Robust Training of Graph Convolutional Networks via
Latent Perturbation

Hongwei Jin! and Xinhua Zhang?

University of Illinois at Chicago, Chicago IL 60607, USA
{hjin25, zhangx}@uic.edu

Abstract. Despite the recent success of graph convolutional networks (GCNs) in
modeling graph structured data, its vulnerability to adversarial attacks has been
revealed and attacks on both node feature and graph structure have been designed.
Direct extension of defense algorithms based on adversarial samples meets with
immediate challenge because computing the adversarial network costs substan-
tially. We propose addressing this issue by perturbing the latent representations in
GCNs, which not only dispenses with generating adversarial networks, but also
attains improved robustness and accuracy by respecting the latent manifold of
the data. This new framework of latent adversarial training on graphs is applied
to node classification, link prediction, and recommender systems. Our empiri-
cal experimental results confirm the superior robustness performance over strong
baselines.

Keywords: Graph Neural Network - Adversarial Training - Representation Learn-
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1 Introduction

Neural networks have achieved great success on Euclidean data for image recogni-
tion, machine translation, and speech recognition, etc. However, modeling with non-
Euclidean data—such as complex networks with geometric information and structural
manifold—is more challenging in terms of data representation. Mapping non-Euclidean
data to Euclidean, which is also referred to as embedding, is one of the most prevalent
techniques. Recently, graph convolutional networks (GCNs) have received increased
popularity in machine learning for structured data. The first phenomenal work of GCN
was presented by Bruna et al. (2013), which developed a set of graph convolutional
operations based on spectral graph theory. The conventional GCN was introduced by
Kipf and Welling (2017) for the task of node classification, and they represent nodes by
repeated multiplication of augmented normalized adjacency matrix and feature matrix,
which can be interpreted as the first order approximation of localized spectral filters
on graphs (Hammond et al., 2011; Defferrard et al., 2016). GCNs have been widely
applied to a variety of machine learning tasks, including node classification (Kipf and
Welling, 2017), graph clustering (Duvenaud et al., 2015), link prediction (Kipf and
Welling, 2016; Schlichtkrull ez al., 2018), recommender systems (Berg et al., 2018),
etc.
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Fig. 1: LAT-GCN Framework

Despite the advantages in efficiently and effectively learning representations and
predictions, GCNs have been shown vulnerable to adversarial attacks. Although ad-
versarial learning has achieved significant progress in recent years (Szegedy et al.,
2014), the graph structure in GCNs constitutes an additional source of vulnerability.
The conventional approaches based on adversarial samples (a.k.a. attacks) are typically
motivated by adding imperceptible perturbation to images, followed by enforcing the
invariance of prediction outputs (Kurakin ef al., 2017). This corresponds to perturbing
node features in GCNs and has received very recent study. Feng ez al. (2019) introduced
the graph adversarial training as a dynamic regularization scheme based on graph struc-
ture. Deng et al. (2019) proposed a sample-based batch virtual adversarial training to
promote the smoothness of model.

However, the graph topology itself can be subject to attacks such as adding or delet-
ing edges or nodes. Ziigner et al. (2018) and Dai et al. (2018) constructed effective
structural attacks at both training time (poisoning) and testing time (evasion). Find-
ing the adversarial input graph is indeed a combinatorial optimization problem that is
typically NP-hard. Dai et al. (2018) proposed a reinforcement learning based attack
that learns a generalizable attack policy to mis-classify a target in both graph classi-
fication and node classification. Ziigner et al. (2018) introduced a surrogate model to
approximate the perturbed graph structure and feature. Both of these methods consid-
ered attacks at the test stage, i.e., evasion attacks. By solving a bilevel problem from
meta-learning, Ziigner and Giinnemann (2019) generated adversarial examples that are
graph structures, and in contrast to the previous attacks, they do not need to specify
the target. Their attack modifies the training data to undermine the performance, hence
a poison attack. Xu et al. (2019) proposed two attack methods: PGD topology attack
and min-max attack methods, which relaxed {0,1}" to [0,1]", leading to a continu-
ous optimization. They also proposed a robust training model by solving a min-max
problem.

