
The Language of Technical Computing

Computation

Visualization

Programming

MATLAB®C++
Math Library

User’s Guide
Version 2.1

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB C++ Math Library User’s Guide
 COPYRIGHT 1984 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: October 1995 First printing
January 1998 Revised for Version 1.2
January 1999 Revised for Version 2.0 (Release 11)
September 2000 Revised for Version 2.1 (Release 12) Online only

i

Contents

1
Getting Started

Introduction . 1-2
Overview of the MATLAB C++ Math Library 1-2
Who Should Read This Book . 1-4
New MATLAB C++ Math Library Features 1-5
MATLAB C++ Math Library Documentation 1-5
Getting Started Quickly . 1-8

Installing the C++ Math Library . 1-9
Installation with MATLAB . 1-9
Installation Without MATLAB . 1-10
Verifying a UNIX Installation . 1-10
Verifying a PC Installation . 1-10
Installing Your C++ Compiler . 1-11

Building C++ Applications . 1-13
Overview . 1-13

Building a Stand-Alone Application on UNIX 1-15
Configuring the Build Environment . 1-15
Building an Application . 1-18
mbuild Options . 1-20

Building a Stand-Alone Application on PCs 1-23
Configuring the Build Environment . 1-23
Building an Application . 1-29
mbuild Options . 1-30

Troubleshooting mbuild . 1-33

Linking Applications Without mbuild 1-35

Distributing Stand-Alone Applications 1-36
Packaging the MATLAB Math Run-Time Libraries 1-36

ii Contents

Installing Your Application . 1-37
Problem Starting Stand-Alone Application 1-38

2
Fundamentals

MATLAB Basics . 2-3
Data Types . 2-3
Operators . 2-4
Functions . 2-6
Input and Output . 2-6
Errors . 2-7
Flow of Control . 2-7

MATLAB for C++ Programmers . 2-8

C++ for MATLAB Users . 2-10
How the Library Is Similar to MATLAB 2-10
How C++ and the Library Differ from MATLAB 2-10

MATLAB C++ Math Library Basics . 2-12
Data Types . 2-12
Operators . 2-13
Functions . 2-14
Input and Output . 2-15
Errors . 2-16
Memory Management . 2-16

Stand-Alone Programs . 2-18
Example Program: Writing Simple Functions (ex4.cpp) 2-19
Writing Efficient Programs . 2-22

Learning More . 2-24

iii

3
Working with MATLAB Arrays

Overview . 3-2
Supported MATLAB Array Types . 3-2
MATLAB Array C++ Object . 3-3

Numeric Arrays . 3-4
Creating Numeric Arrays . 3-5
Initializing a Numeric Array with Data 3-13
Example Program: Creating Arrays and Array I/O (ex1.cpp) . 3-15

Sparse Matrices . 3-19
Creating a Sparse Matrix . 3-20
Converting a Sparse Matrix to Full Matrix Format 3-23
Evaluating Arrays for Sparse Storage 3-23

Character Arrays . 3-24
Creating MATLAB Character Arrays . 3-25

Cell Arrays . 3-28
Creating Cell Arrays . 3-28
Displaying the Contents of a Cell Array 3-33

MATLAB Structures . 3-35
Creating Structures . 3-35

Performing Common Array Programming Tasks 3-39
Converting Data to MATLAB Arrays . 3-39
Determining Array Size . 3-42

4
Indexing into Arrays

Overview . 4-2
Terminology . 4-2
Dimensions and Subscripts in MATLAB 4-2

iv Contents

Dimensions and Subscripts in the MATLAB C++ Math Library 4-3
Array Storage . 4-4

Using One-Dimensional Subscripts . 4-9
Overview . 4-9
Selecting a Single Element . 4-10
Selecting a Vector . 4-10
Selecting a Matrix . 4-11
Selecting the Entire Matrix As a Column Vector 4-12

Using N-Dimensional Subscripts . 4-13
Overview . 4-13
Selecting a Single Element . 4-14
Selecting a Vector of Elements . 4-14
Selecting a Matrix . 4-16
Extending Two-Dimensional Indexing to
N Dimensions . 4-17

Using Logical Subscripts . 4-20
Overview . 4-20
Using a Logical Matrix As a One-Dimensional Index 4-20
Using Two Logical Vectors as Indices . 4-21
Using One colon() Index and One Logical Vector as Indices . . 4-22
Using a Scalar and a Logical Vector . 4-22
Extending Logical Indexing to N Dimensions 4-23

Using Indexing in Assignment Statements 4-24
Overview . 4-24
Assigning to a Single Element . 4-25
Assigning to a Multiple Elements . 4-25
Assigning to a Subarray . 4-26
Assigning to All Elements . 4-26
Extending Two-Dimensional Assignment to N Dimensions . . 4-27

