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Abstract

Many machine learning algorithms can be formulated in the framework of statis-
tical independence such as the Hilbert Schmidt Independence Criterion. In this
paper, we extend this criterion to deal with structured and interdependent obser-
vations. This is achieved by modeling the structures using undirected graphical
models and comparing the Hilbert space embeddings of distributions. We apply
this new criterion to independent component analysis and sequence clustering.

1 Introduction

Statistical dependence measures have been proposed as a unifying framework to address many ma-
chine learning problems. For instance, clustering can be viewed as a problem where one strives to
maximize the dependence between the observations and a discrete set of labels [15]. Conversely, if
labels are given, feature selection can be achieved by finding a subset of features in the observations
which maximize the dependence between labels and features [16]. Similarly in supervised dimen-
sionality reduction [14], one looks for a low dimensional embedding which retains additional side
information such as class labels. Likewise, blind source separation (BSS) tries to unmix independent
sources, which requires a contrast function quantifying the dependence of the unmixed signals.

The use of mutual information is well established in this context, as it is theoretically well justified.
Unfortunately, it typically involves density estimation or at least a nontrivial optimization procedure
[12]. This problem can be averted by using the Hilbert Schmidt Independence Criterion (HSIC). The
latter enjoys concentration of measure properties and it can be computed efficiently on any domain
where a Reproducing Kernel Hilbert Space (RKHS) can be defined.

However, the application of HSIC is limited to independent and identically distributed (iid) data, a
property that many problems do not share (e.g., BSS on audio data). For instance many random
variables have a pronounced temporal or spatial structure. A simple motivating example is given in
Figure 1a. Assume that the observations xt are drawn iid from a uniform distribution on {0, 1} and
yt is determined by an XOR operation via yt = xt ⊗ xt−1. Algorithms which treat the observation
pairs {(xt, yt)}∞t=1 as iid will consider the random variables x, y as independent. However, it is
trivial to detect the XOR dependence by using the information that xi and yi are, in fact, sequences.

In view of its importance, temporal correlation has been exploited in the independence test for blind
source separation. For instance, [9] used this insight to reject nontrivial nonseparability of nonlinear
mixtures, and [19] exploited multiple time-lagged second-order correlations to decorrelate over time.

∗This is the long version. A short version published at NIPS is available at http://nips.cc.
†This work was partially done when the author was with the Statistical Machine Learning Group of NICTA.
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Figure 1: From left to right: (a) Graphical model representing the XOR sequence, (b) a graphical
model representing iid observations, (c) a graphical model for first order sequential data, and (d) a
graphical model for dependency on a two dimensional mesh.

These methods work well in practice. But they are rather ad hoc and appear very different from
standard criteria. In this paper, we propose a framework which extends HSIC to structured non-
iid data. Our new approach is built upon the connection between exponential family models and
the marginal polytope in an RKHS. This is doubly attractive since distributions can be uniquely
identified by the expectation operator in the RKHS and moreover, for distributions with conditional
independence properties the expectation operator decomposes according to the clique structure of
the underlying undirected graphical model [2].

2 The Problem

Denote by X and Y domains from which we will be drawing observations Z :=
{(x1, y1), . . . , (xm, ym)} according to some distribution p(x, y) on Z := X × Y . Note that the
domains X and Y are fully general and we will discuss a number of different structural assumptions
on them in Section 3 which allow us to recover existing and propose new measures of dependence.
For instance x and y may represent sequences or a mesh for which we wish to establish dependence.

To assess whether x and y are independent we briefly review the notion of Hilbert Space embeddings
of distributions [6]. Subsequently we discuss properties of the expectation operator in the case of
conditionally independent random variables which will lead to a template for a dependence measure.

Hilbert Space Embedding of Distribution LetH be a RKHS on Z with kernel v : Z ×Z 7→ R.
Moreover, let P be the space of all distributions over Z , and let p ∈ P . The expectation operator in
H and its corresponding empirical average can be defined as in [6]

µ[p] := Ez∼p(z) [v(z, ·)] such that Ez∼p(z)[f(z)] = 〈µ[p], f〉 (1)

µ[Z] :=
1
m

m∑
i=1

v((xi, yi), ·) such that
1
m

m∑
i=1

f(xi, yi) = 〈µ[Z], f〉 . (2)

The map µ : P 7→ H characterizes a distribution by an element in the RKHS. The following theorem
shows that the map is injective [17] for a large class of kernels such as Gaussian and Laplacian RBF.