Although the technique of adversarial sample can be directly applied to defend
against structural attacks, an immediate obstacle arises from computational complex-
ity. All the aforementioned structural attacks are much more computation intensive



than conventional attacks in image classification. Therefore alternating between model
optimization and adversarial sample generation can be prohibitively time consuming,
making a new solution principle in demand.

The goal of this paper, therefore, is to develop a new adversarial training algorithm
that defends against attacks on both node features and graph structure, while at the same
time maintaining or even improving the generalization accuracy. Our intuition draws
upon two prior works. Firstly, in the context of adversarial training on word inputs,
Miyato et al. (2017) noted that words are discrete and are not amenable to infinitesimal
perturbation. So they resorted to perturbing the word embeddings that are continuous.

A straightforward analogy of word embeddings in GCNss is the first layer output
HW) after graph convolution, which blends the information of both node features and
the graph. So we propose injecting adversarial perturbations to H(*), as shown by ¢
in Figure 1. This leads to indirect perturbations to the graph, which implicitly enforces
robustness to structural attacks. As shown in Section 3.1, this can be achieved via a
regularization term on H(!), completely circumventing the requirement of generating
adversarial attacks on the graph structure. We will refer to the approach as latent adver-
sarial training (LAT-GCN).

However, Miyato et al. (2017) also noted that “the perturbed embedding does not
map to any word” and “we thus propose this approach exclusively as a means of regu-
larizing a text classifier”. To address the analogous concern in GCNs, we leverage the
observation by Stutz et al. (2019) that adversarial examples can benefit both robustness
and accuracy if they are on the manifold of low-dimensional embeddings. Using H(")
as a proxy of the latent manifold, LAT-GCN manages to generate “on-manifold* pertur-
bations, which, as our experiments show in Section 4, help to reduce the success rate of
adversarial attacks for GCNs while preserving or improving the accuracy of the model.

2 Related Work

Vulnerability of deep neural networks has received intensive study in machine learning
(Szegedy et al., 2014; Huang et al., 2017; Song et al., 2018; Jia and Liang, 2017; He
et al., 2017). Some certifications of robustness have been established, such as Sinha et
al. (2018), Raghunathan et al. (2018), and Wong and Kolter (2018). Recently, investi-
gations have been made on the important trade-off between adversarial robustness and
generalization performance. Tsipras et al. (2019) showed that robustness may be at odds
with accuracy, and a principled trade-off was studied by Zhang et al. (2019), which de-
composed the prediction error for adversarial examples (robust error) into classification
error and boundary error, and a differentiable upper bound was derived by leveraging
classification calibration. A number of works also analyzed the robust error in terms of
generalization error (e.g., Schmidt ef al., 2018; Cullina et al., 2018; Yin et al., 2018).
However all these analyses are on continuous input domains, typically with “imper-
ceptible perturbations”. In contrast, our focus is on adversarial robustness with respect
to discrete objects such as network structures. Although it is hard to extend the afore-
mentioned theoretical trade-off to the new setting, we demonstrate empirically that our
novel adversarial training algorithm is able to improve both robustness and accuracy for
graph data learning algorithms that are based on node embeddings, e.g., through GCNs.



2.1 Adpversarial attacks on link prediction

Since GCNs embed both the structure and feature information simultaneously, different
adversarial attacks have been proposed recently. For the task of link prediction, Kipf and
Welling (2016) introduced a GCN-based graph auto-encoder (GAE) which reconstructs
the adjacency matrix from node embeddings produced by GCNs, and it outperformed
spectral clustering (Tang and Liu, 2011) and DeepWalk (Perozzi et al., 2014). Following
GAE, Tran (2018) proposed an architecture to learn a joint representation of local graph
structure and available node features for multi-task learning in both link prediction and
semi-supervised node classification.