Deleting Elements from an Array . 4-29

Indexing into Cell Arrays . 4-31
Overview . 4-32
Referencing a Cell in a Cell Array . 4-33

v

Referencing a Subset of a Cell Array . 4-33
Referencing the Contents of a Cell . 4-33
Referencing a Subset of the Contents of a Cell 4-34
Indexing Nested Cell Arrays . 4-34
Assigning Values to a Cell Array . 4-35
Deleting Elements from a Cell Array . 4-36

Indexing into MATLAB Structure Arrays 4-38
Overview . 4-38
Accessing a Field . 4-40
Accessing the Contents of a Structure Field 4-40
Assigning Values to a Structure Field 4-40
Assigning Values to Elements in a Field 4-40
Referencing a Single Structure in a Structure Array 4-41
Referencing into Nested Structures . 4-41
Accessing the Contents of Structures Within Cells 4-41
Deleting Elements from a Structure Array 4-42

Indexing Techniques . 4-44
Duplicating a Row or Column . 4-44
Concatenating Subscripts . 4-45

C++ and MATLAB Indexing Syntax . 4-47

The mwIndex Class . 4-49

Programming Efficient Indices . 4-50

5
Calling Library Functions

Overview . 5-2

How to Call C++ Library Functions . 5-3
One Result and Only Required Input Arguments 5-3
Passing Optional Input Arguments . 5-3
Passing Optional Output Arguments . 5-4

vi Contents

Passing Optional Input and Output Arguments 5-5
Passing Any Number of Inputs . 5-6
Passing Any Number of Outputs . 5-8
Summary of Library Calling Conventions 5-10
Example Program: Calling Library Functions (ex2.cpp) 5-12

How to Call Operators . 5-18

Example – Passing Functions As Arguments (ex3.cpp) . . . 5-19

Representing Input Arguments As a Cell Array 5-32

6
Using the Mathematical Operators

Overview . 6-2

Using the Operators . 6-4

Defining Your Own Operators . 6-6

7
Printing, Exceptions, and Memory Management

Defining a Print Handler . 7-3
Providing Your Own Print Handler . 7-3
Using the Print Handler to Print Your Own Messages 7-4
Output to a GUI . 7-4

Handling Exceptions . 7-8
C++ Exception Handling Overview . 7-8
Handling C++ Math Library Exceptions in Your Code 7-8
Example Program: Handling Exceptions (ex5.cpp) 7-9
Replacing the Default Library Error Handler 7-13

vii

Exception Handling in the MATLAB C++ Math Library 7-14

Memory Management . 7-17
Setting Up Your Own Memory Management Routines 7-17
Performance and Efficiency . 7-20
The Space-Time Continuum . 7-20

8
Array Input and Output

Overview . 8-2

Using Array Stream I/O . 8-3
Overview . 8-3
Example – Array Stream I/O (ex1.cpp) 8-4
Stream I/O Format Definitions . 8-7
Using Stream I/O to Files . 8-12
Using Streams for Interprocess Communication 8-13

Using File I/O Functions . 8-14
Specifying Library File I/O Functions 8-14
Example – Using File I/O Functions (ex6.cpp) 8-15

Importing and Exporting MAT-File Data 8-20
Exporting Array Data to a MAT-File . 8-20
Importing Array Data from a MAT-File 8-21
Example – Using load() and save() (ex7.cpp) 8-22

9
Translating from MATLAB to C++

Differences Between C++ and MATLAB 9-2

Syntax . 9-3

viii Contents

Variable Declaration . 9-4

Function Calling Conventions . 9-5

Control Structure . 9-6

Logical Values . 9-7

Name Conflicts with Standard C Library Functions 9-8
Casting an Argument to Avoid a Name Conflict 9-8
Renaming Functions to Avoid a Name Conflict 9-9

Example Program: Rewriting roots.m in C++ (ex8.cpp) . . 9-11
The M-File roots() Function . 9-11
The C++ roots() Function . 9-13

10
mwArray Class Interface

Introduction . 10-2

Constructors . 10-4

Indexing and Subscripts . 10-7
Array Indexing . 10-7
Cell Content Indexing . 10-8
Structure Field Indexing . 10-9

User-Defined Conversions . 10-10

Memory Management . 10-11

Operators . 10-12

Array Size . 10-14

ix

Extracting Data from an mwArray . 10-16
GetData() . 10-16
SetData() . 10-16
ExtractScalar() and ExtractData() . 10-17
ToString() . 10-18

11
Library Routines

Introduction . 11-2

Operators . 11-3
Arithmetic Operators . 11-3
Relational Operators . 11-4
Miscellaneous Operators . 11-5