Theorem 1 If Ez∼p [v(z, z)] < ∞ and H is dense in the space of bounded continuous functions
C0(Z) in the L∞ norm then the map µ is injective.

2.1 Exponential Families

We are interested in the properties of µ[p] in the case where p satisfies the conditional indepen-
dence relations specified by an undirected graphical model. In [2], it is shown that for this case the
sufficient statistics decompose along the maximal cliques of the conditional independence graph.

More formally, denote by C the set of maximal cliques of the graph G and let zc be the restriction
of z ∈ Z to the variables on clique c ∈ C. Moreover, let vc be universal kernels in the sense of [18]
acting on the restrictions of Z on clique c ∈ C. In this case, [2] showed that

v(z, z′) =
∑
c∈C

vc(zc, z′c) (3)
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can be used to describe all probability distributions with the above mentioned conditional indepen-
dence relations using an exponential family model with v as its kernel. Since for exponential families
expectations of the sufficient statistics yield injections, we have the following result:

Corollary 2 On the class of probability distributions satisfying conditional independence properties
according to a graphGwith maximal clique set C and with full support on their domain, the operator

µ[p] =
∑
c∈C

µc[pc] =
∑
c∈C

Ezc
[vc(zc, ·)] (4)

is injective if the kernels vc are all universal. The same decomposition holds for the empirical
counterpart µ[Z].

The condition of full support arises from the conditions of the Hammersley-Clifford Theorem [4, 8]:
without it, not all conditionally independent random variables can be represented as the product of
potential functions. Corollary 2 implies that we will be able to perform all subsequent operations on
structured domains simply by dealing with mean operators on the corresponding maximal cliques.

2.2 Hilbert Schmidt Independence Criterion

Theorem 1 implies that we can quantify the difference between two distributions p and q by simply
computing the square distance between their RKHS embeddings, i.e., ‖µ[p]− µ[q]‖2H. Similarly,
we can quantify the strength of dependence between random variables x and y by simply measuring
the square distance between the RKHS embeddings of the joint distribution p(x, y) and the product
of the marginals p(x) · p(y) via

I(x, y) := ‖µ[p(x, y)]− µ[p(x)p(y)]‖2H . (5)
Moreover, Corollary 2 implies that for an exponential family consistent with the conditional inde-
pendence graph G we may decompose I(x, y) further into

I(x, y) =
∑

c∈C
‖µc[pc(xc, yc)]− µc[pc(xc)pc(yc)]‖2Hc

=
∑

c∈C

{
E(xcyc)(x′cy

′
c) + Excycx′cy

′
c
− 2E(xcyc)x′cy

′
c

}
[vc((xc, yc), (x′c, y

′
c))] (6)

where bracketed random variables in the subscripts are drawn from their joint distributions and un-
bracketed ones are from their respective marginals, e.g., E(xcyc)x′cy

′
c

:= E(xcyc)Ex′cEy′c . Obviously
the challenge is to find good empirical estimates of (6). In its simplest form we may replace each of
the expectations by sums over samples, that is, by replacing

E(x,y)[f(x, y)]← 1
m

m∑
i=1

f(xi, yi) and E(x)(y)[f(x, y)]← 1
m2

m∑
i,j=1

f(xi, yj). (7)

3 Estimates for Special Structures
To illustrate the versatility of our approach we apply our model to a number of graphical models
ranging from independent random variables to meshes proceeding according to the following recipe:

1. Define a conditional independence graph.
2. Identify the maximal cliques.
3. Choose suitable joint kernels on the maximal cliques.
4. Exploit stationarity (if existent) in I(x, y) in (6).
5. Derive the corresponding empirical estimators for each clique, and hence for all of I(x, y).

