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Abstract 
 

Over the recent years, text classification has become one of the key techniques for 
organizing information.  Since hand-coding text classifiers is impractical and 
hand-labeling text is time and labor consuming, it is preferable to learn classifiers from 
a small amount of labeled examples and a large example of unlabeled data.  In many 
cases, such as online information retrieval or database applications, such unlabeled data 
are easily and abundantly available. 

 
Although a lot of this kind of learning algorithms have been designed, most of them 
rely on certain assumptions, which are dependent on specific datasets.  Consequently, 
the lack of generality makes these algorithms unstable across different datasets.  
Therefore, we favor an algorithm with as little dependence on such assumptions or as 
weak assumption as possible. 

 
The maximum entropy models (MaxEnt) offers a generic framework meeting this 
requirement.  Built upon a set of features which is equivalent to undirected graphical 
models, it provides a natural leverage of feature selection.  Most importantly, the only 
assumption made by MaxEnt is that the average feature values on labeled data give a 
reasonable (not too deviated) estimation of those values on both labeled and unlabeled 
data.  This is a very weak statistical assumption, underpinning the generality of 
MaxEnt.  Even if the assumption is not strictly satisfied in some situations, theoretical 
bounds are derived on the generalization error.  Similar to soft-max regression, 
MaxEnt also employs a straightforward mechanism for multi-class classification.  
With its standard form equivalent to maximum likelihood estimation, there are 
numerous smoothing approaches proposed to overcome overfitting.  Several 
algorithms for solving this convex optimization problem are also proposed, with 
different performance and constraints. 

 
The main focus of the project is how to incorporate unlabeled data into MaxEnt.  As the 
standard MaxEnt does not perform satisfactorily, side information is considered to be 
added to MaxEnt, in forms of minimal spanning tree, k-nearest neighbor, 
multi-representation of examples, etc.  Our initial experimental result suggests that 
MaxEnt with side information is a promising tool.  Other promising research areas 
under this framework are also pointed out in this report, after a comprehensive survey 
on both learning with unlabeled data and MaxEnt. 
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Chapter 1 Introduction 
 

1.1    Motivation and background 
 
Suppose we work for a web site that maintains a public listing of second-hand books from 
many different companies or individuals.  A user of the web site might find books by browsing 
all books in a specific category.  However, these books are spidered from the Web, and do not 
come with any category label.  Instead of reading description of each book to manually 
determine the label, it would be helpful to have a system that automatically examines the text 
and makes the decision itself.  This automatic process is called text classification.  In general, 
text classification systems categorize documents into one (or several) of a set of pre-defined 
topics of interest.  Text classification is of great practical importance today given the massive 
volume of online text available, such as electronic text from the World Wide Web, electronic 
mail, corporate databases, chat rooms, and digital libraries.  By automatically populating and 
maintaining these taxonomies, we can aid people in their search for knowledge and 
information.  Other applications of text classification involves: cataloging news articles 
(Lewis & Gale, 1994; Joachims, 1998b); classifying web pages into a symbolic ontology 
(Craven et al., 2000); finding a person’s homepage (Shavlik & Eliassi-Rad, 1998); 
automatically learning the reading interests of users (Lang, 1995; Pazzani et al., 1996); 
automatically threading and filtering email by content (Lewis & Knowles, 1997; Sahami et al., 
1998); and book recommendation (Mooney & Roy, 2000).  
  
How are automatic text classifiers built?  Early attempts were based on the manual 
construction of rule sets, but at significant cost.  A more efficient approach is to use supervised 
learning to construct a classifier.  Here, we provide an algorithm with an example set of 
documents for each class, and allow it to find a representation or decision rule for classifying 
future documents.  This approach also gives high-accuracy classifiers, and is significantly less 
expensive than manual construction because the algorithm automatically constructs the 
decision rule itself.  Supervised text classification algorithms have been successfully used in a 
wide variety of practical domains, almost in all above mentioned applications. 
 
However, the supervised learning approach is not as effortless as we might hope.  One key 
difficulty with these algorithms is that they require a large, often prohibitive, number of 
labeled training examples to learn accurately.  Labeling must typically be done by a person.  
This is a painfully time-consuming process.  Take, for example, the task of learning which 
newsgroup articles are of interest to a particular person reading UseNet news.  Work by (Lang, 
1995) found that after a person read and hand-labeled about 1000 articles, a learned classifier 
achieved a precision of about 50% when making predictions for only the top 10% of 
documents about which it was most confident.  Most users of a practical system, however, 
would not have the patience to label a thousand articles, especially to obtain only this level of 
precision.  One would obviously prefer algorithms that can provide accurate classifications 
after hand-labeling only a dozen articles, rather than thousands.  This need for large quantities 
of expensive labeled examples raises an important question: what other sources of information 
can reduce the need for labeled data? 
 
One goal of this research project is to demonstrate that a new type of high-accuracy classifiers 
can be created with a small number of labeled examples and a large number of unlabeled 
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examples, which we call semi-supervised learning.  In general, unlabeled examples are much 
less expensive and easier to come by than labeled examples.  This is particularly true for text 
classification tasks involving online data sources, such as web pages, email, and news stories, 
where huge amounts of unlabeled text are readily available.  Collecting this text can frequently 
be done automatically, so it is feasible to quickly gather a large set of unlabeled examples.  If 
unlabeled data can be integrated into supervised learning, then building text classification 
systems will be significantly faster and less expensive than before. 
 

1.2 Why do unlabeled data help? 
  
At first glance, it might seem that nothing is to be gained from unlabeled data.  After all, an 
unlabeled document does not contain the most important piece of information ─ its class.   But 
thinking another way may reveal the value of unlabeled data.  In the field of information 
retrieval, it is well known that words in natural language occur in strong co-occurrrence 
patterns (van Rijsbergen, 1977).  Some words are likely to occur together in one document, 
others are not.  For example, when asking search engine Google about all web pages 
containing the words sugar and sauce, it returns 1,390,000 results.  When asking for the 
documents with the words sugar and math, we get only 191,000 results, though math is a more 
popular word on the web than sauce.  Suppose we are interested in recognizing web pages about 
cuisine. We are given just a few known cuisine and non-cuisine web pages, along with a large 
number of web pages that are unlabeled.  By looking at just the labeled data we determine that 
pages containing the word sugar tend to be about cuisine.  If we use this fact to estimate the 
classification of many unlabeled web pages, we might find that the word sauce occurs frequently in 
the unlabeled examples that are now believed to belong to the positive class. This co-occurrence of 
the words sugar and sauce over the large set of unlabeled training data can provide useful 
information to construct a more accurate classifier that considers both sugar and sauce as indicators 
of positive examples. 
 
In this project, we show how unlabeled data can be used to increase classification accuracy, 
especially when labeled data are scarce.  Formally, unlabeled data provide us with knowledge 
only of the distribution of examples in feature space.  In the most general case, distributional 
knowledge will not provide helpful information to supervised learning.  Consider classifying 
uniformly distributed instances based on conjunctions of literals.  Here there is no relationship 
between the uniform instance distribution and the space of possible classification tasks thus 
clearly, unlabeled data can not help. 
 
We need to introduce appropriate assumptions/biases into our learner by assuming some 
dependence between the instance distribution and the classification task.  Even standard 
supervised learning with labeled data must introduce bias in order to learn.  In a well-known 
and often-proven result in (Watanabe, 1969), the theorem of the Ugly Duckling shows that 
without bias all pairs of training examples look equally similar, and generalization into classes 
is impossible.  This result was foreshadowed long ago by both William of Ockham's 
philosophy of radical nominalism in the 1300's and David Hume in the 1700's. Somewhat 
more recently, (Zhang & Oles, 2000) formalized and proved that supervised learning with 
unlabeled examples must assume a dependence between the instance distribution and the 
classification task.  In this project, we assume the dependence can be captured by a maximum 
entropy model for text documents.   
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1.3 Why do we choose maximum entropy models? 
 
In principle, our maximum entropy model aims to maximize the entropy defined on 
conditional probability distribution, i.e., making one example’s probability of belonging to all 
possible classes as evenly as possible.  The probability is modeled to depend only on features, 
a kind of sufficient statistics defined on input attributes, instead of directly using the latter.  
This technique naturally allows for feature induction and feature selection.  Of course, 
constraints must be incorporated to fit the training data.  Just as almost all existing 
semi-supervised learning algorithms depend on certain assumptions, here we introduce an 
important assumption that the expected value of features can be estimated from labeled data to 
a good level.  Then we push our model to produce the same (or nearly same) average value on 
these features as the empirical average.  In the standard form, this approach proves just a dual 
problem of maximum likelihood.  But various smoothing techniques exist to overcome 
overfitting. 
 
We know this assumption is not very realistic, and that it will not capture the subtleties of the 
document writing process, or inversely the process by which readers discriminate the 
documents.  Nevertheless, these assumptions encode a relationship between the document 
distribution and the classification task in a way that allows unlabeled data to be incorporated 
into learning.  Besides, these statistical assumptions are rather generic and weak, weaker than 
those that are commonly made over distance metric or similarity measures.  Therefore, we 
expect that it will be less prone to the common algorithms’ instability across different datasets, 
due to the differing assumptions these datasets are based on. 
 
Maximum entropy models also serve as a flexible framework for incorporating various forms 
of side information, by means of modifying the constraints and objective function.  Useful side 
information may come from two sources: 

 Instance similarity.  This idea is based on the similarity between examples.  It includes 
(not restricted to) neighboring relationship between different instances, assuming nearby 
instances having similar classes (e.g., k nearest neighbor or minimal spanning tree); 
redundant description, assuming invariance in labeling under different descriptions (e.g., 
image and voice for identifying a person); or tracking the same object (e.g., multiple 
occurrence of a word in the same article for word sense disambiguation).   

 Class similarity.  This idea makes use of information on classification tasks that are likely 
to be related to each other, assuming that there is a subset of features behaving similarly 
across a subset of classes that are known to be similar.  Examples include combining 
different datasets (different distributions) which are for the same classification task; 
hierarchical classes; or structured class relationships (such as trees or other generic 
graphic models) for applications like word sense disambiguation exploiting synonyms, 
hyponyms and hypernyms. 

 
Although some forms of side information are rather based on problem specific assumptions 
which are what we wish to avoid, there is no reason not to utilize them if they work well and 
the maximum entropy model does offer such an opening. 
 