Unfortunately, GAEs are still short of robustness under adversarial link attacks.
Chen et al. (2018b) proposed an iterative gradient attack based on the gradient in-
formation in the trained model, and GAEs were shown vulnerable to just a few link
perturbations. In order to improve the robustness, Pan et al. (2019) designed an adver-
sarial training method by virtually attacking the node features so that their latent rep-
resentation matches a prior Gaussian distribution. Xu et al. (2019) proposed two attack
methods: PGD topology attack and min-max attack methods, which relaxed {0, 1}"
to [0, 1]", leading to a continuous optimization. They also proposed a robust training
model by solving a min-max problem. All the above-mentioned approaches rely on ad-
versarial examples to improve the robustness of the model for either node classification
or link prediction. However, their methods need to generate the adversarial instance,
either at the attack stage or at the training stage. In contract, LAT-GCN does not look
for the exact adversarial examples, which is much less time consuming.

Naturally, the same idea can be applied to link prediction amounting to similar ro-
bustness and improvement in generalization accuracy, because GAE reconstructs the
adjacency matrix based on node embeddings, which in turn employs GCNs as the en-
coder.

Parallel to our work, Wang et al. (2019) proposed DefNet to defend against ad-
versarial attacks on GCNs in a conditional manner. It investigates vulnerabilities via
graph encoder refining, and addresses discrete attacks via adversarial contractive learn-
ing. Both our method and theirs can reduce the attack success rate to about 60% on
node classification tasks. However, our approach is much simpler and is more generally
applicable to other tasks such as link prediction.

Notation. We denote the set of vertices for a graph G as V, and denote the feature
matrix as X € R"*%, where n = |V| and d is the number of node features. Let £ be the
set of existing edges, and A € R™*" be the adjacency matrix, whose entries are 0 or
1 for unweighted graphs. After adding a self loop to each node, we have A=A+1
and we construct a diagonal matrix with ]5,, => y A” The augmented normalized

adjacency matrix is then defined as A = D~Y/2AD~1/2,
3 Latent Adversarial Training of GCNs

The original GCN model employs a forward propagation of representation as:

HFY = g(AHOWEHD) 1 >0, (1)



where the initial node representation is H(®) = X. Without loss of generality, let us
consider a two-layer GCN, which is commonly used in practice. Then the standard
GCN tries to find the optimal weights 8 := (W), W (2)) that minimize some loss fg
(e.g., cross-entropy loss) over the latent representation H(?). That is, ming fo(G, X).

In order to improve the robustness to the perturbation in input feature X, Feng et
al. (2019) and Deng et al. (2019) considered generative adversarial training over X,
which at a high level, optimizes ming max,cc fg(G, X +r). Here r is the perturbation
chosen from a constrained domain C.

Naturally, it is also desirable to defend against attacks on the graph topology of G.
Such structural attacks have been studied in Dai ez al. (2018); Ziigner et al. (2018);
Ziigner and Gilinnemann (2019), but no corresponding defense algorithm has been pro-
posed yet. Different from attacks on X, here the attacks on G are discrete (hence not
imperceptible per se), and finding the most effective attacks can be NP-hard. This cre-
ates new obstacles to generative adversarial training, and therefore we resort to a regu-
larization approach based on the latent layer H().

Specifically, considering that the information in G and X is summarized in the first
layer output H(™), we can adopt generative adversarial training directly on H(1):

minmax fo(H®Y + ¢), 2
8 (ep

where the symbol fg is overloaded to denote the loss based on H(") with perturbation ¢.
The benefits are two folds. Firstly, H(?) is continuously valued, making it meaningful to
apply small perturbations to it, which indirectly represent the perturbations in X and G.
Secondly, Stutz et al. (2019) argued that perturbation at latent layers (such as H(»)) are
more likely to generate “on-manifold” samples that additionally benefits generalization,
while perturbations in the raw input space (e.g., X) is likely to deviate from the original
data manifold and hence irrelevant to generalization.
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Fig. 2: Scatter plot of the Lo displacement of hidden representation before and after Nettack, for
both first and second layers. Each dot corresponds to a node. Citeseer: d® : 0.048 + 0.084,
d® :0.038 4 0.083, Cora: dV) : 0.216 + 0.122, d? : 0.486 =+ 0.265. The single outlier (top
right) corresponds to the targeted node.