3.1 Independent and Identically Distributed Data

As the simplest case, we first consider the graphical model in Figure 1b, where {(xt, yt)}Tt=1 are
iid random variables. Correspondingly the maximal cliques are {(xt, yt)}Tt=1. We choose the joint
kernel on the cliques to be

vt((xt, yt), (x′t, y
′
t)) := k(xt, x′t)l(yt, y

′
t) hence v((x, y), (x′, y′)) =

T∑
t=1

k(xt, x′t)l(yt, y
′
t). (8)
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The representation for vt implies that we are taking an outer product between the Hilbert Spaces on
xt and yt induced by kernels k and l respectively. If the pairs of random variables (xt, yt) are not
identically distributed, all that is left is to use (8) to obtain an empirical estimate via (7).

We may improve the estimate considerably if we are able to assume that all pairs (xt, yt)
are drawn from the same distribution p(xt, yt). Consequently all coordinates of the mean
map are identical and we can use all the data to estimate just one of the discrepancies
‖µc[pc(xc, yc)]− µc[pc(xc)pc(yc)]‖2. The latter expression is identical to the standard HSIC crite-
rion and we obtain the biased estimate

Î(x, y) = 1
T trHKHL where Kst := k(xs, xt), Lst := l(ys, yt) and Hst := δst − 1

T . (9)

3.2 Sequence Data

A more interesting application beyond iid data is sequences with a Markovian dependence as de-
picted in Figure 1c. Here the maximal cliques are the sets {(xt, xt+1, yt, yt+1)}T−1

t=1 . More gen-
erally, for longer range dependency of order τ ∈ N, the maximal cliques will involve the random
variables (xt, . . . , xt+τ , yt, . . . , yt+τ ) =: (xt,τ , yt,τ ).

We assume homogeneity and stationarity of the random variables: that is, all cliques share the same
sufficient statistics (feature map) and their expected value is identical. In this case the kernel

v0((xt,τ , yt,τ ), (x′t,τ , y
′
t,τ )) := k(xt,τ , x′t,τ )l(yt,τ , y′t,τ )

can be used to measure discrepancy between the random variables. Stationarity means that
µc[pc(xc, yc)] and µc[pc(xc)pc(yc)] are the same for all cliques c, hence I(x, y) is a multiple of
the difference for a single clique.

Using the same argument as in the iid case, we can obtain a biased estimate of the measure of
dependence by using Kij = k(xi,τ , xj,τ ) and Lij = l(yi,τ , yj,τ ) instead of the definitions of K and
L in (9). This works well in experiments. In order to obtain an unbiased estimate we need some
more work. Recall the unbiased estimate of I(x, y) is a fourth order U-statistic [6].

Theorem 3 An unbiased empirical estimator for ‖µ[p(x, y)]− µ[p(x)p(y)]‖2 is

Î(x, y) := (m−4)!
m!

∑
(i,j,q,r)

h(xi, yi, . . . , xr, yr), (10)

where the sum is over all terms such that i, j, q, r are mutually different, and

h(x1, y1, . . . , x4, y4) :=
1
4!

(1,2,3,4)∑
(t,u,v,w)

k(xt, xu)l(xt, xu) + k(xt, xu)l(xv, xw)− 2k(xt, xu)l(xt, xv),

and the latter sum denotes all ordered quadruples (t, u, v, w) drawn from (1, 2, 3, 4).

The theorem implies that in expectation h takes on the value of the dependence measure. To estab-
lish that this also holds for dependent random variables we use a result from [1] which establishes
convergence for stationary mixing sequences under mild regularity conditions, namely whenever
the kernel of the U-statistic h is bounded and the process generating the observations is absolutely
regular. See also [5, Section 4].

Theorem 4 Whenever I(x, y) > 0, that is, whenever the random variables are dependent, the
estimate Î(x, y) is asymptotically normal with

√
m(Î(x, y)− I(x, y)) d−→ N (0, 4σ2) (11)

where the variance is given by

σ2 =Var [h3(x1, y1)]2 + 2
∞∑
t=1

Cov(h3(x1, y1), h3(xt, yt)) (12)

and h3(x1, y1) :=E(x2,y2,x3,y3,x4,y4)[h(x1, y1, . . . , x4, y4)] (13)

This follows from [5, Theorem 7], again under mild regularity conditions (note that [5] state their
results for U-statistics of second order, and claim the results hold for higher orders). The proof is
tedious but does not require additional techniques and is therefore omitted.
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3.3 TD-SEP as a special case

So far we did not discuss the freedom of choosing different kernels. In general, an RBF kernel will
lead to an effective criterion for measuring the dependence between random variables, especially in
time-series applications. However, we could also choose linear kernels for k and l, for instance, to
obtain computational savings.