MATLAB Functions . 11-7
General Purpose Commands . 11-8
Operators and Special Functions . 11-8
Elementary Matrices and Matrix Manipulation 11-13
Elementary Math Functions . 11-16
Specialized Math Functions . 11-19
Numerical Linear Algebra . 11-21
Data Analysis and Fourier Transform Functions 11-24
Polynomial and Interpolation Functions 11-26
Function Functions and ODE Solvers 11-28
Character String Functions . 11-29
File I/O Functions . 11-31
Data Types . 11-33
Time and Dates . 11-34
Multidimensional Array Functions . 11-35
Cell Array Functions . 11-35
Structure Functions . 11-36
Sparse Matrix Functions . 11-36

Utility Functions . 11-39

x Contents

Array Access Functions . 11-44

A
Directory Organization

Introduction . A-2

Directory Organization on UNIX . A-3
<matlab>/bin . A-4
<matlab>/extern/lib/$ARCH . A-4
<matlab>/extern/include . A-5
<matlab>/extern/include/cpp . A-5
<matlab>/extern/examples/cppmath . A-6

Directory Organization on Microsoft Windows A-7
<matlab>\bin . A-8
<matlab>\extern\lib . A-8
<matlab>\extern\include . A-9
<matlab>\extern\include\cpp . A-10
<matlab>\extern\examples\cppmath A-10

B
Exception Classes

Overview . B-2

Exception Class Descriptions . B-3

xi

C
Error Messages

Overview . C-2
Error Types . C-2
Reporting Errors . C-2

Alphabetized Error Messages . C-3

xii Contents

1

Getting Started

Introduction . 1-2
Overview of the MATLAB C++ Math Library 1-2
Who Should Read This Book 1-4
New MATLAB C++ Math Library Features 1-5
MATLAB C++ Math Library Documentation 1-5
Getting Started Quickly 1-8

Installing the C++ Math Library 1-9
Installation with MATLAB 1-9
Installation Without MATLAB 1-10
Verifying a UNIX Installation 1-10
Verifying a PC Installation 1-10
Installing Your C++ Compiler 1-11

Building C++ Applications 1-13
Overview . 1-13

Building a Stand-Alone Application on UNIX 1-15
Configuring the Build Environment 1-15
Building an Application 1-18
mbuild Options 1-20

Building a Stand-Alone Application on PCs 1-23
Configuring the Build Environment 1-23
Building an Application 1-29
mbuild Options 1-30

Troubleshooting mbuild 1-33

Linking Applications Without mbuild 1-35

Distributing Stand-Alone Applications 1-36
Packaging the MATLAB Math Run-Time Libraries 1-36
Installing Your Application 1-37
Problem Starting Stand-Alone Application 1-38

1 Getting Started

1-2

Introduction
The MATLAB ® C++ Math Library serves two separate constituencies:
MATLAB programmers seeking more speed or complete independence from
interpreted MATLAB, and C++ programmers who need a fast, easy-to-use
matrix math library. To each, it offers distinct advantages.

MATLAB M-file programmers can write code that looks like M-file code but
runs significantly faster. Because the syntax of the C++ interface is so similar
to the MATLAB syntax, this performance comes at very little cost. MATLAB
programmers can leverage their knowledge of M-file programming to become
productive with this library very quickly. An additional advantage is that
programs developed with this library do not require the interpreted MATLAB
environment to execute. In addition, you may freely distribute applications you
develop with the MATLAB C++ Math Library.

To C++ programmers, this library provides a natural and robust interface and
a rich collection of powerful functions. MATLAB’s M-file programming
interface has been used by hundreds of thousands of scientists and engineers
worldwide. It allows them to program the way they think, using a syntax that
is simple and intuitive. Because MATLAB handles details like memory
management, programmers can devote more of their mental effort to solving a
problem and less to coping with the tool itself.

The ease of use that distinguishes MATLAB is a hallmark of this library as
well. In addition to its natural syntax, MATLAB is easy to use because of the
large number of functions it contains. Often a solution consists of little more
than a single page of code. Such short programs mean easier maintenance and
higher productivity.

Overview of the MATLAB C++ Math Library
The MATLAB C++ Math Library consists of approximately 400 MATLAB math
functions. It includes the built-in MATLAB math functions and many of the
math functions that are implemented as MATLAB M-files. The MATLAB C++
Math Library is layered on top of the MATLAB C Math Library. The major
value added by this C++ layer is ease of use.

The MATLAB C++ Math Library is firmly rooted in the traditions of the
MATLAB runtime environment. Programming with the MATLAB C++ Math
Library is very much like writing M-files in MATLAB. While the C++ language
imposes several differences, the syntax used by the MATLAB C++ Math

1-3

Library is very similar to the syntax of the MATLAB language. Like MATLAB,
the MATLAB C++ Math Library provides automatic memory management,
which protects the programmer from memory leaks. For a detailed comparison
between MATLAB and the MATLAB C++ Math Library, see Chapter 2.