Unfortunately, the perturbation ¢ in (2) is chosen jointly over all nodes in the graph
setting, which is different from the common adversarial setting where each individual
example seeks its own perturbation independently. As a result, the computational cost
is higher, which is further exacerbated by the nested min-max optimization. To alleviate
this problem, we adopt the standard regularization variant of adversarial training, which
aims to promote the smoothness of model predictions with respect to the perturbations:



min Lo(A,X) = fo(HY) +Re(HM), ®)

where v > 0 is a trade-off parameter, and the regularizer R is defined as the Frobenius
distance between the original second layer output and that after perturbing H():

- ~ 2
Re(HD) =max HA (H<1> + c) wW® _AHOW®) H . @)
{eD F
Here we constrain the perturbed noise to be imperceptible via D := {¢ : [|{;.]|, <
6,Vi € {1,...,n}}, where ¢;, stands for the i-th row of ¢. This row-wise L, ., regu-

larization on ( is critical for good performance. As we observed in practice, changing
it to the Frobenius norm of ¢ leads to significantly inferior performance.

To gain a deeper insight into why this Ly ., norm on ¢ outperforms Frobenius norm,
we empirically examined the change of hidden representations after applying Nettack
(Ziigner et al., 2018). With a target node randomly selected, we define

a® = HHZ({) - H;S”H2 VieV,

where H® and H' () are the hidden representations of the [-th layer upon the comple-
tion of vanilla GCN training, based on the graphs before and after applying Nettack,
respectively. The changes in Ly norm are demonstrated in Figure 2 where each dot cor-
responds to a node, and the outlier in the top-right corner corresponds to the target node.
Interestingly, most nodes undergo very little change (including neighbors of the target),
while only the target node suffers a large change. Such an imbalanced distribution in-
dicates that it is more reasonable to consider the largest norm of changes, rather than
their sum or average (as in the Frobenius norm).

Although (3) is still a min-max problem, the inner maximization problem in Rg
is now decoupled with the loss fg, hence solvable with much ease. Indeed, both the
objective and the constraint are quadratic, permitting efficient computation of gradient
and projection. We also note in passing that turning the adversarial objective (2) into a
regularized objective (3) is a commonly adopted technique, and their relationship has
been studied by, e.g., Shafieezadeh-Abadeh ez al. (2017).

3.1 Optimization

Since the objective (3) intrinsically couples all nodes, we apply ADAM to find the op-
timal @ using the entire dataset as the mini-batch (Kingma and Ba, 2015). The major
complexity stems from VgRe(H™)), which can be readily computed using the Dan-
skin’s theorem (Bertsekas, 1995). To this end, we first simplify (4) by

Re(HW) = mgx HACW(z)Hi st |1l <e. 3

. 2
Once we find the optimal ¢*, the gradient in 0 is simply V¢ HAC*W(Q) HF To find ¢*,
note the gradient in ¢ is



Algorithm 1 Latent adversarial training for GCN

input A, X
1: while not converged for (3) do
2:  while not converged for (5) do
3 Apply ADAM to find ¢* using the gradient in ¢ computed from Eq (6).
4:  end while
5:  Take one step of ADAM in @ with the gradient computed by Ve fo(H®) +
~ 2
1w Ao
F
6: end while

Ve tr(ACWCTAT) = (WTC n WCT) AAT, 6)

where W = WOW® " Although the constraint ||¢;.|| < € is convex and projection
to it is trivial, the objective maximizes a convex function. So we simply use ADAM
to approximately solve for ¢. Empirical results in Table 1 show that the additional op-
timization does not incur much computation. ADV-GCN is the classical adversarial
training where we sampled 20 nodes from the training set, which were successively
taken as the target for Nettack Ziigner et al. (2018) to find 20 adversarial graphs. And
MIN-MAX GCN is the adversarial training algorithm in Xu et al. (2019) which is based
on a node attack algorithm CE-PDG with e = 5%. Since the noise ¢ is applied to all
the nodes, Eq (5) becomes more expensive to solve as the number of node grows. The
overall procedure is summarized in Algorithm 1.