For a specific choice of cliques and kernels, we can recover the work of [19] as a special case of our
framework. In [19], for two centered scalar time series x and y, the contrast function is chosen as
the sum of same-time and time-lagged cross-covariance E[xtyt]+E[xtyt+τ ]. Using our framework,
two types of cliques, (xt, yt) and (xt, yt+τ ), are considered in the corresponding graphical model.
Furthermore, we use a joint kernel of the form

〈xs, xt〉 〈ys, yt〉+ 〈xs, xt〉 〈ys+τ , yt+τ 〉 , (14)

which leads to the estimator of structured HSIC: I(x, y) = 1
T (trHKHL+ trHKHLτ ). Here Lτ

denotes the linear covariance matrix for the time lagged y signals. For scalar time series, basic alge-
bra shows that trHKHL and trHKHLτ are the estimators of E[xtyt] and E[xtyt+τ ] respectively
(up to a multiplicative constant).

Further generalization can incorporate several time lagged cross-covariances into the contrast func-
tion. For instance, TD-SEP [19] uses a range of time lags from 1 to τ . That said, by using a nonlinear
kernel we are able to obtain better contrast functions, as we will show in our experiments.

3.4 Grid Structured Data

Structured HSIC can go beyond sequence data and be applied to more general dependence structures
such as 2-D grids for images. Figure 1d shows the corresponding graphical model. Here each node
of the graphical model is indexed by two subscripts, i for row and j for column. In the simplest
case, the maximal cliques are

C = {(xij , xi+1,j , xi,j+1, xi+1,j+1, yij , yi+1,j , yi,j+1, yi+1,j+1)}ij .

In other words, we are using a cross-shaped stencil to connect vertices. Provided that the kernel v can
also be decomposed into the product of k and l, then a biased estimate of the independence measure
can be again formulated as trHKHL up to a multiplicative constant. The statistical analysis of
U-statistics for stationary Markov random fields is highly nontrivial. We are not aware of results
equivalent to those discussed in Section 3.2.

4 Experiments
Having a dependence measure for structured spaces is useful for a range of applications. Analogous
to iid HSIC, structured HSIC can be applied to non-iid data in applications such as independent
component analysis [13], independence test [6], feature selection [16], clustering [15], and dimen-
sionality reduction [14]. The fact that structured HSIC can take into account the interdependency
between observations provides us with a principled generalization of these algorithms to, e.g., time
series analysis. In this paper, we will focus on three examples: 1. independence test where structured
HSIC is used as a test statistic, 2. independent component analysis where we wish to minimize the
dependence, and 3. time series segmentation where we wish to maximize the dependence instead.

4.1 Independence Test

We first present two experiments that use the structured HSIC as an independence measure for
non-iid data, namely XOR binary sequence and Gaussian process. With structured HSIC as a test
statistic, we still need an approach to building up the distribution of the test statistic under the null
hypothesis H0 : x ⊥⊥ y. For this purpose, we generalize the random shuffling technique commonly
used for iid observations [6] into a clique-bundled shuffling. This shuffling technique randomly pairs
up the observations in x and y. Depending on the clique configurations of structured HSIC, one
observation in x may be paired up with several observations in y. The observations corresponding
to an instance of a maximal clique need to be bundled together and shuffled in blocks. For instance,
if the maximal cliques are {(xt, yt, yt+1)}, after shuffling we may have pairs such as (x3, y8, y9)
and (x8, y3, y4), but never have pairs such as (x3, y4, y9) or (x4, y3, y8), because y3 is bundled
with y4, and y8 is bundled with y9. If structured HSIC has a form of (9) with kernels K and L
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Table 1: The number of times HSIC and structured HSIC rejected the null hypothesis.

data HSIC p-value Structured HSIC p-value
XOR 1 0.44±0.29 100 0±0

RAND 1 0.49±0.28 0 0.49±0.31

possibly assuming more general forms like k(xi,τ , xj,τ ), the shuffling can be performed directly on
the kernel entries. In this case, the kernel matrices K and L for x and y can be computed offline and
separately. Given a permutation π, a shuffle will change Lst into Lπ(s)π(t). The random shuffling is
usually carried out many times and structured HSIC is computed at each time, which results in the
null distribution.