1.4 Organization of the report 
 
This report is composed of five chapters.  The next chapter surveys the existing text 
classification algorithm, especially in the area of semi-supervised learning.  After that, we 
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describe the various types of maximum entropy models in Chapter 3, including basic 
theoretical results related to standard model, smoothing techniques, and parameter estimation 
algorithms.  Then, we move on to the focus of our project: how to incorporate unlabeled data 
in to maximum entropy classifiers for text classification.  A number of challenges and 
promising research areas are pointed out and initial results are presented demonstrating the 
promise of the model.  Finally, the report is concluded in Chapter 5. 
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Chapter 2 Models using unlabeled data 
 
Text classification is a field with rich existing and ongoing research.  As a start of the project, a 
survey of the theoretical and empirical approaches used in this area is necessary for building a 
sound foundation.  This chapter discusses the history and state of the art in related works, including 
standard supervised learning, and semi-supervised learning using unlabeled data. 
 

2.1 Supervised Learning 
 
The machine learning technique for text classification can be traced at least back to Naive Bayes 
(NB) (Mitchell, 1997; Lewis, 1998), an early approach which is still enjoying popularity nowadays.  
Besides its competitive performance, its strength lies mainly in the straightforward probabilistic 
nature, amenable to a variety of extensions.  As a generative classifier, NB is often used as a 
multinomial model, i.e., a mixture of multinomials that tracks the number of times a word appears 
in a document without considering grammar or semantics (Lewis & Gale, 1994; Mitchell, 1997; 
Joachims, 1997; Li & Yamanishi, 1997; Lewis, 1998; McCallum & Nigam, 1998a; McCallum & 
Nigam, 1998b).  This corresponds to the unigram model in natural language processing (NLP).  
Based on NB, TAN trees (Sahami, 1996) incorporated limited word dependencies in the model.   
(Li & Yamanishi, 1997) relaxed the one-to-one class-to-component correspondence by treating the 
problem as statistical hypothesis testing over finite mixture models based on soft clustering.  A 
class hierarchy can be made use of through statistical shrinkage (McCallum & Nigam, 1998a) or 
other more ad-hoc techniques (Koller & Sahami, 1997). 
 
Other than NB, a variety of machine learning techniques have been applied to text classification. 
Support vector machines (Dumais et al., 1998; Joachims, 1998a), built upon statistical learning 
theory (Vapnik, 1998), is a popular and promising technique that significantly outperformed some 
other models in some tasks.  Other approaches have used maximum entropy (Nigam et al., 1999a), 
neural nets (Wiener et al., 1995; Shavlik & Eliassi-Rad, 1998) and several rule learning algorithms 
(Apte et al., 1994; Cohen & Singer, 1996; Moulinier et al., 1996; Craven et al., 1998).  Still others 
have used instance-based lazy learning methods like k-nearest neighbor (kNN) (Yang & Chute, 
1994; Cohen & Hirsch, 1998), and a variety of committee machine boosting approaches (Apte et al., 
1998; Sebastiani et al., 2000; Schapire & Singer, 2000).  Thus far, no specific technique has been 
proved as clearly better than the others, though some comparison works suggest that kNN and 
SVMs perform at least as well as other algorithms when the number of labeled data for each class of 
interest in large (Yang, 1999). 
 
For the practical problem of document representation, most studies use the simple bags-of-words 
method, tracking the number of times each word wi occurs in a document x (denoted as TF(wi, x)), 
or even just whether or not it occurred (binary).  More sophisticated models incorporate more 
substantial linguistic or semantic information and they have made at most modest improvements to 
accuracy.  (Salton & Buckley, 1998) showed that scaling the dimensions of the feature vector with 
their inverse document frequency (IDF(wi)) leads to an improved performance.  IDF(wi) is defined 
as log(n/DF(wi)) where n is the total number of documents, and DF(wi) is the number of documents 
the word wi occurs in.  (Furnkranz et al., 1998) uses shallow syntactic phrase patterns and finds 
some improvements to NB and rule learning algorithms.  (Mladenic, 1998) selects phrases of 
variable length from web pages.  (Rodriguez et al., 1997; Scott & Matwin, 1998) incorporated 
semantic network of the English language, WordNet. 
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2.2 Generative semi-supervised learning 
 
Generative learning models the probability of generating a data example for each class.  Given a 
data example, the posterior probability of its belonging to each class is then calculated using Bayes 
theorem.  The machine learning process that combines labeled and unlabeled data is called 
semi-supervised learning.  This idea is not new in the statistics community and it has been joined by 
the machine learning community for about 10 years.  At least as early as 1968, it was suggested that 
labeled and unlabeled could be combined for building classifiers with likelihood maximization by 
testing all possible class assignments (Hartley & Rao, 1968; Day, 1969).  (Day, 1969) presented an 
iterative EM-like approach for parameters of a mixture of two normal distributions with known 
covariances from unlabeled data alone.  Similar iterative algorithms for building maximum 
likelihood (ML) classifiers from labeled and unlabeled data are primarily for mixtures of normal 
distributions (McLachlan, 1975; Titterington, 1976). 
 
The seminal paper by (Dempster et al., 1977) presented the theory of the Expectation- 
Maximization (EM) framework, bringing together and formalizing many of the commonalities of 
previously suggested iterative techniques for likelihood maximization with missing data (or latent 
variables).  It was immediately recognized that EM is applicable to estimating ML or maximum a 
posteriori (MAP) parameters for mixture models from labeled and unlabeled data (Murray & 
Titterington, 1978) and then using this for classification (Little, 1977).  Since then, this approach 
continues to be used and studied (McLachlan & Ganesalingam, 1982; Ganesalingam, 1989; 
Shahshahani & Landgrebe, 1994).  EM and its application to mixture modeling enjoy a splendid 
history, summarized in (McLachlan & Basford, 1988; McLachlan & Krishnan, 1997; McLachlan 
& Peel, 2000). 
 
(Miller & Uyar, 1996; Nigam et al., 1998; Baluja, 1999) started using ML of mixture models to 
combine labeled and unlabeled data for classification.  (Ghahramani & Jordan, 1994) used EM to 
fill in missing feature values of examples when learning from incomplete data by assuming a 
mixture model.  Mixture models have also been used as a generative model for unsupervised 
clustering, whose parameters have been estimated with EM (Cheeseman et al., 1988; Cheeseman & 
Stutz, 1996; Hofmann & Puzicha, 1998).    Hierarchical mixture-of-experts are similar to mixture 
models, and their parameters are also typically set with EM (Jordan & Jacobs, 1994).  The first 
comprehensive work of semi-supervised generative model for text classification is (Nigam et al., 
1999b; Nigam, 2001). 
 

2.3 Discriminative semi-supervised learning 
 
For a lot of real world problems, we can not model the input distribution with sufficient accuracy or 
the number of parameters to estimate for generative model is too large.  Then a practical approach 
is to build classifier by directly calculating its probability of belonging to each class.  This is called 
discriminative model.  A transductive support vector machine (TSVM) (Vapnik, 1998) finds 
parameters for a linear separator with labeled training data and test data.  It is easily extended to 
training data with unlabeled examples.  At a high level, they work by finding the linear separator 
between the labeled examples of each class that maximizes the margin over both the labeled and 
unlabeled examples. (Joachims, 1999) demonstrated the efficacy of this approach for several text 
classification tasks.  (Bennett & Demiriz, 1999) proposed a computationally easier variant of 
TSVM and found small improvements on some datasets.  By intuition, TSVMs assume that 
unlabeled examples help find low-density regions of instance space where decision boundaries 
between classes lie in.  This is an important assumption called ‘cluster assumption’ because it is 
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equivalent to stating that two points are likely to have the same class if there is a path connecting 
them passing through regions of high density only.  For discriminative framework, most 
semi-supervised learning algorithms implicitly or explicitly make this assumption.  However, 
(Zhang & Oles, 2000) argues that TSVMs are asymptotically unlikely to be helpful for 
classification in general, both experimentally and theoretically (via Fisher’s information matrices) 
because such assumption may be violated. 
 
Some works by Jaakkola through the years are related to this project.  (Jaakkola et al., 2000) 
proposed a maximum entropy discrimination model based on maximum margin.  It is formulated as 
an optimization problem, with objective function being the maximum entropy distribution over 
classifier parameters, and the constraints being that the distance (margin) between each labeled 
example and decision boundary should be no less than a fixed value.  Of course, soft penalties can 
be adopted.  An interesting feature is that unlabeled data are also covered by margin constraints in 
order to commit to the class of unlabeled examples during parameter estimation by entropy 
maximization.  The contribution made by unlabeled data is to provide a more accurate distribution 
over the unknown class labels.  Classification is then performed in a Bayesian manner, combining 
the expected value of the example's class over the learned parameter distribution.  As for 
optimization method, an iterative relaxation algorithm is proposed that converges to a local minima, 
as the problem is not convex.  The experimental results for predicting DNA splice points using 
unlabeled data is encouraging. 
 
(Szummer & Jaakkola, 2001b) used kernel expansion for semi-supervised classification. It includes 
in the features of each labeled data the kernel densities between it and all other examples, including 
unlabeled data.  With these features, a linear separator for the classification can be derived by 
maximum entropy discrimination or maximum likelihood.  In essence, the relative importance of 
labeled data is further weighted by the unlabeled data according to the distribution density.  But 
how to select the form and width of the kernel is still an important, but open question. 
 

2.4 Theoretical value of unlabeled data 
 
In this project, we generally discuss the value of unlabeled data in empirical sense, but looking at 
the existing research on their theoretical value helps in knowing what the limit is.  (Ganesalingam 
& McLachlan, 1978) examined the simplest uni-variate normal distribution with variances known 
and equal.  They calculated the asymptotic relative value of labeled and unlabeled data to 
first-order approximation.  (O'Neill, 1978) calculated the same value further, but for multivariate 
normals with equivalent and known covariance matrices.  (Ratsaby & Venkatesh, 1995) used PAC 
framework to perform a similar analysis.  (Chen, 1995) worked on a class of mixture distributions 
(including normals) where the number of mixture components is bounded but not known.  He 
bounded the rate of convergence of parameter estimates from unlabeled examples but nothing was 
said about classification error.  All above mentioned results assume that the global ML 
parameterization is found instead of a local maxima, and the data were actually generated by the 
model used.  For the more general and challenging cases beyond normals, there are little known 
results.  (Cozman & Cohen, 2002) argued that unlabeled data can degrade the performance of a 
classifier when there are incorrect model assumptions (e.g., set of independence relations among 
variables or fixed number of labels).  (Castelli & Cover, 1995) showed that labeled data reduce 
error exponentially fast with an infinite amount of unlabeled data, assuming the component 
distributions are known, but the class-to-component correspondence is not known.  Further, 
(Castelli & Cover, 1996) obtained an important result that for class probability parameters 
estimation, labeled examples are exponentially more valuable than unlabeled examples, assuming 
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the underlying component distributions are known and correct.  (Zhang & Oles, 2000) examine the 
value of unlabeled data for discriminative classifiers such as TSVMs and for active learning.  As 
mentioned above, they cast doubt on the generality of the helpfulness of TSVMs. 
 