An important goal of this product is to provide a library that feels natural to
both C++ programmers and MATLAB users. Achieving this goal is difficult,
because there is some tension between the natural C++ programming style and
the natural MATLAB style. Where it was necessary to choose between the
MATLAB or C++ way of doing things, the MATLAB method usually prevailed.

The MATLAB C++ Math Library defines a set of classes and functions for the
development of linear algebraic algorithms. The most important class in the
MATLAB C++ Math Library is mwArray. This class corresponds to MATLAB’s
array data type. The mwArray class supports most MATLAB operators and all
of the mathematical functions. The only operators it does not support are
\, ./, .\, .*, and .^, which are not syntactically valid in C++. These
operations are accessed via function calls.

Note Do not confuse the name of the MATLAB C++ Math Library class
mwArray with the MATLAB C Math Library data structure mxArray.

MATLAB is known in programming-language theory as a “functional”
language: neither functions nor operators have side effects. The MATLAB C++
Math Library preserves the functional nature of MATLAB. With one exception
(see “Using Indexing in Assignment Statements” in Chapter 4), expressions do
not modify the arrays they contain and functions do not modify their inputs.
The only way to change the value of an array is by assignment to one or more
elements of the array.

The functions and operators provided by the library are vectorized. This means
that they contain loops to iterate over the elements of their inputs. As a
consequence, code written using this library should contain very few loops over
array elements; most programs will have none.

The interface to the library is divided into three parts:

• The set of functions, or in C++ terminology the public methods, provided by
the mwArray class

• The MATLAB mathematical functions

1 Getting Started

1-4

• A set of binary and unary mathematical operators

The bulk of the interface consists of the MATLAB math functions.

When using this library, you most often call the MATLAB mathematical
functions, the operators, and the mwArray constructors. The public methods of
mwArray are for the most part used internally by the library.

In general, the library code indicates that an error has occurred by raising an
exception. Exception objects are subclasses of mwException, and thus all types
of exceptions can be caught with a single catch statement. Each exception has
an associated error message, which can be printed by placing the exception into
an output stream, for example, via cout.

We highly recommend that you use C++ exception handling when using this
library. If you do not, the first error that occurs will cause your program to
terminate with a cryptic error message, such as Unhandled exception,
abnormal program termination.

Who Should Read This Book
This book is intended to be a practical introduction to programming with the
MATLAB C++ Math Library. It is written for programmers. In order to use this
library, you need to understand what a function call is, how to declare a
variable, what the phrase “pass by value” means, and what program control
structure is. Knowledge of some common programming techniques such as
reference counting helps you gain a deeper understanding of how the library
works, but is not essential.

If you have never programmed before, you may find this manual difficult to
read. Writing C++ programs requires a different set of skills from those
required to use even a very technical program like MATLAB.

To get the most out of this document, you should be familiar with writing either
C++ programs or MATLAB M-files. The annotations to the code examples
assume that you know one language or the other, and often try to teach you
about one language by reference to the other.

The intended audience for this manual is C++ programmers who need a matrix
math library or MATLAB programmers who want the ease of M-file
programming and the performance of C++. This book will not teach you how to
program in either MATLAB or C++; see “Additional Sources” on page 1-7 for
pointers to sources of information on these topics.

1-5

New MATLAB C++ Math Library Features
The MATLAB C++ Math Library Version 2.1 supports these new features:

• Support for the eval function, for expressions that do not contain variables

• Support for the input function, with the same restrictions as eval

• Performance enhancements in the core numerical routinesOver 60 new
functions

Unsupported MATLAB Features
The library does not include any Handle Graphics® or Simulink® functions.
For information about compiling an application that uses graphics functions,
see the MATLAB C/C++ Graphics Library User’s Guide.

In addition, the library does not support MATLAB objects

Changed Features
In version 2.0, any empty array could be used as an indexed deletion operator.
In version 2.1, you must use the empty() function for indexed deletion.

MATLAB C++ Math Library Documentation
The complete documentation set for the MATLAB C++ Math Library consists
of printed and online publications:

• MATLAB C++ Math Library User’s Guide—This manual provides tutorial
information about the library. This manual is also available in PDF format,
accessible through the Help Desk.

• MATLAB C++ Math Library Reference—The reference pages for all the
MATLAB C++ Math library routines are available in HTML and PDF
versions, accessible through the Help Desk.

How This Book Is Organized
This chapter provides an introduction to the MATLAB C++ Math Library and
tells how to install it. In addition, it includes information about building
applications. The remainder of the book is organized as follows:

• Chapter 2, “Fundamentals”. This chapter describes the basic concepts,
assumptions, and data structures of MATLAB and the MATLAB C++ Math
Library. It also provides an introduction to C++ for MATLAB users and an

1 Getting Started

1-6

overview of MATLAB for C++ programmers. If you are new to MATLAB or
C++, you should read this chapter.