4.1.1 Independence Test for XOR Binary Sequences

In this experiment, we compared iid HSIC and structured HSIC in terms of their performance on
independence test. We generated two binary sequences x and y of length T = 400. The observa-
tions in x were drawn iid from a uniform distribution over {0, 1}. y were determined by an XOR
operation over observations from x: yt = xt ⊗ xt−1. If we treat the observation pairs as iid, then
the two sequences must appear independent. The undirected graphical model for this data is shown
in Figure 1b.

For iid HSIC, we used maximal cliques {(xt, yt)} to reflect its underlying iid assumption. The corre-
sponding kernel is δ(xs, xt)δ(ys, yt). The maximal cliques for structured HSIC are {(xt−1, xt, yt)},
which takes into account the interdependent nature of the observations. The corresponding kernel
is δ(xs−1, xt−1)δ(xs, xt)δ(ys, yt). We tested the null hypothesis H0 : x ⊥⊥ y with both methods
at significance level 0.01. The distributions of the test statistics was built by shuffling the paring of
kernel entries for 1000 times.

We randomly instantiated the two sequences for 100 times, then counted the number of times each
method rejected the null hypothesis (Table 1 XOR row). Structured HSIC did a perfect job in detect-
ing the dependence between the sequences, while normal HSIC almost completely missed that out.
For comparison, we also generated a second dataset with two independent and uniformly distributed
binary sequences. Now both methods correctly detected the independence (Table 1 RAND row).
We also report the mean and standard deviation of the p-values over the 100 instantiations of the
experiment to give a rough picture of the distribution of the p-values.

4.1.2 Independence Test for Gaussian Processes

In this experiment, we generated two sequences x = {xt}Tt=1 and y = {yt}Tt=1 using the following
formulae:

x = Au and y = A
(
εu+

√
1− ε2v

)
, (15)

where A ∈ RT×T is a mixing matrix, and u = {ut}Tt=1 and v = {vt}Tt=1 are sequences of iid zero-
mean and unit-variance normal observations. ε ∈ [0, 1] and larger values of ε lead to higher depen-
dence between sequences x and y. In this setting, both x and y are stationary Gaussian processes.
Furthermore, due to the mixing matrix A (especially its non-zero off-diagonal elements), obser-
vations within x and y are interdependent. We expect that an independence test which takes into
account this structure will outperform tests assuming iid observations. In our experiment, we used
T = 2000 and Aab = exp(− |a− b| /25) with all elements below 0.7 clamped to 0. This banded
matrix makes the interdependence in x and y localized. For structured HSIC, we used the maximal
cliques {(xt,τ , yt,τ )} where τ = 10 and linear kernel 〈xs,10, xt,10〉 〈ys,10, yt,10〉.
We varied ε ∈ {0, 0.05, 0.1, . . . , 0.7}. For each value of ε, we randomly instantiated u and v for
1000 times. For each instantiation, we followed the strategy in [10] which formed a new subse-
quence of length 200 by resampling every d observations and here we used d = 5. We tested
the null hypothesis H0 : x ⊥⊥ y with 500 random shuffles, and the nominal risk level was set to
α = 0.01. When ε = 0 we are interested in the Type I error, i.e., the fraction of times when H0
is rejected which should be no greater than the α. When ε > 0 we are concerned about the same
fraction, but now called empirical power of the test because a higher value is favored. d and τ
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Figure 2: Independence test for Gaussian process.

were chosen to make the comparison fair. Smaller d includes more autocorrelation and increases
the empirical power for both iid HSIC and structured HSIC, but it causes higher Type I error [see
e.g., Table II in 10]. We chose d = 5 since it is the smallest d such that Type I error is close to the
nominal risk level α = 0.01. τ is only for structured HSIC, and in our experiment higher values
of τ did not significantly improve the empirical power, but just make the kernels more expensive to
compute.