2.5 Active learning 
 
Closely related to semi-supervised learning, there is another interesting problem to ask: if we are 
offered a chance of labeling a limited number of data, what examples in the pool of unlabeled data 
are more important for building a classifier?  This is called selective sampling which is a form of 
active learning where one must select an existing example for labeling (Cohn et al., 1994).  As error 
is composed of bias and variance (Geman et al., 1992), one approach is to try to maximally reduce 
the variance component (Cohn et al., 1996).  Another approach is called query-by-committee (QBC) 
(Seung et al., 1992; Freund et al., 1997), whereby a committee of classifiers are built and the 
example with the highest classification variance is selected.  (Freund et al., 1997) showed 
theoretically that if there is no error in labeling, QBC can exponentially reduce the number of 
labeled examples needed for learning.    (Liere, 1999) used committees of multiple randomly 
initialized Perceptrons for QBC active learning for text classification.  There, the document 
selected for labeling is the one whose label is most disagreed by two randomly selected committee 
members. 
 
Applications of active learning and selective sampling text categorization are abundant. 
(Argamon-Engelson & Dagan, 1999) used a QBC to learn a part-of-speech tagger.  (McCallum & 
Nigam, 1998a) employed EM in pool-based QBC active learning for text classification.  For 
approaches based on a single classifier instead of a committee, (Lewis & Gale, 1994; Lewis, 1995) 
examined pool-based uncertainty sampling and relevance sampling.  (Schohn & Cohn, 2000) used 
an approach for SVM, selecting the example that is closest to the linear decision boundary given by 
the classifier.  (Tong & Koller, 2001) also used SVM, but did selection to maximally reduce the 
size of the version space of good hypotheses.  (Muslea et al., 2003) designed Aggressive Co-Testing, 
exploiting both strong and weak views for detecting the most informative examples.  On 33 
wrapper induction tasks, this algorithm required significantly fewer labeled examples.  
 

2.6 Other semi-supervised learning models 
 
Besides generative and discriminative approaches, there are also some other effective algorithms to 
make use of unlabeled data.  The early work of co-training describes every example by two disjoint 
views (Blum & Mitchell, 1998).  A case in point is web page classification, where each example 
has words occurring on a web page, and also anchor texts attached to hyperlinks pointing to the web 
page.  In essence, two learning algorithms are trained separately on each view and then each 
algorithm’s predictions on new unlabeled examples are used to enlarge the training set of the other.  
They also proved in a PAC-style framework that under certain theoretical assumptions, any weak 
hypothesis can be boosted from unlabeled data.  (Nigam & Ghani, 2000) argue that algorithms 
explicitly leveraging a natural independent split of the features outperform algorithms that do not.  
When a natural split does not exist, co-training algorithms that manufacture a feature split may 
out-perform algorithms not using a split.  These arguments help explain why co-training algorithms 
are both discriminative in nature and robust to the assumptions of their embedded classifiers.  
(Goldman & Zhou, 2000) went one step further, showing that co-training can even succeed on 
datasets without separate views, by carefully selecting underlying classifiers.   
 

 8



 

Also in the setting of co-training, (Collins & Singer, 1999) presented a boosting algorithm, coBoost.  
It builds a number of classifiers using different views of the data, and minimizes their difference of 
classification on the unlabeled data.   Some other bootstrapping techniques can learn from nearly no 
labeled data and iteratively develop a concept of interest.  (Riloff & Jones, 1999) requires only 
unannotated training texts and a handful of seed words for a category as input.  They use a mutual 
bootstrapping technique to alternately select the best extraction pattern for the category and 
bootstrap its extractions into the semantic lexicon, which is the basis for selecting the next 
extraction pattern.  (Yarowsky, 1995) bootstraps a word sense disambiguation algorithm.  
 
A simple thought leads us to use unlabeled data for reducing overfitting.  If we have two candidate 
classifiers or regressors, then overfitting is believed to occur (approximately) when the number of 
different classification on the unlabeled data is larger than the number of their errors on labeled data.  
(Schuurmans, 1997) used this observation for selecting the best complexity of a polynomial for 
regression and (Schuurmans & Southey, 2000) applied it for pruning decision trees.  (Cataltepe & 
Magdon-Ismail, 1998) extended the minimization criteria of mean squared error with terms based 
on unlabeled (and testing) data to reduce overfitting in linear regression. 
 

2.7 More notes on cluster assumption 
 
In section 2.3, we mentioned the cluster assumption, an important concept that underpins many 
discriminative semi-supervised learning models.  (Li & McCallum, 2004) argued that having a 
good distance metric is a key requirement for success in semi-supervised learning.  This is 
essentially borrowing techniques from unsupervised learning, which deals only with unlabeled data.  
This principle is implemented by three commonly used approaches: manifolds, kernels, and 
min-cut.  
 
(1)  Manifold.  The central idea of manifold is that classification functions are naturally defined 
only on the submanifold in question rather than the total ambient space.  So transforming the 
representation of examples into a reasonable model of manifold performs feature selection and thus 
improves classification.  As this process does not depend on examples’ label, unlabeled data can be 
naturally utilized.  For example, handwritten digit 0 can be fairly accurately represented as an 
ellipse, which is completely determined by the coordinates of its foci and the sum of distances from 
the foci to any point.  Thus the space of ellipses is a five-dimensional manifold.  Though an actual 
handwritten 0 may require more parameters (like 15 to 20), the dimensionality is absolutely less 
than ambient representation space, which is the number of pixels.  In text data, documents are 
typically represented by long vectors whereas researchers are convinced by experiments that its 
space is a manifold, with complicated intrinsic structure occupying only a tiny portion of the 
original space.  The main problem is how to choose a reasonable model of manifold, or more 
rigorously speaking, how to find a proper basis of the manifold space. 
 
(Belkin & Niyogi, 2002; Belkin & Niyogi, 2004) used the Laplace-Beltrami operator 

2
ii
2x∆ = − ∂ ∂∑ , which is positive-semidefinite self-adjoint on twice differentiable functions.  

When M  is a compact manifold, ∆  has a discrete spectrum and its eigenfunctions provide an 
orthogonal basis for the Hilbert space .  Suppose we are given k points x2 ( )L M 1,…, xk  and 
the first s < k points have labels .  First construct an adjacency graph with n nearest and 
reverse nearest neighbors, with distance defined as standard Euclidean distance in , or other 
distance like angle/cosine.  Then define adjacency matrix 

l∈R
{ 1,1}ic ∈ −

lR
k kW × .  wij = 1 if points xi and xj are close.  

Otherwise, wij = 0.  Compute p eigenvectors corresponding to the smallest p eigenvalues for 

 9



 

L W D= − , where D is a diagonal matrix of the same size as W and ii jij
D = W∑ .  They comprise 

matrix p kE × . Denote the left p s× sub-matrix as Elab and calculate 1( )T
lab lab laba E E E c−= T .  Finally, 

for xi (i > s) the rule for classification is: ci = 1 if 
1

0p
ij jj

e a
=

≥∑  and ci = -1 otherwise.  In essence, 

this is a spectral clustering and there are many variants of such a PCA-like data representation 
(Weiss, 1999; Ng et al., 2001). 
 
(2)  Kernel.  In this approach, kernels are designed so as to make the induced distance small for 
points in the same cluster and larger for points in different clusters.  As an extension of Fisher 
kernel (Jaakkola & Haussler, 1998),  a Marginalized kernel  for mixture of Gaussians ( , )k kµ Σ is 

proposed: 1
1

( , ) ( | ) ( | )q T
kk

K x y P k x P k y x y−
=

=∑ Σ  (Tsuda et al., 2002).  But in addition to common 
problem of generative models, this method requires building a generative model: finding 
parameters kµ  and  using unsupervised learning.  (Szummer & Jaakkola, 2001a) used RBF 
kernel matrix 

kΣ
exp( || || / )ij i jK x x σ= − −  and used it as a transition matrix of Markov random walk 

on a graph with vertices xi, ( ) /i j ij ipp
P x x K K→ = ∑ .  They designed a discriminative classifier 

based on t step transition matrix , where D is a diagonal matrix with . 1(tP D K−= )t
ii ijj

D K=∑
 
(Chapelle et al., 2002) proposed a framework of cluster kernels that unifies the Markov random 
walk, kernel PCA, and certain types of spectral clustering, by applying a transfer function to the 
eigenvalues of graph Laplacian for adjacency graph and then recover it.  The different forms of 
transfer function, such as step, linear-step, polynomial, play the central role of unification. 
 
(3)  Min-cut.  The intuition behind this method is to use pairwise relationships (more precisely, 
similarity measure) among the labeled and unlabeled examples to construct a graph, and then 
output a classification corresponding to partitioning the graph in a way that minimizes (roughly) 
the number of similar pairs of examples that are given different labels.  The idea originated from 
computer vision (Greig et al., 1989; Boykov et al., 1998; Yu et al., 2002).  (Blum & Chawla, 2001) 
applied it to semi-supervised learning.  The formulation is illustrated in Figure 1.   
 
 

+ 
A

v-v+

+ 

 
 
 
 
 
 
 
 
 
 
Figure 1:  Min-cut algorithm.  Three labeled examples are denoted with + and ─.  They are 
connected to respective classification nodes (denoted by triangles) with bold lines.  Other 
three nodes are unlabeled and finally the left one is classified as + and right two nodes as ─. 
 
v+ and v- are artificial vertices called classification nodes.  They are connected to positive and 
negative examples respectively, with infinite weight represented by bold lines.  The edges 
between example vertices are assigned weights based on some relationship between them, 
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such as similarity or distance.  Now we determine a minimum (v+, v-) cut for the graph, i.e., 
find the minimum total weight set of edges whose removal disconnects v+ and v-.  The problem 
can be solved using max-flow algorithm, in which v+ is the source, v- is the sink and the edge 
weights are treated as capacities (e.g., (Cormen et al., 2001)).  Removing the edges in the cut 
partitions the graph into two sets of vertices which we call V+ and V-, with v V , + +∈ v V− −∈ .  
We assign positive label to all unlabeled examples in V+ and negative labels to all examples in 
V-.  (Blum & Chawla, 2001) also showed several theoretical proofs for the equivalence 
between min-cut and leave-one-out error minimization under various kNN settings.   
 