• Chapter 3, “Working with MATLAB Arrays”. Arrays are the fundamental
MATLAB data type. This chapter describes how to create MATLAB arrays
in your C++ program.

• Chapter 4, “Indexing into Arrays”. This chapter describes how to access
individual elements, or groups of elements, in an array. Using indexing you
can access, modify, or delete elements in an array.

• Chapter 5, “Calling Library Functions”. This chapter describes the MATLAB
C++ Math Library interface to the MATLAB functions. This chapter
describes how to call MATLAB functions that accept any number of input
and output arguments.

• Chapter 6, “Using the Mathematical Operators”. This chapter describes the
difference between array and matrix operators and documents where the
library overloads C++ operators and where you must call functions that are
equivalent to a MATLAB operator.

• Chapter 7, “Printing, Exceptions, and Memory Management”. This chapter
describes how to use the MATLAB C++ Math Library routines in a C++
program. The chapter includes specific information about handling errors
and writing your own print handler.

• Chapter 8, “Array Input and Output”. This chapter describes the library’s
three input/output mechanisms: input and output streams, fprintf() and
fscanf(), and load() and save().

• Chapter 9, “Translating from MATLAB to C++”. This chapter compares the
MATLAB language to C++.

• Chapter 10, “mwArray Class Interface”. This chapter documents the public
interface of the mwArray class.

• Chapter 11, “Library Routines”. This chapter groups the more than 400
library functions into functional categories and provides a short description
of each function.

• Appendix A: Directory Organization. Installing the MATLAB C++ Math
Library creates several new directories on your computer. This appendix
provides a road map to the directories and their contents for PC systems
running Microsoft Windows and UNIX workstations.

• Appendix B: Exception Classes. This appendix describes the hierarchy of
exception classes defined by the library.

1-7

• Appendix C: Error Messages. This appendix provides a reference to the error
messages issued by the library.

Accessing Online Reference Documentation
To access the MATLAB online documentation, select the Help option from the
MATLAB menu bar. MATLAB C Math Library documentation is available in
in HTML and PDF formats.

To look up the syntax and behavior for a C Math Library function, refer to the
MATLAB C Math Library Reference. This reference gives you access to a
reference page for each function. Each page presents the function’s C syntax
and links you to the online MATLAB Function Reference page for the
corresponding MATLAB function.

If you are a stand-alone Math Library user:

1 Open the HTML file <matlab>/help/mathlib.htmlwith your Web browser,
where <matlab> is the top-level directory where you installed the MATLAB
C++ Math Library.

2 Select MATLAB C++ Math Library Reference.

Additional Sources

• Release notes for the MATLAB C++ Math Library
<matlab>/extern/examples/cppmath

• MATLAB C Math Library User’s Guide

• MATLAB C Math Library Reference
• MATLAB Application Program Interface Guide

• MATLAB Application Program Interface Reference

• MATLAB Function Reference

• Installation Guide for UNIX

• Installation Guide for PC

For general information about C++ programming language, see:

C++ Primer 2nd Ed., Lippman, Stanley, Addison Wesley, 1993

1 Getting Started

1-8

Getting Started Quickly
Depending on your experience with other MathWorks products, your
knowledge of C++, and your goals, you may not need to read this book in its
entirety. If you are eager to get started, the following sections give you a solid
understanding of programming with the MATLAB C++ Math Library.

• “Example Program: Handling Exceptions (ex5.cpp)” in Chapter 7
demonstrates most of the features of the library: creating matrices, writing
and calling your own functions, printing matrices, and handling errors.

• “Building C++ Applications” on page 1-13 explains how to build and run the
example programs with the mbuild script. This is highly recommended
reading.

• “Differences Between C++ and MATLAB” in Chapter 9 details the
differences between MATLAB and C++, and provides information about the
MATLAB C++ Math Library.

• ““Working with MATLAB Arrays” in Chapter 3,” explains how to create an
array and why some ways are more efficient than others. MATLAB C++
Math Library arrays are considerably different from C++ two-dimensional
arrays. Study this section with care.

• ““Indexing into Arrays” in Chapter 4,” explains how to apply subscripts to
arrays. The indexing facility, which is a fundamental part of the MATLAB
C++ Math Library, is quite powerful, but may occasionally give you
unexpected results if you do not understand how and why it works the way
it does.

Reading only these sections means you omit a lot of detail and risk stumbling
through parts of the library that you don’t understand. However, if you read
and understand these six sections, you can do useful work with this library.

Installing the C++ Math Library

1-9

Installing the C++ Math Library
The MATLAB C++ Math Library is available on UNIX workstations and PCs
running Microsoft Windows (Windows 95/98 and Windows NT). The
installation process is different for each platform.