In Figure 2, we plot the number of times H0 is rejected. When ε = 0, x and y are independent and
both iid HSIC and structured HSIC almost always accept H0. When ε ∈ [0.05, 0.2], i.e., x and y
are slightly dependent, both tests have a low empirical power. When ε > 0.2, structured HSIC is
considerably more sensitive in detecting dependency and consistently rejects H0 more frequently.
Note u and v have the same weight in (15) when ε = 2−1/2 = 0.71.

4.2 Independent Component Analysis

In independent component analysis (ICA), we observe a time series of vectors u that corresponds to
a linear mixture u = As of n mutually independent sources s (each entry in the source vector here
is a random process, and depends on its past values; examples include music and EEG time series).
Based on the series of observations t, we wish to recover the sources using only the independence
assumption on s. Note that sources can only be recovered up to scaling and permutation. The core
of ICA is a contrast function that measures the independence of the estimated sources. An ICA
algorithm searches over the space of mixing matrix A such that this contrast function is minimized.
Thus, we propose to use structured HSIC as the contrast function for ICA. By incorporating time
lagged variables in the cliques, we expect that structured HSIC can better deal with the non-iid
nature of time series. In this respect, we generalize the TD-SEP algorithm [19], which implements
this idea using a linear kernel on the signal. Thus, we address the question of whether correlations
between higher order moments, as encoded using non-linear kernels, can improve the performance
of TD-SEP on real data.

Data Following the setting of [7, Section 5.5], we unmixed various musical sources, combined
using a randomly generated orthogonal matrix A (since optimization over the orthogonal part of
a general mixing matrix is the more difficult step in ICA). We considered mixtures of two to four
sources, drawn at random without replacement from 17 possibilities. We used the sum of pairwise
dependencies as the overall contrast function when more than two sources were present.

Methods We compared structured HSIC to TD-SEP and iid HSIC. While iid HSIC does not take
the temporal dependence in the signal into account, it has been shown to perform very well for
iid data [13]. Following [7], we employed a Laplace kernel, k(x, x′) = exp(−λ‖x − x′‖) with
λ = 3 for both structured and iid HSIC. For both structured and iid HSIC, we used gradient descent
over the orthogonal group with a Golden search, and low rank Cholesky decompositions of the Gram
matrices to reduce computational cost, as in [3].
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Table 2: Median performance of ICA on music using HSIC, TDSEP, and structured HSIC. In the top
row, the number n of sources andm of samples are given. In the second row, the number of time lags
τ used by TDSEP and structured HSIC are given: thus the observation vectors x, xt−1, . . . , xt−τ
were compared. The remaining rows contain the median Amari divergence (multiplied by 100) for
the three methods tested. The original HSIC method does not take into account time dependence
(τ = 0), and returns a single performance number. Results are in all cases averaged over 136
repetitions: for two sources, this represents all possible pairings, whereas for larger n the sources
are chosen at random without replacement.

Method n = 2, m = 5000 n = 3, m = 10000 n = 4, m = 10000
1 2 3 1 2 3 1 2 3

HSIC 1.51 1.70 2.68
TDSEP 1.54 1.62 1.74 1.84 1.72 1.54 2.90 2.08 1.91
Structured HSIC 1.48 1.62 1.64 1.65 1.58 1.56 2.65 2.12 1.83

Results We chose the Amari divergence as the index for comparing performance of the various
ICA methods. This is a divergence measure between the estimated and true unmixing matrices,
which is invariant to the output ordering and scaling ambiguities. A smaller Amari divergence
indicates better performance. Results are shown in Table 2. Overall, contrast functions that take
time delayed information into account perform best, although the best time lag is different when the
number of sources varies.