But an obvious problem of min-cut is that it may lead to degenerative cuts.  Suppose A is the 
only negative-labeled example in Figure 1.  Then the partition given by min-cut may be the 
dashed line.  Obviously this is not desired.  The remedies in (Blum & Chawla, 2001), such as 
carefully adjusting edge weights, do not work across all problems they study.  (Joachims, 2003) 
proposed Spectral Graph Partitioning (SGT) with normalization, by dividing the cut by the product 
of the number of positive and negative examples.  He also approximated this NP-hard problem with 
the spectrum of Laplacian, and demonstrated its connection (equivalence) with TSVM, co-training 
and other kNN models.  He also posed three postulates for building a good transductive learning:  

1. It achieves low training error; 

2. the corresponding inductive learner is highly self-consistent (e.g., low leave-one-out error); 

3. Averages over examples (e.g., average margin, pos/neg ratio) should have the same 
expected value in the training and in the test set. 

  
The last postulate is very similar to the maximum entropy model which we will discuss in the 
next chapter.   
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Chapter 3 Maximum Entropy models 
 

Maximum Entropy (MaxEnt) modeling is a powerful and robust tool that has been 
successfully applied to a wide range of domains, including language modeling, species 
distribution modeling, as well as many other natural language tasks (Jaynes, 1957; Berger et 
al., 1996; Rosenfeld, 1996; Pietra et al., 1997; Ratnaparkhi, 1998; Phillips et al., 2004).    In 
this project, we put more focus on conditional MaxEnt than to (unconditional) random field 
MaxEnt.  The MaxEnt model can usually be expressed in the frame of generalized variants of 
Kullback-Leibler divergence, and has close relationship with boosting (Lebanon & Lafferty, 
2001; Collins et al., 2002).  For many problems, this type of modeling can be viewed as a 
variant of maximum likelihood (ML) training for exponential models, while at the same time 
making the model as similar as possible to the uniform distribution (minimizes KL 
divergence).  Like other ML methods, it is prone to overfitting of training data.  So an 
important direction of ME research is smoothing methods.   

 

3.1    Standard MaxEnt formulation 
 
One concept that contributed to the flexibility of MaxEnt is called features.  An event is 
decomposed into many features, which indicate the strength of certain aspects in the event.  
For the same event, different features can be defined or induced for different purposes.  For 
example, we can define if and only if the current word, which is part of document 
x, is “back” and the class y is verb.  Otherwise, f

( , ) 1tf x y =
t (x, y) = 0.  Real valued features are also 

sometimes used. 

The original MaxEnt model is formulated as follows.  We use i, j as index for examples, k as 
index for classes, t as index for features.  We use ( )ip x  to denote the empirical distribution 
(distribution for training examples) and p(xi) to denote the real distribution of examples.  

minimize ( ) ( | ) log ( | )i k i k
i k

ip x p y x p y x∑ ∑  (3.1) 

s.t. [ ] ( ) ( | ) ( , ) 0    for all p t i k i t i k
i k

E f p x p y x f x y−∑ ∑ t=  (3.2) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.3) 

where [ ] ( ) ( | ) ( , )p t i k i t i k
i k

E f p x p y x f x=∑ ∑ y . 

The dual problem is to minimize: 

 min( , ) [ ] ( ) logt p t i i
t i

L p E f p x Zλ λ= − +∑ ∑  (3.4) 

where exp ( , )i t t
k t

i kZ f x yλ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ . 

If we let ( ) ( )i ip x p x= , then it is equivalent to ML problem for logistic or soft-max regression, 
which maximizes: 
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( ) ( , ) log ( , ) ( , ) log ( ) ( , ) logi k i k i k i t t i k i
i k i k t

L p x y p x y p x y p x f x y Zλ λ⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∑∑ ∑∑ ∑ −  

= ( ) log ( ) ( , ) ( , ) ( ) logi i i k t t i k i i
i i k t i

p x p x p x y f x y p xλ+ −∑ ∑∑ ∑ ∑ Z

i

 

= ( ) log ( ) [ ] ( ) logi i t p t i
i t i

p x p x E f p xλ+ −∑ ∑ ∑ Z

i

                                     (3.5) 

This is equivalent to minimizing (3.4).  Making ( ) ( )ip x p x≠  will naturally extend the ML 
model to MaxEnt using unlabeled data x (formally, ( ) 0p x ≠  but ( )p x = 0), because Zi and the 
equation in (3.4) do not depend on the class of unlabeled data. 
 
According to (Pietra et al., 1997), we have a generalized Pythagorean theorem for random 
field.   Now we extend the conclusion to our conditional probability situation. 

We define 

{ }m += × →M X Y R   { ( ,
y

m m x y
∈

) 1}∆ = ∈ =∑
Y

M  

 
( | )( , ) ( ) ( | ) log ( | ) ( | )  on 
( | )

k i
i k i k i k i

i k k i

p y xD p q p x p y x p y x q y x
q y x

⎛ ⎞
− + ×⎜ ⎟

⎝ ⎠
∑ ∑ M M  (3.6) 

 ( ){ }1 0 0( , ) | ( | ) ( | ) exp , ( , ) ( , ( ))k i k i i k i iq f q q y x q y x f x y f x y xλ= ∈ = −Q M  (3.7) 

 ( ){ }2 0 0( , ) | ( | ) ( | ) exp , ( , ) , m
k i k i i kq f q q y x q y x f x yλ λ= ∈∆ ∝ ∈Q R  (3.8) 

 ( , ) ( ) ( | ) ( , ) [ ]i k i t i k p
i k

tp f p p x p y x f x y E f
⎧ ⎫

= ∈ =⎨ ⎬
⎩ ⎭

∑ ∑F M  (3.9) 

              (3.10) 1 0( , ) ( , )boostq p f q∈F Q∩★ f f2 0( , ) ( , )meq p f q∈F Q∩★

Then we have: 

If , then  and  both exist, are unique and satisfy: 0( , )D p q < +∞ boostq★
meq★

 
1 1

0arg min ( , ) arg min ( , ) arg min ( ) ( | )boost i kp q q i k
q D p q D p q p x q

∈ ∈ ∈
= = = iy x∑ ∑F Q Q

★  (3.11) 

 
2

0
1arg min ( , ) arg min ( , ) arg min ( ) log ( | )me ip q q k ii

q D p q D p q p x q y x∈ ∆ ∈ ∈
= = = ∑

2F Q Q∩

★  (3.12) 

And  can be computed in terms of  as . meq★
boostq★ arg min ( , )me boostp

q D p
∈ ∆

=
F∩

★ ★q

i

The proof is very similar to (Pietra et al., 1997) and the crux is to prove a generalized 
“Pythagorean theorem”:  

for any ,  , ,  ( || ) ( || ) ( || )
i ii M i M Mp q p D p q D p p D p q∈ ∈ ∈ = +F Q F Q∩  i = 1,2. 

The following figure gives a geometric view of the conclusion.  In (3.12), if we set q0 to 
uniform distribution, then  is actually the formulation from (3.1) to (3.3).  A 

more general and rigorous formulation is by using Bregman distance (Pietra et al., 2002; 
Collins et al., 2002). 

0arg min ( , )
p

D p q
∈ ∆F∩
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′1

meq★
boostq★

F

 

Q

∆F ∩

1Q 

 

 

 

 

 

 

Figure 2: Geometric view of duality.  Q  intersects with  at .  If we impose additional 
constraint that each conditional distribution be normalized, we introduce a Lagrange 
multiplier giving a higher dimensional family 

1 F boostq★

1′Q .  The projection of  on  should  boostq★ ∆F ∩
overlap with the intersection of 1′Q  and ∆F  , which is . ∩ meq★

 

3.2    Smoothing techniques for MaxEnt models 
 
It should not be surprising that MaxEnt can severely overfit training data when the constraints 
on the output distribution are based on feature expectations, especially if there is a very large 
number of feature.  Similar to ML models forcing probabilities to zero at unseen values, 
maximizing the entropy on real data often fails to produce finite parameters.  Formally 
speaking, suppose there are some features ft: ( , ) ( , ( )) 0  t tf x y f x y x− ≥ for all y and x with 

 or similarly . In this case the corresponding Lagrangian 
multipliers must approach infinity to satisfy the constraints (3.2).  If such features are the most 
important for classification, the effect is especially harmful.  On the other hand, we do expect 
that empirical averages will be close to their expectations and we often have bounds or 
estimates on deviation of empirical feature averages from their true expectations, which can be 
used as constraints or soft penalty parameters.  Therefore, we must consider smoothing 
techniques, which are divided into two categories: constraint relaxation and prior over 
exponential family distribution.  Sometimes, one technique can be interpreted in both ways. 

( ) 0p x > ( , ) ( , ( )) 0t tf x y f x y x− ≤

 
The simplest regularization is by using Gaussian Prior (Chen & Rosenfeld, 2000), which is 
equivalent to Maximum A Posterior (MAP) estimation problem for logistic or soft-max 
regression with Gaussian prior.  Introducing parameters iσ , the primal problem becomes: 

minimize: 
2

2( ) ( | ) log ( | )
2

t
i k i k i

i k t
p x p y x p y x σ

tδ+∑ ∑ ∑  (3.13) 

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t
i k

E f p x p y x f x y δ−∑ ∑ t=  (3.14) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.15) 

Its dual problem is: minimize 
2

2( ) [ ] ( ) log( )
2

t
t p t i i

t i t t

L E f p x Z λλ λ
σ

= − + +∑ ∑ ∑  (3.16) 
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where exp ( , )i t t
k t

i kZ f x yλ⎛ ⎞
= ⎜

⎝ ⎠
∑ ∑ ⎟  and optimization is over tλ ∈R .   

