for the Consistency Analysis

B.1 Proof of Theorem 1

Theorem 1. Suppose loss(π, π̄) = loss(π̄, π) (symmetry) and loss(π, π) < loss(π̄, π) for all π̄ 6= π. Then the adversarial
permutation loss ALperm

f is Fisher consistent if f is over all measurable functions and Π� is a singleton.

Proof. Denote p as the probability mass given by the predictor player P̂ (π̂|x), q as the probability mass given by the
adversary player P̌ (π̌|x), and d as the probability mass of the true distribution P (π|x). So, all p, q, and d lie in the n!
dimensional probability simplex ∆. Let C be an n!-by-n! matrix whose (π, π̄)-th entry is loss(π, π̄). Let f ∈ Rn! the
vector encoding of the value of f at all permutations. The definition of f∗ in Eq. (16) now becomes:

f∗ ∈ argmin
f

max
q∈∆

min
p∈∆

{
f>q + p>Cq− d>f

}
(23)

= argmin
f

max
q∈∆

{
f>q + min

π
(Cq)π − d>f

}
. (24)
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Let Π� = argminπ Eπ̄|x∼P [loss(π, π̄)] (or equivalently argminπ(Cd)π) contains only a singleton which we denote as π�.
We are to show that argmaxπ f

∗(x, π) is a singleton, and its only element π∗ is exactly π�. Since f∗ is an optimal solution,
the objective function must have a zero subgradient at f∗. That means 0 = q∗ − d, where q∗ is an optimal solution in Eq.
(24) under f∗. As a result:

d ∈ argmax
q∈∆

{
q>f∗ + min

π
(Cq)π

}
. (25)

By the first order optimality condition of constrained convex optimization (see Eq. (4.21) of (Boyd & Vandenberghe,
2004)), this means (let C:,π� be the π�-th column of C):

(f∗ + C:,π�)
>(u− d) ≤ 0 ∀u ∈ ∆, (26)

where f∗ + C:,π� is the gradient of the objective in Eq. (25) with respect to q evaluated at q = d. Here we used the
definition of π�. However, this inequality can hold for some d ∈ ∆ ∩ Rn!

++ only if f∗ + C:,π� is a uniform vector, i.e.,
f∗π + loss(π, π�) is a constant in π. To see this, let’s assume the contrary that v , f∗ + C:,π� is not a uniform vector, and
let j be the index of its maximum element. Let u be a vector whose values are 1 for index j and 0 otherwise. It is clear
that for any d ∈ ∆ ∩Rn!

++, v>u > v>d, and hence (f∗ + C:,π�)
>(u− d) > 0.

Finally, using the assumption that loss(π, π) < loss(π̄, π) for all π̄ 6= π, it follows that π∗ = π�, since argmaxπ f
∗(x, π) =

argminπ(C:,π�)π .

B.2 Proof of Theorem 2

Theorem 2. Suppose loss(π, π̄) = loss(π̄, π) (symmetry) and loss(π, π) < loss(π̄, π) for all π̄ 6= π. Furthermore if f is
over all measurable functions, then:

(a) there exists f∗ ∈ F∗ such that argmaxπ f
∗(x, π) ⊆ Π� (i.e., satisfies the Fisher consistency requirement). In fact,

all elements in Π� can be recovered by some f∗ ∈ F∗ .

(b) if argminπ
∑
π′∈Π� απ′ loss(π′, π) ⊆ Π� for all α(·) ≥ 0;

∑
π′∈Π� απ′ = 1, then argmaxπ f

∗(x, π) ⊆ Π� for all
f∗ ∈ F∗. In this case, all f∗ ∈ F∗ satisfy the Fisher consistency requirement.

Proof. Let Π� be the set containing all of the solution of argminπ(Cd)π , i.e., Π� = {π� | (Cd)π� = minπ(Cd)π}. The
analyses in the proof of Theorem 1 still apply to this case, except for the Eq. (26). Denote h(q) , q>f∗ + minπ(Cq)π .
The sub-differential of h(q) evaluated at q = d is the set:

∂h(d) = {f∗ + v | v ∈ conv{C:,π� | π� ∈ Π�}}, (27)

where conv denotes the convex hull of a finite point set. By extending the first order optimality condition to the subgradient
case, this means that there is a subgradient g ∈ ∂h(d) such that:

g>(u− d) ≤ 0 ∀u ∈ ∆. (28)

Similar to the singleton Π� case, this inequality can hold for some d ∈ ∆ ∩Rn!
++ only if g is a uniform vector. Based on

Eq. (27), g − f∗ can be written as a convex combination of the elements in Π�, and thus:

f∗ = k1−
∑
π′∈Π�

απ′C:,π′ , (29)

for some set of α(·) ≥ 0,
∑
π′∈Π� απ′ = 1 and some constant k. This means that multiple solutions of f∗ are possible.

Let us denote the set of containing all solutions as F∗. For each element π� in Π�, we can recover a f∗π� in which the
argmaxπ f

∗
π�(x, π) contains a singleton element π� by using Eq. (29) with απ� = 1 and απ′∈{Π�\π�} = 0. This is implied

by our loss assumption that loss(π, π) < loss(π̄, π) for all π̄ 6= π, and hence argmaxπ f
∗
π�(x, π) = argminπ(C:,π�)π .

Furthermore, if we add another assumption on the loss function such that argminπ
∑
π′∈Π� απ′ loss(π′, π) ⊆ Π� for all

α(·) ≥ 0,
∑
π′∈Π� απ′ = 1, then it follows that argmaxπ f

∗(x, π) ⊆ Π� for all f∗ ∈ F∗, since for any loss function that
satisfy the assumption, argminπ

(∑
π′∈Π� aπ′C:,π′

)
π
⊆ Π� for all α(·) ≥ 0,

∑
π′∈Π� απ′ = 1.
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Appendix C. Feature Representation
We explain local binary pattern (LBP), color histogram (RGB), and optical flow within our feature representation in more
details in this section. LBP is one of the best and most widely used texture descriptors in different applications like face
detection. It assigns a label to every pixel of an image by thresholding the 3×3 neighborhood of each pixel with the center
pixel value and reporting a binary number as the result. It is discriminative and invariant to monotonic gray-level changes
(Ahonen et al., 2006). An important element in content-based image retrieval is the image color. Global histogram is one
of the most popular color information representations. It presents the joint distribution of intensities of three-color (Red,
Green, and Blue) channels. Its robustness to background complications and object distortion provides helpful hints for the
subsequent expression of similarity between images (Wang et al., 2010).

To extract LBP and color of histograms features, we first divide the object regions to 7×3 blocks based on the aspect
ratio of the detected pedestrians in the dataset, which is also 7:3. For each block, we calculate the distribution of LBP
and then employ the Bhattacharyya coefficient to compute the affinity of a pair of distributions. Bhattacharyya coefficient
(BC) measures the amount of overlap between two distributions. It returns 21 features for LBP. For color histogram, we
represent the color information of each block using a 3D RGB color histogram of 8×8×8 dimension. Then BC is applied
and 21 RGB features are extracted.

Optical flow is an image motion representation and defined as the projection of velocities of 2D/3D surface points. It
is based on correspondences between image features, correlations, or properties of intensity structures (Beauchemin &
Barron, 1995). We compute the histogram of optical flow (HOF) for every detected box and employ BC to calculate the
motion distribution relation. It returns one feature as optical flow.

We also consider three binary features (entering, leaving, and staying invisible) to indicate the status of each object between
two consecutive frames.

Together, each feature vector, φi(x, j), has 48 values.
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