Table 1: CPU wall-clock time in seconds (200 epochs on CPU only)
[V| | |€] |GCN|ADV-GCN|MIN-MAX GCN|LAT-GCN
Citeseer| 2110 | 3668 | 7.01 13.3 4012.2 25.49
Cora | 24855069 | 6.26 15.7 1823.7 23.90
PubMed|19717]44324/31.18| 53.4 out of memory | 133.64

4 Experiment 1: Node Classification

We tested the performance of LAT-GCN on a range of standard citation datasets for
node classification, including CiteSeer, Cora, and PubMed (Sen et al., 2008). The com-
peting baselines include the vanilla GCN, FastGCN (Chen et al., 2018a), SGCN (Chen
et al., 2017), SGC (Wu et al., 2019) and GAT (Veli¢kovi¢ et al., 2018). All hyper-
parameters in respective models followed from the original implementation, including
step size, width of layers, etc. Since the optimal objective value in (5) is quadratic in €,
only the value of ve2 matters for LAT-GCN. So we fixed y=0.1, and only tuned ¢.

Finally, all algorithms were applied in a transductive setting, where the graph was
constructed by combining the nodes for training and testing. Accordingly, perturbation
¢ was applied to both training and test nodes in (4) for training LAT-GCN.
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Fig. 3: Test accuracy of LAT-GCN on Cora as a function of €

Table 2: Test accuracy (%) for node prediction
CiteSeer | Cora |PubMed
GCN |[70.9 £ .5(81.4 £ .4(79.0 + 4
FastGCN (68.8 4 .6(79.8 &+ .3|77.4 + .3
SGCN |70.8 +.1|81.7 + .5|79.0 + 4
SGC [719 £ .1{81.0£.0{789 £ .0
GAT [72.5 £+ .7/83.0 £ .779.0 £ .3
LAT-GCN|72.1 + 4|82.3 &+ .3|78.8 & .7

Table 3: Test accuracy (%) with different settings of LAT-GCN. Subscript indicates the layer(s)
perturbed in LAT-GCN.

GCN | LAT-GCN; | LAT-GCN; | LAT-GCN;j 2
Citeseer | 71.6 72.5 71.9 72.2
Cora 83.4 84.4 84.0 84.2
PubMed | 82.8 85.6 84.2 84.4

Comparison of accuracy. We first compared the test accuracy as shown in Table 2.
Each test was based on randomly partitioning the nodes into training and testing for 20
times. Clearly, LAT-GCN delivers similar accuracy compared with all the competing
algorithms.

In order to study the influence of € on the performance of LAT-GCN, we plotted
in Figure 3 how the test accuracy changes with the value of . We again used the Cora
dataset for training. Interestingly, the accuracy tends to increase as € grows from 0 to
0.17, and then drops for larger €. This is consistent with the observation in Stutz et al.
(2019) where robustness is shown to be positively correlated with generalization, as
long as the data points are not perturbed away from the latent manifold. In addition, we
also measured the influence of attacking two layers instead of just the first one. Table 3
shows the test accuracy under the four combinations of settings. Perturbing both layers
has similar performance as when only the first layer is perturbed. So for the benefit of
computational cost, our model only perturbs the first layer.

We also varied the training set size in {10%, 20%, ...,80%} of the entire dataset,
and plotted how the hyperparameter € affects the test accuracy. There is no perturbation
when e =0 ory = 0.



Similar trends as above were observed in the results for Cora and CiteSeer, relegated
to Figures 4 and 5, respectively.
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Fig. 4: Test accuracy of LAT-GCN on Cora as a function of €, over different sizes of training data.
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Fig. 5: Test accuracy of LAT-GCN on Citeseer as a function of €, over different sizes of training
data.

Comparison of robustness. We next evaluated the robustness of LAT-GCN under Net-
tack, an evasion attack on graphs that was specifically designed for GCNs (Ziigner et
al., 2018). The goal is to perform small perturbations on graph G = (A, X), leading to
anew graph G’ = (A’,X’), such that the classification performance drops as much as
possible. Analogous to “imperceptible perturbations”, Nettack imposes a budget on the
number of allowed changes:

S K = X0+ 0 A — AL <A

Since the logits in prediction are complicated by the nonlinear activation function o,
Ziigner et al. (2018) first introduced a surrogate model that replaces o with the identity



function, leading to a linearized GCN:

)
Vo;Co

Ls(A,X; W, v,) = max [AQXW}

c#co

- [A2xW]|

Vo,C

where v, is the target node of attack, and ¢, is the original label of v,. Now the aim
becomes to solve argmax 5 x/) Ls(A', X'; W, v,).
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Fig. 6: Success rate on Cora with increasing value of A

However, this problem is still intractable because the domain is discrete. To sim-
plify, they defined scoring functions that evaluate the surrogate loss obtained after
adding/deleting an edge e or a feature f:

Sstruct(e; G, Uo) = ‘cS(Alv X;W, ’UO),
Sfeature(f; G, Uo) = ‘Cs(Aa Xl; W, U0)~

Then Nettack proceeds iteratively, where each step greedily selects an edge e or a fea-
ture f which allow either Ss¢yyct OF Sfeqture to be maximally increased. The algorithm
terminates when the budget is depleted. Since our focus here is on structural attacks, we
only considered attacking the structure A, or attacking both structure A and feature X.
We will refer to our results as LAT-GCN-A and LAT-GCN-AX, respectively. ¢ was set
to 0.1 for LAT-GCN.

We first compared LAT-GCN to vanilla GCN when the perturbation budget A in
Nettack was increased from 1 to 10. The test procedure is detailed in Algorithm 2,
where the performance metric is the attack success rate. Since Nettack is targeted, we
randomly sampled 100 nodes from the test set as the target.

From Figure 6, it is clear that LAT-GCN enjoys significantly lower success rate than
GCN on the Cora dataset, under both attack strategies.

Moreover, we compare the success rate with different robust training models. We
compared our method (LAT-GCN) with the robust training method in Xu et al. (2019)
(MIN-MAX GCN) which is based on a node attack algorithm CE-PDG with € = 5%.
We obtained robust models from both methods, and then evaluated them by running
Algorithm 2. In particular, we set the hidden unit to 32 and € = 5% when training the
robust models. We reported the results in Table 4 where LAT-GCN clearly outperforms
other methods in robustness.



Table 4: Success Rate (%)

GCN|ADV-GCN|MIN-MAX GCN|LAT-GCN
Cora | 87 84 71 62
Citeseer| 84 82 73 67
PubMed| 85 79 out of memory 75

Table 5: AUC and AP scores on the test set for link prediction. GCN-1 and GCN-2 stand for
GCN with one and two hidden layers, respectively. The second to the fourth columns under
GCN-1 show the test performance when edges in E¢yqirn are added or removed randomly under a
budget p in the perturbation of A, i.e., |[A’ — All; < p|V|*.
GCN-1

SC | DW |ARGA p=0p=001p=005p=01 GCN-2||[LAT-GCN
AUC||0.805]|0.805| 0.924 {|0.692 0.713  0.694  0.635 |0.8618| 0.945

CiteSeer| b 10.850[0.836] 0.930 0702 0723 0.670 0.636 | 0.867 | 0.952
Cora |AUC[[0846[0.8310.924 [0.876 0.892  0.846  0.815 | 0.902 || 0.931

AP [0.885(0.850| 0.926 [|0.873 0.896  0.849 0.817 | 0911 | 0.943
pubned | AUC|[0-842[0.844 0.968 [[0.954 0949 0.900 0879 [0.962 [ 0957

AP |(0.878]|0.841| 0.971 [|0.954 0.950  0.905 0.882 | 0.963 0.958

S Experiment 2: Link Prediction

Besides predicting the properties of each node, another important application of graph
is to predict whether a pair of nodes should be connected by an edge. Applications
include social network, recommender system, and knowledge graph.

Followed by the work from Kipf and Welling (2016), assuming we have a graph
G = (V, &), our goal can be written
as reconstructing the adjacency matrix P by using GCN’s output Z:

P=o (ZZT) , (o applied element-wise) @)
Z = GCN(A,X) = Ao (AXW(U) W ®

where o can be the sigmoid function to represent the probability of connection, or
simply a sign function. Intuitively, since each row of Z corresponds to the embedding
of a node, (7) uses their pairwise inner product to determine whether they are to be
connected.