4.3 Time Series Clustering and Segmentation

We can also extend clustering to time series and sequences using structured HSIC. This is carried
out in a similar way to the iid case. One can formulate clustering as generating the labels y from a
finite discrete set, such that their dependence on x is maximized [15]:

maximizey trHKHL subject to constraints on y. (16)

Here K and L are the kernel matrices for x and the generated y respectively. More specifically,
assuming Lst := δ(ys, yt) for discrete labels y, we recover clustering. Relaxing discrete labels to
yt ∈ R with bounded norm ‖y‖2 and setting Lst := ysyt, we obtain Principal Component Analysis.

This reasoning for iid data carries over to sequences by introducing additional dependence structure
through the kernels: Kst := k(xs,τ , xt,τ ) and Lst := l(ys,τ , yt,τ ). In general, the interacting label
sequences make the optimization in (16) intractable. However, for a class of kernels l an efficient
decomposition can be found by applying a reverse convolution on k.

4.3.1 Efficient Optimization for Convolution Kernels

Suppose the kernel l assumes a special form given by

l(ys,τ , yt,τ ) =
∑τ

u,v=0
l̄(ys+u, yt+v)Muv, (17)

where M ∈ R(τ+1)×(τ+1) is positive semi-definite, and l̄ is a base kernel between individual time
points. A common choice is l̄(ys, yt) = δ(ys, yt). In this case we can rewrite trHKHL by applying
the summation over M to HKH , i.e.,

T∑
s,t=1

[HKH]ij
τ∑

u,v=0

l̄(ys+u, yt+v)Muv =
T+τ∑
s,t=1

τ∑
u,v=0

s−u,t−v∈[1,T ]

Muv[HKH]s−u,t−v

︸ ︷︷ ︸
:=K̄st

l̄(ys, yt) (18)

This means that we may apply the matrix M to HKH and thereby we are able to decouple the
dependency within y. That is, in contrast to l which couples two subsequences of y, l̄ only couples
two individual elements of y. As a result, the optimization over y is made much easier. Denoting
the convolution by K̄ = [HKH] ? M , we can directly apply (16) to time series and sequence data
in the same way as iid data, treating K̄ as the original K. In practice, approximate algorithms such
as incomplete Cholesky decomposition are needed to efficiently compute and represent K̄.
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Figure 3: Illustration of error calculation. Red lines denote the ground truth and blues line are the
segmentation results. The error introduced for segment R1 to R′1 is a+ b, while that for segment R2

to R′2 is c+ d. The overall error in this example is then (a+ b+ c+ d)/4.

4.3.2 Empirical Evaluation
Datasets We studied two datasets in this experiment.

1. Swimming Dataset. The first dataset was collected by the Australian Institute of Sports (AIS)
from a 3-channel orientation sensor attached to a swimmer which monitors: 1. the body orientation
by a 3-channel magnetometer; 2. the acceleration by a 3-channel accelerometer. The three time
series we used in our experiment have the following configurations: T = 23000 time steps with 4
laps; T = 47000 time steps with 16 laps; and T = 67000 time steps with 20 laps. The task is to
automatically find the starting and finishing time of each lap based on the sensor signals. We treated
this problem as a segmentation problem, and used orientation data for our experiments because they
lead to better results than the acceleration signals. Since the dataset contains four different styles
of swimming, we assumed there are six states/clusters for the sequence: four clusters for the four
styles of swim, two clusters for approaching and leaving the end of the pool (finishing and starting
a lap, respectively).

2. BCI dataset. The second dataset is a brain-computer interface data (data IVb of Berlin BCI
group1). It contains EEG signals collected when a subject was performing three types of cued
imagination: left, foot, and relax. Between every two successive imaginations, there is an
interim. So an example state sequence is:

left, interim, relax, interim, foot, interim, relax, interim,...

Therefore, the left/foot/relax states correspond to the swimming styles and the interim cor-
responds to the turning at the end or beginning of the laps. Including the interim period, the dataset
consists of T = 10000 time points with 16 different segments (32 boundaries). The task is to
automatically detect the start and end of an imagination. We used four clusters for this problem.

We preprocessed the raw signal sequences by applying them to a bandpass filter which only keeps
the frequency range from 12Hz to 14Hz. Besides, we followed the common practice and only used
the following electrode channels (basically those in the middle of the test region):

33,34,35,36,37,38,39,42,43,44,45,46,47,48,49,51,52,53,54,
55,56,57,59,60,61,62,63,64,65,66,69,70,71,72,73,74,75.