The MATLAB C++ Math Library contains the MATLAB C Math Library. If you
already have the MATLAB C Math Library, the installation program will
overwrite your existing copy of the MATLAB C Math Library with new
libraries and header files. You’ll still be able to use both the MATLAB C++
Math Library and the MATLAB C Math Library.

Note that the MATLAB C++ Math Library (and the MATLAB C Math Library,
for that matter) runs on only those platforms (processor and operating system
combinations) on which MATLAB runs. In particular, the Math Libraries do
not run on DSP or other embedded systems boards, even if those boards are
controlled by a processor that is part of a system on which MATLAB runs.

Installation with MATLAB
If you are a licensed user of MATLAB, there are no special requirements for
installing the MATLAB C++ Math Library. Follow the instructions in the
MATLAB Installation Guide for your specific platform:

• Installation Guide for UNIX

• Installation Guide for PC

The C/C++ Math Library will appear as one of the installation choices that you
can select as you proceed through the installation screens.

Before you begin installing the MATLAB C/C++ Math Library, you must obtain
from The MathWorks a Personal License Password (PLP) and, if you are
installing the library in a concurrent access environment, a valid License File.
These are usually supplied by fax or e-mail. If you have not already received a
License File or PLP, contact The MathWorks via:

• The Web at www.mathworks.com. On the MathWorks site, click on the
MATLAB Access option, log in to the Access home page, and follow the
instructions. MATLAB Access membership is free of charge and available to
all customers.

• E-mail at service@mathworks.com

1 Getting Started

1-10

• Telephone at 508-647-7000; ask for Customer Service

• Fax at 508-647-7001

MATLAB Access members can obtain the necessary license data via the Web
(www.mathworks.com). Click on the MATLAB Access icon and log in to the
Access home page. MATLAB Access membership is free of charge.

Installation Without MATLAB
The installation process for installing the C++ Math Library in stand-alone
mode is identical to the process for installing MATLAB and its toolboxes.
Although you are not actually installing MATLAB, you can still follow the
instructions in the MATLAB Installation Guide for your specific platform.

Verifying a UNIX Installation
To verify that the MATLAB C++ Math Library has been installed correctly, use
the mbuild script, which is documented in “Building a Stand-Alone Application
on UNIX” on page 1-15, to verify that you can build one of the example
applications. Be sure to use mbuild before calling Technical Support.

To spot check that the installation worked, cd to the directory
<matlab>/extern/include/cpp, where <matlab> symbolizes the MATLAB
root directory. Look for the file matlab.hpp.

Verifying a PC Installation
When installing a C++ compiler to use in conjunction with the Math Library,
install both the DOS and Windows targets and the command line tools.

The C++ Math Library installation adds

<matlab>\bin

to your $PATH environment variable, where <matlab> symbolizes the MATLAB
root directory. The BIN directory contains the DLLs required by stand-alone
applications. After installation, reboot your machine if necessary.

To verify that the MATLAB C++ Math Library has been installed correctly, use
the mbuild script, which is documented in “Building a Stand-Alone Application
on PCs” on page 1-23, to verify that you can build one of the example
applications. Be sure to use mbuild before calling Technical Support.

Installing the C++ Math Library

1-11

Installing Your C++ Compiler
To use the MATLAB C++ Math Library, you need to have a C++ compiler
installed on your system. If you are having trouble installing your C++
compiler or getting it to work properly, please contact the manufacturer of that
compiler.

The technical support number for each compiler vendor is listed in the
documentation for each compiler. Many compiler vendors also have home
pages on the World-Wide Web; in particular, Borland, Microsoft, and Watcom.
Contact them at www.borland.com, www.microsoft.com, and www.watcom.com
respectively.

Note The MATLAB C++ Math Library makes use of both templates and
exceptions. Make sure that your compiler supports these C++ language
features. If it does not support templates, you can’t use the MATLAB C++
Math Library.

Compiler Configuration on Microsoft Windows
This table provides information regarding the installation and configuration of
a C++ compiler on your system.

Description Comment

Installation options We recommend that you do a full installation of
your compiler. If you do a partial installation,
you might omit a component that the MATLAB
C++ Math Library relies on.

Installing DGB files For the purposes of the MATLAB C++ Math
Library, it is not necessary to install DBG
(debugger) files. However, you may need them
for other purposes.

MFC MFC (Microsoft Foundation Classes) are not
required.

16-bit DLL/executables Not required.

1 Getting Started

1-12

ActiveX Not required.

Running from the
command line

Make sure you select all relevant options for
running your compiler from the command line.

Updating the registry If your installer gives you the option of
updating the registry, you should let it do so.

Recording the root
directory of your C/C++
compiler

Record the complete path to where your C/C++
compiler has been installed, for example,
C:\devstudio.