We partition the set of edges € into Erains €.y Eiv iy Efbsts Erest» Where + and —
represent the existent and non-existent edges. In order to ensure proper node embed-
ding, we enforce that &4, covers all the nodes in the link prediction task.

Similar to node prediction, adversarial training can be achieved by incorporating a
regularizer which penalizes the change of the prediction under the perturbation, i.e.,

F(AX) = Lo(P. A)+ A o (227) o (2:2] )
eD

where Z¢ = A (U (AXW(I)) + C) W® and ||¢;.|| < eforalli € |V)]. It is natural

to base the regularizer on the variation of ZZ T because ultimately the adjacency matrix



Table 6: Success rate for Nettack-link and random attack under a budget of A edges for structure

attack
Model Attacker CiteSeer Cora PubMed
A 1 5 10 201 5 10 201 5 10 20
GCN Nettack-link|0.12 0.33 0.54 0.86|0.09 0.27 0.45 0.83(0.10 0.24 0.41 0.73
LAT-GCN-A|Nettack-link|0.15 0.25 0.43 0.69/0.08 0.21 0.38 0.65(0.08 0.21 0.34 0.67
GCN random |0.05 0.13 0.17 0.23]0.01 0.08 0.17 0.31|0.00 0.03 0.11 0.18
LAT-GCN-A| random |0.06 0.14 0.15 0.20{0.02 0.09 0.17 0.29]|0.00 0.05 0.09 0.20

Algorithm 2 Evaluation of robustness

input A X, A (budget of Nettack)
I: sgen = sLarcen = 0
2: T := sample 100 nodes from test set to attack
3: for ue T (target of attack) & g € {GCN, LAT-GCN} do

4:  ¢g:= evaluate(u, g(A, X))

5:  ifcyg = cirue(u) then

6: A’ X' + Nettack(A, X, u, A)
7: Sg 1= Sg + 0(cg # Cirue(u))

8: endif

9: end for

output success rates: sgen/ | T, sLarcen/ [T

P is based on ZZ". In practice, however, we noticed that the performance does not
change noticeably if we directly regularize the variation of ZZ ' :

F(8,X) = Lo(P,A) + Amax |zz" - z.Z] |’ ©)
€D

Here Z simplifies to AXW® 4 ¢ when a one-layer GCN is used. Similar to (4),
the inner maximization over ¢ can be solved by ADAM as in Section 3.1. We will
again refer to the adversarial objective (9) as LAT-GCN. Although GCNs used in link
prediction are often referred to as graph auto-encoders (GAE), we will stick with the
term “GCN” to simplify terminology. Indeed, many of the discussions and approaches
based on GCNss in this paper are applicable to more general graph neural networks.

Comparison of accuracy. We compared one-layer LAT-GCN against vanilla GCN and
three more baselines. Spectral clustering (Tang and Liu, 2011) is an effective approach
to learn node embedding. DeepWalk (Perozzi et al., 2014) is also a popular approach
to represent nodes into a continuous vector space. Adversarial regularized auto-encoder
(Pan et al., 2019) generates adversarial examples from node embedding. Table 5 shows
that with a slight perturbation on the latent layer in GCN, the LAT-GCN outperforms
GCN in area under ROC curve (AUC) and average precision (AP) on CiteSeer and Cora
datasets. Here the results are reported based on the optimal tuned hyperparameter, with
e = 0.1 and v = 0.02 for both CiteSeer and Cora. Moreover, Figure 7 shows how the
varied value of € impacts the performance of LAT-GCN (v fixed to 0.1). Clearly only
small values of e can be helpful.
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Fig.7: AUC and AP curves of LAT-GCN with varied values of €

Although LAT-GCN does not perform the best on PubMed, our further experi-
ment suggests that robustness is probably not positively correlated with generalization
performance on this dataset. In particular, analogous to standard data augmentation,
we randomly added or removed p |V|2 number of edges in &;.q4n, Where the budget
p € {0.01,0.05,0.1}. So the resulting unnormalized adjacency matrix A’ deviates
from A in Ly norm by at most p |V|?. We call it random attack (RA). Interestingly, as
shown in the four columns underneath GCN-1 (one-layer GCN), increasing p from 0O to
0.01 does improve the test AUC and AP for CiteSeer and Cora, but further increasing p
starts to be harmful. In contrast, the performance on PubMed decays monotonically as
p grows, suggesting that enforcing robustness to adversarial attacks on this dataset may
be conflicting with generalization.