Another model is based on Laplace prior (Goodman, 2004).  Laplace prior has been studied in 
the context of neural networks by (Williams, 1995).  This formulation for MaxEnt is similar:   

minimize ( ) ( | ) log ( | )i k i k
i k

ip x p y x p y x∑ ∑  (3.17) 

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t
i k

E f p x p y x f x y A−∑ ∑ t≤  (3.18) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.19) 

The dual problem is to minimize: ( ) [ ] ( ) logt p t i i t t
t i t

L E f p x Z Aλ λ λ= − + +∑ ∑ ∑

i k

 (3.20) 

where exp( ( , ))i t t
k t

Z f x yλ=∑ ∑ , and At is the reciprocal of the standard deviation of ft (x, y) in 

training data.  The optimization is over 0tλ ≥ .  This problem is equivalent to maximizing: 

 ( | ) exp( )i i t t t
i t

p y x A Aλ× −∏ ∏  (3.21) 

with respect to 0tλ ≥ .   Here exp( )t t tA Aλ− 0tλ ≥ ( ) is obviously exponential prior. (3.18)
indicates this model also belongs to constraint relaxation.  Strictly speaking, Laplace prior 

means maximizing 1
( | ) exp

2
t

i i
i t t t

p y x
A A

λ
× −

⎛
⎜
⎝ ⎠

∏ ∏
⎞
⎟ .  But it is far easier to work with 

exponential prior, partly because it is difficult to find learning algorithms for Laplace prior 
due to its being nondifferentiable at 0tλ = .  Simply applying Kuhn-Tucker theorem, we 
expect that the resulting model will often favor Lagrangian multipliers that are exactly 0 (same 
conclusion applies to Laplace prior).  This means the corresponding features can be removed 
from model without changing its prediction behavior, but improving robustness.  Therefore, 
the model is useful as a kind of natural pruning, not found in Gaussian priors. 
 
The model has another important theoretical characteristic: in (3.18) we discount the observed 
average by At > 0.  This provides nice ground for discounting-based language modeling 
smoothing techniques, such as Kneser-Ney smoothing (Kneser & Ney, 1995; Chen & 
Goodman, 1999).  But as tλ  must be positive for exponential prior, special care must be paid 
to feature selection.  Suppose for a word sense disambiguation problem, we try to determine 
whether ‘cell’ means the biology or prison sense, with questions like whether the word 
‘reagent’ occurs nearby.  For Gaussian prior and Laplace prior, we only need to define f1 (x, y) 
= 1 iff ‘reagent’ occurs nearby and its corresponding Lagrangian multiplier will take value in 
(-∞, +∞).  But as we restrict tλ  to be positive for exponential prior, we must define two 
features: f1 (x, y) = 1 iff ‘reagent’ occurs nearby; f2 (x, y) = 1 iff ‘prisoner’ occurs nearby.  We 
have two non-negative weights, one pushing towards one answer and the other pushing 
towards the other. 
 
Extending exponential prior more, we arrive at Inequality MaxEnt, using box-type inequality 
constraints (Newman, 1977; Khudanpur, 1995; Kazama & Tsujii, 2003).  The primal problem 
is: 

miminize ( ) ( | ) log ( | )i k i k
i k

ip x p y x p y x∑ ∑  (3.22) 
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s.t. [ ] ( ) ( | ) ( , )     for all t p t i k i t i k t
i k

B E f p x p y x f x y A t− ≤ − ≤∑ ∑  (3.23) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.24) 

Its dual problem is:  
minimize    ( , ) ( ) [ ] ( ) logt t p t i i t t t

t i t
L E f p x Z A t

t
Bα β α β α= − − + + +∑ ∑ ∑ β∑

i k

 (3.25) 

where exp( ( ) ( , ))i t t t
k t

Z f x yα β= −∑ ∑ .  Optimization is over 0, 0t tα β≥ ≥ . 

Inequality MaxEnt keeps the strength of easy feature selection.  A new advantage is the 
existence of non-asymptotic bounds showing that with respect to the true underlying 
distribution, this relaxed version of MaxEnt produces conditional probability estimates that 
are almost as good as the best possible.   These bounds are in terms of the deviation of the 
feature empirical averages relative to their true expectations, a number that can be bounded 
using standard uniform-convergence techniques.  In particular, this leads to bounds that drop 
quickly with the number of samples, and that depend very moderately on the number of 
complexity of the features.  Result will be presented in Chapter 4 under the settings of 
semi-supervised learning. 
 
There are some other related forms of smoothing techniques.  In brief, 

Inequality with 2-norm Penalty (Kazama & Tsujii, 2003): 

minimize 2
1 2( ) ( | ) log ( | )i k i k i t

i k t t
p x p y x p y x C C 2

tδ ζ+ +∑ ∑ ∑ ∑  (3.26) 

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t t
i k

E f p x p y x f x y A δ− ≤∑ ∑ t+  (3.27) 

 ( ) ( | ) ( , ) [ ]     for all i k i t i k p t t t
i k

p x p y x f x y E f B ζ− ≤ +∑ ∑ t  (3.28) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.29) 

Inequality with 1-norm Penalty (Kazama & Tsujii, 2003): 

minimize 1 2( ) ( | ) log ( | )i k i k i t
i k t t

p x p y x p y x C C tδ ζ+ +∑ ∑ ∑ ∑  (3.30) 

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t t
i k

E f p x p y x f x y A δ− ≤∑ ∑ t+  (3.31) 

 ( ) ( | ) ( , ) [ ]     for all i k i t i k p t t t
i k

p x p y x f x y E f B ζ− ≤ +∑ ∑ t  (3.32) 

 ( | ) 1    for all k i
k

p y x i=∑  (3.33) 

 0, 0   for all t t tδ ζ≥ ≥  (3.34) 

 

3.3    MaxEnt parameter estimation 
 
The flexibility of MaxEnt model is not without cost.  While the parameter estimation for 
MaxEnt (solving optimization problem) is conceptually straightforward, in practice MaxEnt 
models may well contain many thousands of free parameters and the efficiency will become a 
crucial problem.  The main algorithms for this task include: Generalized Iterative Scaling, 
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Improved Iterative Scaling, general purpose optimization techniques such as gradient descent, 
conjugate gradient descent, and limited memory variable metric (LMVM) methods (Malouf, 
2002).  We discuss for both the random field and conditional situation. 
 

From (3.4), we get [ ] [ ]p t p t
t

L E f E f
λ
∂

= − +
∂

.  As the problem is convex optimization, there is 

only one global minimum where the gradient is zero.  But simply setting L
λ
∂
∂

= 0 does not yield 

a closed form solution for λ.  So we have to proceed iteratively, by adjusting estimate of ( )sλ  to 
a new estimate  based on the divergence between the estimated probability ( 1)sλ + ( )sp  and p .   
 
One popular method for iterative refining the model parameters is Generalized Iterative 
Scaling (GIS) (Darroch & Ratcliff, 1972), which is an extension of Iterative Proportional 
Fitting (IPF) (Deming & Stephan, 1940).  The prerequisite of original GIS is that for all 
training examples xi:  and ( ) 0t if x ≥ ( ) 1t i

t
f x =∑ .  The update rule is: 

( )

( 1) ( ) [ ]
log

[ ]s

p ts s
t t

tp

E f
E f

λ λ+
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 and 

( )

( 1) ( )
( )

( ) ( )
( ) ( )

( ) ( )

t if x

j t j
js s

i i s
t j t j

j

p x f x
p x p x

p x f x
+

⎛ ⎞
⎜

= ⎜
⎜ ⎟
⎝ ⎠

∑
∏ ∑

⎟
⎟ .  The derivation 

is like EM, involving an auxiliary function after bounding the likelihood twice.  Note the 
algorithm is parallel, in that ( )s

tλ  are updated synchronously and ( 1) ( )s
ip x+  contains a product 

over all features.  It converges to the unique optimal value of λ.  p(s)(xi) may not be normalized, 
but it works fine and the limiting distribution is normalized.   
 
The prerequisites of GIS can be relaxed.  For positive constant C, GIS can be extended to 

( )t i
t

f x C=∑  by defining t tf f C′= .  In case not all training data have summed features 

equaling C, we can set C sufficiently large and incorporate a ‘correction feature’, though it 
effectively slows convergence to match the most difficult case.  This technique can also help 
handle the negative features by lifting all features with a common constant, setting a large 
enough C and then compensating with the correction feature. 
 
For conditional probability, GIS turns out to be very similar to the unconditional 

case:
( )

( 1) ( ) ( )
( )

[ ] [ ]
log log

( ) ( | , ) ( , ) [ ]s

p t p ts s s
t t ts

i k i t i k p
i k

t

E f E f
p x p y x f x y E f

λ λ η λ η
λ

+

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜= + = +⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑

⎟
⎟

.  But it is 

not possible now to express update rules for p(xi) without normalization factors, though 
calculating them barely influences actual computation complexity. 
 
To avoid this slowed convergence and the need for correction feature, Improved Iterative 
Scaling (IIS) algorithm is proposed (Pietra et al., 1997), which only requires non-negativity of 
feature values.  Its update rule is the solution of ∆λt to tλ∆  

 ( )[ ] ( ) ( )exp ( )   for all s
p t i t i t j i

i j
E f p x f x f xλ

⎛ ⎞
= ∆⎜ ⎟

⎝ ⎠
∑ ∑ t  (3.35) 
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The main result is: the sequence p(xi) monotonically decreases the MaxEnt objective function 
and converges to the optimal value.  The proof is still like EM and GIS, via expressing the 
incremental step in terms of an auxiliary function which bounds from below the objective 
function.  Solving (3.35) requires some attention.  A good thing is ∆λt are decoupled and are 
solved individually.  If feature values are all integers, then equations are all polynomial in 
exp(∆λt) and can be found straightforwardly using, for example, Newton-Raphson method.  
Otherwise there are also efficient numerical algorithms.  If the number of possible xi is too 
large, Monte Carlo methods are to be used.  Then the coefficients of all equations in (3.35) can 
be simultaneously estimated for all t and i, by generating a single set of samples from p(s)(xi). 
The IIS for conditional probability distribution is similar, by modifying (3.35) as: 

 ( )[ ] ( ) ( | , ) ( , )exp ( , )   for all s
p t i k i t i k t j i k

i k j
E f p x p y x f x y f x yλ λ

⎛ ⎞
= ∆⎜ ⎟

⎝ ⎠
∑ ∑ ∑ t  (3.36) 

The GIS and IIS discussed above are for standard MaxEnt models.  The variant versions for 
MaxEnt with different smoothing methods can be found in their respective papers. 
 
Iterative scaling algorithms have long been flying over the face of statistics and are still widely 
used for analysis of contingency tables.  The main advantage is that each update depends only 
on the computation of expected values ( )sp

E , not requiring the gradient or higher derivatives 

whose computation can be prohibitively expensive for some practical distributions.  However, 
in MaxEnt model, the expected values for all features are required in each iteration, and they 
are effectively gradients of objective function.  Therefore, directly using gradient based 
optimization methods does make sense.  The simplest form is gradient descent, updating 

( 1) ( )
( )

s s
t t s

t

Lλ λ η
λ λλ

+ ∂
= +

=∂
, where η is the step size applied to all variables.  Its main minus is 

two folds.  Firstly, it is difficult to find good η.  Being too large will cause instability 
(divergence, oscillation), and being too small will lead to extremely poor rate of convergence.  
Also, a step locally optimal in a very narrow sense might make each new search direction 
nearly orthogonal to the immediate previous one, leading to zig-zag descent with convergence 
severely slowed down.  One improvement considers each possible search direction only once, 
always taking a step of exactly right length in a direction orthogonal to all previous search 
directions.  These are conjugate gradient methods, such as Fletcher-Reeves and 
Polak-Ribiêre-Positive algorithm differing in update rules and numerical properties, though 
they are theoretically equivalent. 
 