Description Comment

Building C++ Applications

1-13

Building C++ Applications
This section:

• Provides an overview of building C++ applications using the MATLAB
mbuild utility.

• Explains how to build stand-alone C++ applications on UNIX systems

• Explains how to build stand-alone C++ applications on systems running
Microsoft Windows

For information about packaging a stand-alone application for redistribution,
see “Distributing Stand-Alone Applications” on page 1-36. For information
about building applications without using mbuild, see “Linking Applications
Without mbuild” on page 1-35.

Note You may freely distribute applications you develop with the MATLAB
C++ Math Library.

Overview
To build a stand-alone application using the MATLAB C++ Math Library, you
must supply your C++ compiler with the correct set of compiler and linker
options (or switches). To help you, The MathWorks provides a command line
utility called mbuild. The mbuild script makes it easy to:

• Set your compiler and linker settings

• Change compilers or compiler settings

• Switch between C and C++ development

• Build your application

On UNIX and Microsoft Windows systems, follow these steps to build C++
applications with mbuild:

1 Verify that mbuild can create stand-alone applications.

2 Build your application.

1 Getting Started

1-14

You only need to reconfigure if you change compilers or upgrade your current
compiler.

Compiler Options Files
mbuild stores compiler and linker settings in an options file. Options files
contain the required compiler and linker settings for your particular C++
compiler. The MathWorks provides options files for every supported C++
compiler.

Much of the information on options files in this chapter is provided for those
users who may need to modify an options file to suit their specific needs. Many
users never have to be concerned with how the options files work.

Building a Stand-Alone Application on UNIX

1-15

Building a Stand-Alone Application on UNIX
This section:

• Explains how to set-up your build environment

• Describes how to compile and link C++ source code into a stand-alone UNIX
application.

This section also contains information about packaging your application for
distribution.

Configuring the Build Environment
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 1-1 shows the supported file extensions. If you
include both C and C++ files, mbuild uses the C++ compiler and the MATLAB
C++ Math Library. If mbuild cannot deduce from the file extensions whether
to compile in C or C++, mbuild invokes the C compiler.

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see Table 1-2.

Locating Options Files
mbuild locates your options file by searching the following:

• The current directory

Table 1-1: UNIX File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.C
.cxx
.cc

1 Getting Started

1-16

• $HOME/.matlab/R12

• <matlab>/bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Using the System Compiler
If your supported C++ compiler is installed on your system, you are ready to
create C++ stand-alone applications. To create a stand-alone C++ application,
you can simply enter

mbuild filename.cpp

This simple method works for the majority of users. Assuming filename.cpp
contains a main function, this example uses the system’s compiler as your
default compiler for creating your stand-alone application.

• If you are a user who does not need to change C or C++ compilers, or you do
not need to modify your compiler options files, you can skip ahead in this
section to “Building an Application.”

• If you need to know how to select a different compiler or change the options
file, continue with this section.

Changing the Default Compiler
You need to use the setup option if you want to change your default compiler.
At the UNIX prompt type:

mbuild -setup

The setup option creates a user-specific options file for your ANSI C or C++
compiler. Using the setup option sets your default compiler so that the new
compiler is used every time you use the mbuild script.

Note The options file is stored in the MATLAB subdirectory of your home
directory, for example, $HOME/.matlab/R12/mbuildopts.sh. This allows each
user to have a separate mbuild configuration.

Executing mbuild -setup presents a list of options files currently included in
the bin subdirectory of MATLAB.

Building a Stand-Alone Application on UNIX

1-17

mbuild -setup

Using the 'mbuild -setup' command selects an options file that is
placed in ~/.matlab/R12 and used by default for 'mbuild'. An
options file in the current working directory or specified on the
command line overrides the default options file in ~/.matlab/R12.

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the 'mbuild -f' command
(see 'mbuild -help' for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :
 Build and link with MATLAB C/C++ Math Library

If there is more than one options file, you can select the one you want by
entering its number and pressing Return. If there is only one options file
available, it is automatically copied to your MATLAB directory if you do not
already have an mbuild options file. If you already have an mbuild options file,
you are prompted to overwrite the existing one.

Modifying the Options File
Another use of the setup option is if you want to change your options file
settings. For example, if you want to make a change to the current linker
settings, or you want to disable a particular set of warnings, you should use the
setup option.

If you need to change the options that mbuild passes to your compiler or linker,
you must first run

mbuild -setup

which copies a master options file to your local MATLAB directory, typically
$HOME/.matlab/R12/mbuildopts.sh.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2 …]

1 Getting Started

1-18

to generate a list of all the current compiler settings.

To change the options, use an editor to make changes to your options file, which
is in your local MATLAB directory. Your local MATLAB directory is a
user-specific, MATLAB directory in your individual home directory that is used
specifically for your individual options files.