Finally, for both swimming and BCI datasets, we smoothed the raw data with moving averages,
i.e., xt ←

∑w
τ=−w x

raw
t+τ followed by normalization to zero mean and unit variance for each feature

dimension. Here w is set to 100 for swimming data and 50 for BCI data due to its higher frequency
of state switching. This smoothed and normalized x was used by ALL the three algorithms.

Methods We compared three algorithms: structured HSIC for clustering, spectral clustering [11],
and HMM.

1. Structured HSIC. For the three swimming datasets, we used the maximal cliques of
{(xt, yt−50,100)} for structured HSIC, where y is the discrete label sequence to be generated.

1http://ida.first.fraunhofer.de/projects/bci/competition-iii/desc-IVb.html
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Table 3: Segmentation errors by various methods on the four studied time series.

Method Swimming 1 Swimming 2 Swimming 3 BCI
structured HSIC 99.0 118.5 108.6 111.5

spectral clustering 125 212.3 143.9 162
HMM 153.2 120 150 168

Time lagged labels in the maximal cliques reflect the fact that clustering labels keep the same for
a period of time. The kernel l on y took the form of equation (17), with M ∈ R101×101 and
Mab := exp(−(a− b)2). We used the technique described in Section 4.3.1 to shift the dependence
within y into x. The kernel k on x was RBF: exp(−‖xs − xt‖2). We performed kernel k-means
clustering based on the convolved kernel matrix K̄. To avoid the local minima of k-means, we
randomly initialized it for 20 times and reported the error made by the model which has the low-
est sum of point-to-centroid distances. The parameters for BCI dataset are the same, except that
M ∈ R51×51 to reflect the fact that state changes more frequently in this dataset.

2. Spectral clustering. We first applied the algorithm in [11] on x and it yielded far larger error, and
hence is not reported here. Then we applied its kernelized version to the convolved kernel K̄. We
used 100 nearest neighbors with distance function exp(−‖xi − xj‖2). These parameters delivered
uniformly best result.

3. HMM. We trained a first order homogeneous HMM by the EM algorithm with 6 hidden states for
swimming dataset and 4 states for BCI dataset, and its observation model contained diagonal Gaus-
sians. After training, we used Viterbi decoding to determine the cluster labels. We used the imple-
mentation from Torch2. To regularize, we tried a range of minimum variance σ ∈ {0.5, 0.6, ..., 2.0}.
For each σ, we randomly initialized the training of HMM for 50 times to avoid local maxima of EM,
and computed the error incurred by the model which yielded the highest likelihood on the whole
sequence. Finally, we reported the minimum error over all σ.

Results To evaluate the segmentation quality, the boundaries found by various methods were com-
pared against the ground truth. First, each detected boundary was matched to a true boundary, and
then the discrepancy between them was counted into the error. The overall error was this sum di-
vided by the number of boundaries. Figure 3 gives an example on how to compute this error.

According to Table 3, in all of the four time series we studied, segmentation using structured HSIC
leads to lower error compared with spectral clustering and HMM. For instance, structured HSIC
reduces nearly 1/3 of the segmentation error in the BCI dataset. We also plot the true boundaries
together with the segmentation results produced by structured HSIC, spectral clustering, and HMM
respectively. Figures 5 to 7 present the results for the three swimming datasets, and Figure 4 for
the BCI dataset. Although the results of swimming data in Figure 5 to 7 are visually similar among
all algorithms, the average error produced by structured HSIC is much smaller than that of HMM
or spectral clustering. Finally, the segment boundaries of BCI data produced by structured HSIC
clearly fit better with the ground truth.

5 Conclusion

In this paper, we extended the Hilbert Schmidt Independence Criterion from iid data to structured
and non-iid data. Our approach is based on RKHS embeddings of distributions, and utilizes the effi-
cient factorizations provided by the exponential family associated with undirected graphical models.
Encouraging experimental results were demonstrated on independence test, ICA, and segmentation
for time series. Further work will be done in the direction of applying structured HSIC to PCA and
feature selection on structured data.
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