More advanced algorithms make use of curvature, or second-order derivatives.  Based on 
Taylor’s series: 1

2( ) ( ) ( )T TL L L Hλ λ λ λ λ λ λ+ ∆ ≈ + ∆ ⋅∂ ∂ + ∆ ∆λ , where H is the Hessian 
matrix.  Setting to zero its derivative to ∆λ and solving the equation, we get Newton’s method 

( ) 1 ( ) ( )( )s sH L sλ λ−∆ = ∂ ∂λ .  Though convergence is clearly accelerated, the biggest problem of 
the algorithm is the huge cost of storing H (square to the number of variables) and computing 
its inverse in each iteration.  So (limited memory) variable metric, quasi-Newton methods are 
designed that approximate Hessian using successive evaluations of gradient.  They have 
excellent convergence properties and much more space/computation efficient. 
 
An extensive comparison is given in (Malouf, 2002).  Surprisingly, the standardly used 
iterative scaling algorithms perform quite poorly in comparison with the others and LMVM 
outperformed the other choices in almost all test problems. 
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All the algorithms above are in a parallel updating style, i.e., updating the parameters by 
considering all features.  For a very large (or infinite) number of features, this kind of 
algorithms will be too resource consuming to be feasible.  (Collins et al., 2002) proposed a 
sequential-update algorithm, which, in a style of coordinate-wise descent, modifies one 
parameter at a time.  Theoretically, it converges to the same optimum as parallel update. 
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Chapter 4 Incorporating unlabeled data in MaxEnt models  

 

The aim of the research project is to combine the advantage of both semi-supervised learning 
and MaxEnt models.  As noted in section 2.7, most semi-supervised learning algorithms are 
based on assumptions, which must be adjusted throughout different datasets and may cause 
instability.  The project aims to find a stable semi-supervised learning algorithm by applying 
the MaxEnt framework.  

 

4.1 Why do we choose MaxEnt? 
 
We will answer the question in the following three sections.  The first advantage of MaxEnt is 
that it allows natural incorporation of unlabeled data.  To make it clear, we copy the standard 
MaxEnt here and interpret it in the semi-supervised learning settings.   

minimize ( ) ( | ) log ( | )i k i k
i k

ip x p y x p y x∑ ∑  (4.1) 

s.t. [ ] ( ) ( | ) ( , ) 0    for all p t i k i t i k
i k

E f p x p y x f x y−∑ ∑ t=  (4.2) 

 ( | ) 1    for all k i
k

p y x i=∑  (4.3) 

where [ ] ( ) ( | ) ( , )p t i k i t i k
i k

E f p x p y x f x=∑ ∑ y . 

The dual problem to minimize is: 

 min( , ) [ ] ( ) logt p t i i
t i

L p E f p x Zλ λ= − +∑ ∑  (4.4) 

 
In Chapter 3, we always assumed that ( ) ( )p x p x= .  But now, if we view the equations in a new 
angle, p(x) can be easily extended to include unlabeled data.  As Zi sums up over all classes, it 
can be calculated even for unlabeled data.  Here [ ]p tE f  is based on empirical data and (4.2) 

assumes that [ ]p tE f  is a good estimation of the average value of ft on the whole dataset, 
including both the unlabeled and labeled data.  This is similar to the postulation 3 in section 
2.7, and this is the only assumption we make.  No assumption over clustering, neighboring, or 
distance measurement is made.  Besides, the MaxEnt has an in-built tendency to choose 
uniform distribution.  This can be used as a normalization approach and there is often physical 
support for the bias.  
 
This extension of p(x) also applies to the variants of MaxEnt model.  Besides providing a 
natural way to incorporate unlabeled data, MaxEnt possesses a second advantage of having 
provable estimation error bounds, which we describe in the next section. 
 

4.2 Estimation error bounds 
 
We use Inequality MaxEnt as an example.  (Dudik et al., 2004) showed that for normal random 
fields, with respect to the true underlying distribution, Inequality MaxEnt produces 
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probability estimates that are almost as good as the best possible.  We hereby derive a new 
generalization error bound for semi-supervised learning with conditional probability 
distribution. 
 
First the Inequality MaxEnt is restated here: 

miminize ( ) ( | ) log ( | )i k i k
i k

ip x p y x p y x∑ ∑  (4.5) 

s.t. [ ] ( ) ( | ) ( , )     for all t p t i k i t i k t
i k

B E f p x p y x f x y A t− ≤ − ≤∑ ∑  (4.6) 

 ( | ) 1    for all k i
k

p y x i=∑  (4.7) 

where [ ] ( ) ( | ) ( , )p t i k i t i k
i k

E f p x p y x f x= y∑ ∑  (4.8) 

We allow inconsistent data, i.e., different y’s associated with the same x.  But in our maxent 
formulation, we need the correct expectation of ft to estimate the model.  Let the universe of 
discourse of x be those present in the labeled and unlabeled data.  Let the ‘correct’ conditional 
distribution of y on x be ( | )C

k ip y x .  Then we define the ‘correct’ expectation of ft as: 

 [ ] ( ) ( | ) ( , )C C C
p t i k i t i k

i k
E f p x p y x f x y=∑ ∑  (4.9) 

p(xi) = pC(xi).  We use [ ]C
p tE f  to emphasize that it is neither the empirical expectation, nor the 

expectation given by our estimated model.  We will use [ ]p tE f  to denote the expectation 
given by our estimated model.  Similarly, we use p(xi), p(yk|xi) for our estimated model and 
pC(xi), pC(yk|xi) for the theoretically ‘correct’ model. 
 
Using a little different notation, the dual problem of Inequality MaxEnt is to minimize: 

 , ( ) ( ) [ ] ( ) logA B
p t t p t i i t t

t i t
L E f p x Z A t t

t
Bλ α β α β= − − + + +∑ ∑ ∑ ∑

i k

 (4.10) 

where exp( ( ) ( , ))i t t t
k t

Z f x yα β= −∑ ∑ .   

As there is at most one positive value in tα and tβ , we define t t tλ α β= − .  Obviously, 

t t tλ α β= + , so ( ) 2t t tα λ λ= + , ( ) 2t t tβ λ λ= − .  Then (4.10) becomes: 

 ( ) ( ), ( ) [ ] ( ) log
2 2

t t t tA B
p t p t i i t t

t i t t
L E f p x Z A B

λ λ λ
λ λ

+ −
= − + + +∑ ∑ ∑ ∑

λ

iZ

 (4.11) 

However, the ‘correct’ Lagrangian to be minimized is: 

 ( ) [ ] ( ) logC C
p t p t i

t i
L E f p xλ λ= − +∑ ∑  (4.12) 

So we wish to show that the optimal λ for , ( )A B
pL λ  will not make ( )Cp

L λ  too deviated from its 

own optimal value.  For convenience we also define:  

 ,ˆ arg min ( )A B
pL

λ
λ λ=  (4.13) 
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 * arg min ( )C
pL

λ
λ λ=  (4.14) 

 ( ) [ ] ( ) logp t p t i
t i

L E f p xλ λ= − + iZ∑ ∑  (4.15) 

Now,   ˆ( )C
pL λ  ( )ˆ ˆ( ) [ ] [ ]C

p k p k p
k

L E kf E fλ λ= − −∑  

  ( ),
ˆ ˆ ˆ ˆ

ˆ ˆ( ) [ ] [ ]
2 2

t t t tA B C
p t t t p t p

t t t

L A B E f E
λ λ λ λ

λ λ
⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟= − − − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ tf  

  ( ), *
ˆ ˆ ˆ ˆ

ˆ( ) [ ] [ ]
2 2

t t t tA B C
p t t t p t p

k t t
L A B E f E

λ λ λ λ
λ λ

⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟≤ − − − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ tf   

  ( )*
ˆ ˆ ˆ ˆ

ˆ( ) [ ] [ ]
2 2

t t t t C
p t t t p t p

t t t
L A B E f E

λ λ λ λ
λ λ

⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟= − − − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ tf  

   
* * * *

2 2
t t t t

t t
t t

A B
λ λ λ⎛ ⎞ ⎛+ −

⎜ ⎟ ⎜+ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∑
λ ⎞

⎟
⎟
⎠
 

  ( )*
ˆ ˆ ˆ ˆ

ˆ( ) [ ] [ ]
2 2

t t t tC C
p t t t p t p

t t t
L A B E f E

λ λ λ λ
λ λ

⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟= − − − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ tf  

   ( )
* * * *

* [ ] [ ]
2 2

t t t t C
t t t p t

t t t

A B E f
λ λ λ λ

λ
⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟+ + + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ p tE f   (4.16) 

The only inequality above is by the definition of λ̂  (4.13). 

As (4.6) [ ] [ ]t p t p t tB E f E f A− ≤ − ≤  implies the assumption that [ ] [ ]C
t p t p t tB E f E f A− ≤ − ≤ , 

it is easy to prove that for all k and t̂λ ∈R  

( )
ˆ ˆ ˆ ˆ

ˆ [ ] [ ] 0
2 2

t t t t C
t t t p t p

t t t
A B E f E

λ λ λ λ
λ

⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟− − − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ tf ≤  

So  

ˆ( )C
pL λ  *( )C

pL λ≤ ( )
* * * *

* [ ] [ ]
2 2

t t t t C
t t t p t

t t t

A B E f
λ λ λ λ

λ
⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟+ + + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ p tE f  

  * *( ) ( )C
p t t

t
L Aλ λ≤ + +∑ tB        (4.17)  

This is the bound.  It follows that there exists non-asymptotic bounds showing that with 
respect to the true underlying distribution, Inequality MaxEnt produces conditional 
probability estimates that are almost as good as the best possible.   These bounds are in terms 
of the deviation of the feature empirical averages relative to their true expectations, a number 
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that can be bounded using standard uniform-convergence techniques.  In particular, this leads 
to bounds that drop quickly with the number of samples, and that depend very moderately on 
the number of complexity of the features. 
 