Comparison of robustness. Since no specialized algorithm is available that adversar-
ially attacks link prediction under GCNs, we designed a novel extension of Nettack,
called Nettack-link, for this setting in addition to random attacks. Given a targeted link
(u,v), denote 0, , = 1 if (u,v) is in &£, and —1 otherwise. Nettack-link considers the
change of P, ,, under perturbations of node features and graph structure, i.e.,

Sstruct(e;Ay (U,U)) = 5u,v . (1Og Pu,v - log P;ﬂ;) 5

for perturbing another edge e. Here we can restrict the candidate edge e to one-hop or
two-hop away from either u or v. By greedily picking an edge e whose addition/removal
maximizes Sg¢ryct(€; A, (u,v)), the algorithm can progressively find A number of edges
to attack the target link prediction (u,v). To facilitate an efficient computation which
avoids computing Sstruct(e; A, (u,v)) from scratch every time, we followed the lin-
earization recipe from Ziigner et al. (2018), and identified an incremental procedure.

Table 6 shows the success rate of the two attacks, where both the set of existing
and non-existing edges get a budget of A edges to remove or add, respectively. The
test protocol followed Algorithm 2, except that we randomly picked 100 (existent or
nonexistent) edges to attack in step 2. Clearly Nettack-list is much more effective than
random attack. Both GCN and LAT-GCN suffer an increased rate of being successfully
attacked as the budget grows, but LAT-GCN is more robust than GCN with a lower
success rate in general.



6 Experiment 3: Recommendation

Finally we studied another effective application of GCNs: recommendation by matrix
completion (GC-MC, Berg et al., 2018). Compared with the general structured graph
above, here the graphs are bipartite with two groups of nodes such as users and items,
and links only span between nodes of different groups. To model the R levels of ratings
(or other discrete recommendation levels), a set of adjacency matrices {A1, -, Agr}
are constructed for each rating type r € R, where A, is sized N,,-by-N, for N,, users
and N, items, respectively. The (u, v)-th entry of A, is | if and only if the user u gives
a rating of r to the item v, and O else. Normalization of A, follows as above.

After GCN propagation is completed on each graph separately, the representation of
an item or user is formed by aggregating its corresponding embeddings in the R graphs,
using concatenation or summation. The final rating for a (user, item) pair can then be
predicted based on the inner product between the embeddings of the user and item, akin
to link prediction.
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Fig. 8: Accuracy for MovieLen 100k with respect to € in LAT-GCN (left), and the attack budget
A (right)

Since there is no customized attacking algorithm for this setting, we resorted to
random attack where a rating is randomly selected and flipped to another level; for
simplicity, we did not consider just removing or adding ratings. The fact that random
attack is not targeted allows us to present robustness and generalization performance
in one plot. We followed the same setting as the GC-MC model, including the learning
rate, dimensions of hidden layers, etc. Summation was applied to aggregate embeddings
from five graphs, and we tested on the Movielens 100k dataset'.

Figure 8 (left) shows that the test accuracy increases when LAT-GCN imposes a
small perturbation on the GCN layer in training, but eventually the test accuracy decays.
This is similar to Figure 7. Furthermore, we varied the budget A for randomly flipping
the ratings in the training data. As Figure 8 (right) shows, the test accuracy of LAT-GCN
(with € fixed to 0.1) keeps higher than that of vanilla GCN for a range of A.

7 Conclusion

In this work, we proposed a new regularization technique for GCN which not only im-
proves generalization, but also defends against attacks in both node feature and graph
structure. Superior empirical performance is achieved on node classification and link

"https://grouplens.org/datasets/movielens/
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prediction problems. The method, which is based on perturbing latent representations,
can be extended to adversarial training of other graph learning problems, such as rec-
ommender systems, and dynamic and multi-modal graphs.
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