There is an important note for Inequality MaxEnt.  For supervised learning, there is always a 
distribution that satisfies (4.6).  But now for semi-supervised learning, it is not guaranteed that 
the feasible area of the optimization problem is not empty, if At and Bt are not set sufficiently 
large.  However, the dual problem: 

minimize    ( , ) ( ) [ ] ( ) logt t p t i i t t t
t i t

L E f p x Z A t
t

Bα β α β α= − − + + +∑ ∑ ∑ β∑

i k

 (4.18) 

where exp ( ) ( , )i t t t
k t

Z f x yα β⎛
= −⎜

⎝ ⎠
∑ ∑ ⎞

⎟  with optimization over 0, 0t tα β≥ ≥  

always has a nonempty feasible area, and a unique globally optimal solution due to convexity.  
So we are always licensed to solve the dual problem though it may not make sense in the 
primal problem.  Experimental results show that this method also produces reasonable 
performance.  Obviously, relaxing Inequality MaxEnt with 1-norm or 2-norm penalty (Eq. 
(3.26) to Eq. (3.34)) will always make the problem feasible for semi-supervised learning. 
 

4.3 MaxEnt learning with side information 
 
Sometimes, the only assumptions over the accuracy of empirical sufficient statistics for 
estimation are not enough to produce a good result.  Suppose on a rectangular co-ordinate plane, 
all points in the first and third quadrants are positive while all points in the second and fourth 
quadrants are negative.  Then with randomly distributed labeled data, the average of x and y 
co-ordinates for both positive and negative data are 0.  This estimation of the average feature 
value is correct!  But now, any random assignment for unlabeled data and testing data will not 
violate the assumption over average feature value.  In other words, these assumptions make no 
contribution to correct classification.  Adding some margins along the axis will not be of help 
either.  The essence of the problem is: if the average of features for all classes is the same, then 
MaxEnt, including all smoothing variants, will not help.  This classification task only 
exemplifies the insufficiency of pure MaxEnt, and other problems are also likely to exist. 
 
To patch up the problem, it is recognized that in many existing literatures, adding assumptions 
is used as a basic approach for semi-supervised learning. We also wish to make our MaxEnt 
model flexible enough to incorporate assumptions.  Actually the MaxEnt model does provide 
the flexibility to learn with side information.  We formulate a MaxEnt model based on minimal 
spanning tree.  All work in this section is newly done, except explicitly cited. 
 
We denote the distance between xi, xj as w(i, j), where distance may be defined under certain 
assumptions.  We find a minimal spanning tree (MST) based on w(i, j).  Denote the set of edges 
as E.  We add the assumption that nearby nodes, especially those neighboring nodes on MST, 
have similar probability of belonging to any class.  We penalize their difference by adding the 
weighted square of difference in objective function.  So the MaxEnt model is formulated as: 

minimize 
2

2
,( , ) , ,

,( , )
( ) ( | ) log ( | )

2
t

i k i k i t k i j i
i k t k i j E

p x p y x p y x wσ 2
j kδ ε

∈

+ +∑ ∑ ∑ ∑  (4.19) 

s.t. [ ] ( ) ( | ) ( , )    for all p t i k i t i k t
i k

E f p x p y x f x y δ−∑ ∑ t=  (4.20) 
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 ( | ) 1    for all k i
k

p y x i=∑  (4.21) 

 , ,( | ) ( | )     for all  and ( , )k i k j i j kp y x p y x k i j Eε− = ∈  (4.22) 

where  is defined as ,( , )k i jw ( , )s i jC w  and Cs, σt are just a constant positive parameters. 
The dual problem is: 

 
22
,( , )

min max 2
,( , ) ,( , )

( , , , ) [ ] ( ) log
2 4

k i jt
t p t i i

t i t k i j Et k

L p E f p x Z
w
αλλ γ α λ

σ ∈

= − + + +∑ ∑ ∑ ∑
i j

 (4.23) 

where 
0 0

0 0 0 0

,( , ) ,( , )
:( , ) :( , )

1exp ( , )
( )i t t i k k i j k

k t j i j E i i i Ei

Z f x y
p x

λ α
∈ ∈

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ i iα . 

Although it might cause numerical problem (dividing zero if w(i, j) = 0 when one x appears for 
multiple times) in the primal problem, the definition of wk,(i, j) is always appropriate for dual 
problem (4.23). 
 
The side information can also come from a variety of sources based on instance similarity.  For 
example, kNN can be used even without changing the equations (4.19) to (4.22).  The only 
implicit change lies in E, where now it includes all the edges in kNN graph.  The distance 
metric is also unchanged.  We observe that kNN MaxEnt is strongly connected to SGT.  Recall 
the formulation of SGT (Joachims, 2003)which maximizes the normalized cut of a graph: 

 ( , )max
{ | 1} { | 1}y

i i

cut G G
i y i y

+ −

= = −
 (4.24) 

  (4.25) 1   if  is positively labeledi iy x= +
  (4.26) 1   if  is negatively labeledi iy x= −
 { 1, 1}ny∈ + −  (4.27) 

where n is the total number of labeled and unlabeled examples.  The denominator in (4.24) 
corresponds to the MaxEnt principle because they both introduce a tendency to assign 
balanced probability to all classes.  The numerator can be approximated by 2

,( , ) , ,
,( , )

k i j i j k
k i j E

w ε
∈

∑ , 

where , , ( | ) ( | )i j k k i k jp y x p y xε = − .  If the two points xi and xj belong to the same class, their 

p(yk|xi) and p(yk|xj) are supposed to be close and their contribution to 2
,( , ) , ,

,( , )
k i j i j k

k i j E
w ε

∈
∑  is also 

smaller.  If they belong to different classes, then ( | ) ( | )k i k jp y x p y x−  will be larger and thus 
greater contribution is made.  We also notice that multi-class classification is also naturally 
allowed in our kNN MaxEnt, while SGT requires additional efforts for conversion. 
 
Moreover, just like the scenario in co-training, multiple redundant descriptions can be utilized, 
such as image and voice for identifying a person, different description of the same event in 
different newspapers for training word sense disambiguation under the assumption that the 
same word in different articles has the same sense.  Then each description can be used to build 
a good classifier.  Now suppose we use s to index descriptions, and description s has features 

s
tf .  The edge set E becomes links between all representations for the same object. 

minimize 
2
, 2

, ,( ,
,( , )

( ) ( | ) log ( | )
2
s t 2

) , ,s i s k i s k i s t k i j i j k
s i k t k i j E

p x p y x p y x w
σ

δ ε
∈

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑  (4.28) 
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s.t. [ ] ( ) ( | ) ( , )    for all , s s
p t s i s k i t i k t

i k
E f p x p y x f x y sδ−∑ ∑ t=  (4.29) 

 ( | ) 1    for all ,  s k i
k

p y x i s=∑  (4.30) 

 
1 2 , ,( | ) ( | )     for all  and ( , )s k i s k j i j kp y x p y x k i j Eε− = ∈  (4.31) 

Another generic approach for applying MaxEnt is to add entropy term to the objective function 
of another model.  For example, we can use MaxEnt to derive a normalized version of Markov 
random walk (Szummer & Jaakkola, 2001a).  If we have a set of points 1 2{ , ,..., }Nx x x  with 
first L instances labeled { ,…, } from C classes.  A metric d(x1y Ly i, xj) is also defined.  Then 
define Wij = exp(-d(xi, xj)/σ) if xi is among the k nearest neighbors of xk or xk is among the k 
nearest neighbors of xi.  Otherwise, Wij = 0.  Define ik ik ijj

p W W= ∑  and construct matrix A 

whose (i, k)-th entry is pik.  So [At]ik is used to define the t step transition probability, meaning 
the probability of randomly walking from xi to xk in t steps, denoted as |0 ( | )tp k i .  Suppose the 
prior probability of xi belonging to class y is P(y|i), then the posterior probability of xk 
belonging to y is ( | )postP y k = |1

( | ) ( | )N
oti

P y i P i k
=∑ .  Intuitively, if we define the margin of the 

classifier on labeled data k and class d to be ( | ) ( |kd post k postP y y k P y d k)γ = = − = , then for 

correct classification the margin should be nonnegative for all classes d other than  (ky 0kdγ ≥ ) 
and zero for the correct class ( 0

kkyγ = ).  Now using maximum margin principle, the problem 
can be formulated as:  

maximize: 
1 1 ( )

1L C

kd
k d C kN

γ
= =
∑∑  (4.32) 

s.t. ( | ) ( | )    1... ,  1...post k post kdP y y k P y d k k L d Cγ= ≥ = + ∀ ∈ ∀ ∈  (4.33) 

  (4.34) 
1

( | ) 1  and 0 ( | ) 1   1...
C

c
P y c i P y i i N

=

= = ≤ ≤ ∀ ∈∑

The optimization is over P(y|i) and NC (k) is the number of labeled examples in the same class as 
xk.  This is the original formulation in  (Szummer & Jaakkola, 2001a). 
 
To adapt the formulation for MaxEnt, we just need to add MaxEnt in objective function and 
express P(y|i) in terms of a combination of features.  The effect is similar to regularization.  

minimize: 
2

2
1

1 1 ( )

( ) ( | ) log ( |
2

1) t
i

L C

ik
i k

k i k i t
i k t C i

p x p y x p x C
N

y γσ δ
= =

+ −∑ ∑∑ ∑ ∑  (4.35) 

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t
i k

E f p x p y x f x y δ−∑ ∑ t=  (4.36) 

 ( | ) 1    for all k i
k

p y x i=∑  (4.37) 

 ( | ) ( | )    1... ,  1...post i post k ikP y y i P y y i i L k Cγ= ≥ = + ∀ ∈ ∀ ∈  (4.38) 

  (4.39) 
1

( | ) 1  and 0 ( | ) 1   1...
C

k k
c

P y y i P y y i i N
=

= = ≤ = ≤ ∀ ∈∑
 
In sum, MaxEnt provides nice flexibility to incorporate standard assumptions by modifying 
objective functions and constraints.  It is thus highly worthwhile to investigate this generic 
picture in the project. 
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4.4 Miscellaneous promising research openings 
 
To make the MaxEnt work, there are a lot of miscellaneous problems to be considered. 
 
1) A fundamental problem for maximum entropy is what features we should use.  How 
should we decide which features to include, in order to avoid overfitting and running out of 
memory but still at a reasonable computational cost of searching?  (Pietra et al., 1997) used a 
greedy algorithm to incrementally add feature to the random field by selecting the feature 
which maximally reduces the objective function (KL divergence between current model and 
empirical distribution).  (McCallum, 2003) used a similar principle, but in conditional random 
fields (Lafferty et al., 2001), to iteratively construct feature conjunctions that would 
significantly increase conditional log-likelihood if added to the model.  Automated feature 
induction enables not only improved accuracy and dramatic reduction in parameter count, but 
also use larger cliques in a graphic model view, and more freedom to liberally hypothesize 
atomic input variables that may be relevant to the task.  In this project, it is also worthwhile to 
explore utilization of standard search algorithms for feature selection, including stochastic 
approaches.  Also the form of candidate features requires consideration.  If a feature does not 
appear in labeled examples but does appear in unlabeled examples, how should we learn from 
this situation?  We initially propose disjunctive features as candidates.  For example, if IBM 
does not appear in labeled data while Apple appears, we may use ‘IBM or Apple’ as a feature.  
Of course this will enlarge the feature space from O(n) to O(n2) and may grow beyond normal 
computation ability.  But with the sequential-update algorithm (Collins et al., 2002), a 
coordinate-wise descent style algorithm, such MaxEnt parameter estimation problems for very 
large (or infinite) number of features are feasible. 
 
2) Another problem is how to estimate At and Bt for Inequality MaxEnt, called interval 
estimation.  In other words, how accurate the [ ]p tE f  is as an estimation of 

[ ] ( ) ( | ) ( , )p t i k i t i k
i k

E f p x p y x f x=∑ ∑ y .  According to Hoeffding’s inequality, if there are m 

labeled data, the probability that [ ] [ ]p t p tE f E f β− >  is at most .  So the general 

interval should be of size .  If for a feature t, its being 1 almost certainly indicates that 
the class is y

2exp( 2 )mβ−
1/ 2(O n− )

k, then the estimation can probably be tighten to O(1/n).  It is worth deriving a 
better interval than Chernoff or Hoeffding bounds, by using probably binomial or advanced 
concepts in statistical learning theory, e.g., VC-dimension of feature class. 
 
3) Furthermore, if we pay attention to fact that labeled data are more important than 
unlabeled data, then like (Blum & Chawla, 2001)  which tried assigning lower weights to 
edges between unlabeled examples, higher weights can be attached to labeled than to 
unlabeled data.  We call this method re-weighting and we adopt the idea for MaxEnt requiring 
as little change as possible.  To be specific, the constraint in (4.20): 

[ ]p tE f − ( ) ( | ) ( , )i k i t i k
i k

p x p y x f x y tδ=∑ ∑  for all t is not meaningful if the empirical estimation 

of ft is very deviated from the correct one.  However, if we attach higher weight to labeled data 
and lower weight to unlabeled data, then [ ]p tE f  will become a more accurate estimate for 

[ ] ( ) ( | ) ( , )p t i k i t i k
i k

E f p x p y x f x=∑ ∑ y . 
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In detail, suppose there are n1 labeled examples and n2 unlabeled examples.  We can assume 
that all examples are different because even when there are duplicate examples, we can safely 
perturb them by a sufficiently small amount ε .  We wish to give extra β  times of weight to 

labeled data compared with unlabeled data.  Originally, we have 
1 2

1 2

1 2 1 2

labeled data  unlabeled data

, ,..., , , ,...,l l l u u u
n n

n n

x x x x x x .  

Now we have 
1 1

1 1

1 2

 copies  copies 
   of    of 

1 1 1 2

 labeled data  unlabeled data

,... ,..., ,... , , ,...,

ll
nxx

l l l l u u u
n n n

n n

2
x x x x x x x

ββ

β

.  So the p(x) for labeled data has changed 

from 
1 2

1
n n+

 to 
1 2n n
β

β +
 and the p(x) for unlabeled data has changed from 

1 2

1
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.  In such a formulation, the equations of MaxEnt (and all its variants) do not need to 

be modified at all. 
 
Now a new problem arises.  Each term for regularization introduces a regularization parameter, 
which represents the tradeoff between entropy maximization and smoothing.  With an 
additional parameter for re-weighting (and possibly even more if we extend the MaxEnt in this 
fashion), the parameter estimation will become a problem, given the limited amount of labeled 
instances for cross validation.  One possible solution may be similar to (Lee & Liu, 2003), 
which approximated the F score maximization by maximizing recall2/P(model predicting 
positive).  The latter term can be more reliably estimated from the training data. 
 
4) Finally, to test the efficacy of models, it is necessary to experiment on different datasets.  
There are numerous online data repositories providing benchmark dataset for machine learning 
research.  For general purposes, the UCI Repository (http://www.ics.uci.edu/~mlearn/ 
MLRepository.html) and Delve (http://www.cs.toronto.edu/~delve/) are two commonly used 
sources of experimental data.  Of course far more are available on Internet. 
 
For text classification tasks, the most commonly used datasets are:  

 20 Newsgroup.  The 20 newsgroups collection, originally collected by Ken Lang (Lang, 
1995), has become a popular data set for experiments in text applications of machine 
learning techniques, such as text classification and text clustering.  It is a collection of 
approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 
different newsgroups.  Many of the categories fall into confusable clusters, e.g., 5 of them 
are comp.* discussion groups.  A good web site with preprocessed data is:   
http://people.csail.mit.edu/u/j/jrennie/public_html/20Newsgroups/. 

 Reuters-21578 dataset, Distribution 1.0.  The dataset is a collection of labeled newswire 
articles in 1987, developed by David D. Lewis.   It consists of 12902 articles and 90 topic 
categories.  The dataset can be found at: 
http://www.daviddlewis.com/resources/testcollections/reuters21578/.   

 WebKB (Craven et al., 1998).  It contains 8145 web pages gathered from university 
computer science departments.  The collection includes the entirety of four departments, 
and additionally, an assortment of pages from other universities.  The pages are divided 
into seven categories: student, faculty, staff, course, project, department and other. The 
data is available at: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/. 

 OHSUMED (Hersh et al., 1994).  This dataset is a clinically-oriented MEDLINE subset, 
consisting of 348,566 references (out of a total of over 7 million), covering all references 
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from 270 medical journals over a five-year period (1987-1991).  The fields present 
include the title, abstract, MeSH indexing terms, author, source, and publication type.  
The class label is MeSH indexing terms.  A source of the dataset is: http://www.mlnet.org/  
cgi-bin/mlnetois.pl/?File=dataset-details.html&Id=940411893OHSUMED.  

 

4.5 Initial experimental results 
 
Initial experiment is done for MST MaxEnt with Gaussian prior on optical digits dataset from 
UCI repository.  This dataset deals with optical recognition of handwritten digits.  There are 
64 input attributes ranging in [0, 16] and 10 classes.  The number of examples is nearly the 
same for all classes in both training and testing data.  As data preprocessing, all examples are 
normalized to have length 1.  Due to the nature of MST MaxEnt, all testing data are 
automatically included as unlabeled data.  In this experiment, the number of testing data is 
fixed at 1687.  This number is NOT included in the second column (No. of Unlabeled Data), 
i.e., there are still 1687 unlabeled data involved in the learning even when the column shows 0.   
 
The resulting accuracy is given in Table 1.  The Gaussian regularization factor stands for the 

tσ  in (4.19), which are made the same for all t.  Cs is the parameter in the definition of  
in (4.19).  Re-weighted MST MaxEnt accuracy is obtained by optimally adjusting the β in 
re-weighting formulation.  The last three columns show the highest accuracy given by tuning 
model parameters, i.e., results for the parameter setting with the best performance on the test set.  
The Gaussian MaxEnt accuracy and Inequality MaxEnt accuracy are the best result by 
Gaussian MaxEnt ((3.13) to (3.15)) and Inequality MaxEnt ((3.22) to (3.24)) respectively.  For 
TSVM, linear kernel and polynomial kernel are tried and one-against-all heuristic is adopted 
for multi-class classification.  

,( , )k i jw

 
No. of  

Labeled 
data 

No. of 
Unlabeled 

Data 

Gaussian 
regularization

factor 

Cs for 
MST 

side info

Re-weighted
MST MaxEnt

Accuracy 

Gaussian 
MaxEnt 

Accuracy 

Inequality
MaxEnt 

Accuracy

TSVM
Result

39 3894 10 10-5 93.8352 59.57 58.80 73.444

39 0 10 10-3 85.5957 77.53 77.59  

78 3855 10 10-5 94.7244 79.37 70.59 84.766

78 0 10 10-5 88.2039 87.72 86.01  

117 3816 10 10-5 94.8429 84.77 77.53 84.766

117 0 10 10-5 91.8791 89.27 88.20  

156 3777 0.1 10-5 95.3764 87.31 81.21 90.279

156 0 10 10-5 92.4718 90.10 89.27  

196 3737 10 10-5 96.5027 89.27 85.12 89.627

196 0 10 10-5 91.7012 92.95 90.75  
 

Table 1.  Optimal accuracy for optical digit dataset 
 
The resulting accuracy clearly shows that this model of MST MaxEnt with re-weighting is 
promising. 
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Chapter 5 Conclusion  
 
In many practical applications of data classification and data mining, one finds a wealth of 
easily available unlabeled examples, while collecting labeled examples can be costly and 
time-consuming.  This is especially true for text classification and it is of interest to develop 
algorithms that are able to utilize both labeled and unlabeled data for classification. 
 
Although a number of such semi-supervised learning algorithms have been designed, most of 
them are dependent on certain assumptions, mainly generative model assumption, clustering 
assumptions over distance metrics or other similarity measures.  They may be well compliant 
with the real dataset or may not hold at all.  Therefore, an algorithm is desired with as little 
dependence on such assumptions as possible, or using weakest possible assumptions. 
 
The maximum entropy model provides a generic framework that meets this requirement, with 
its weak statistical assumptions concerning the reliability of empirical feature expectation.  It 
also provides a natural mechanism for multi-class classification.  With its dual problem being 
maximum likelihood estimation, there are numerous regularization techniques proposed to 
overcome overfitting.  The MaxEnt optimization problem enjoys another advantage of being 
convex, ensuring the existence of a unique global optimum.  Several algorithms for MaxEnt 
convex optimization are also proposed, with different performance and constraints. 
 
The project aims to implement semi-supervised learning in MaxEnt models.  As the original 
MaxEnt model does not perform satisfactorily, side information is considered to be added into 
MaxEnt, in forms of minimal spanning tree, k-nearest neighbor, multi-representation of one 
example, etc.  Our initial experimental result suggests that MaxEnt with side information is a 
promising tool. 
 
Future work is proposed to be done in following areas:  

 Feature selection/induction for or by MaxEnt model; 

 Effective and efficient model parameter estimation; 

 Different formulations for side information incorporation; 

 Derivation of necessary sample size and generalization bound using statistical learning 
theory. 
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