You can also embed the settings obtained from the verbose option of mbuild
into an integrated development environment (IDE) or makefile that you need
to maintain outside of MATLAB. Often, however, it is easier to call mbuild from
your makefile. See your system documentation for information on writing
makefiles.

Note Any changes made to the local options file will be overwritten if you
execute mbuild -setup again. To make the changes persist through repeated
uses of mbuild -setup, you must edit the master file itself,
<matlab>/bin/mbuildopts.sh.

Temporarily Changing the Compiler
To temporarily change your C or C++ compiler, use the -f option, as in

mbuild -f <options_file> filename.cpp [filename]

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Building an Application
There is C++ source code for example ex1.cpp included in the
<matlab>/extern/examples/cppmmath directory, where <matlab> represents
the top-level directory where MATLAB is installed on your system. To verify
that mbuild is properly configured on your system to create stand-alone
applications, copy ex1.cpp to your local directory and cd to that directory.
Then, at the UNIX prompt, enter:

mbuild ex1.cpp

Building a Stand-Alone Application on UNIX

1-19

This should create the file called ex1. Stand-alone applications created on
UNIX systems do not have any extensions. If you have a problem using mbuild,
see “Troubleshooting mbuild” on page 1-33.

Locating Shared Libraries
Before you can run your stand-alone application, you must tell the system
where the API and C++ shared libraries reside. This table provides the
necessary UNIX commands depending on your system’s architecture.

It is convenient to place this command in a startup script such as
~/.cshrc. Then, the system will be able to locate these shared libraries
automatically, and you will not have to re-issue the command at the start of
each login session. The best choice is to place the libraries in ~/.login, which
only gets executed once.

Note On all UNIX platforms, the C/C++ libraries are shipped as shared
object (.so) files or shared libraries (.sl). Any stand-alone application must
be able to locate the C/C++ libraries along the library path environment
variable (SHLIB_PATH, LIBPATH, or LD_LIBRARY_PATH) in order to be loaded.
Consequently, to share a stand-alone application with another user, you must
provide all of the required shared libraries. For more information about the
required shared libraries for UNIX, see “Building a Stand-Alone Application
on PCs” on page 1-23.

Architecture Command

HP700 setenv SHLIB_PATH <matlab>/extern/lib/hp700:$SHLIB_PATH

IBM RS/6000 setenv LIBPATH <matlab>/extern/lib/ibm_rs:$LIBPATH

All others setenv LD_LIBRARY_PATH <matlab>/extern/lib/<arch>:$LD_LIBRARY_PATH

where:
<matlab> is the MATLAB root directory
<arch> is your architecture (i.e., alpha, glnx86, sgi, sol2)

1 Getting Started

1-20

Running Your Application
To launch your application, enter its name on the command line. For example,

ex1

[
 1 3 5 ;
 2 4 6
]

 [
 1 4 ;
 2 5 ;
 3 6
]

Please enter a matrix:

mbuild Options
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know additional
details about the mbuild script; they use it in its simplest form. The following
information is provided for those users who require more flexibility with the
tool.

The mbuild syntax and options are

mbuild [-options] filename1 [filename2 …]

Table 1-2: mbuild Options on UNIX

Option Description

-c Compile only; do not link.

-D<name>[=<def>] Define C++ preprocessor macro <name> [as having
value <def>].

-f <optionsfile> Use <file> to override the default options file;
<file> is a full pathname if it is not in the current
directory.

Building a Stand-Alone Application on UNIX

1-21

-g Build an executable with debugging symbols
included.

-h[elp] Help; prints a description of mbuild and the list of
options.

-I<pathname> Include <pathname> in the list of directories to
search for header files.

-inline Inlines matrix accessor functions (mx*). The
generated MEX function may not be compatible with
future versions of MATLAB.

-l<file> Link against library lib<file>.

-L<pathname> Include <pathname> in the list of directories to
search for libraries.

-lang <language> Override language choice implied by file extension.
<language> =c for C
cpp for C++

This option is necessary when you use an
unsupported file extension, or when you pass all .o
files and libraries.

<name>=<def> Override options file setting for variable <name>. If
<def> contains spaces, enclose it in single quotes, for
example, CFLAGS='opt1 opt2'. The definition,
<def>, can reference other variables defined in the
options file. To reference a variable in the options
file, prepend the variable name with a $,
for example, CFLAGS='$CFLAGS opt2'.

-n No execute flag. Using this option displays the
commands that compile and link the target but does
not execute them.

Table 1-2: mbuild Options on UNIX (Continued)

Option Description

1 Getting Started

1-22

-outdir
<dirname>

Place any generated object, resource, or executable
files in the directory <dirname>. Do not combine this
option with -output if the -output option gives a
full pathname.

-output <name> Create an executable named <name>. (An appropriate
executable extension is automatically appended.)

-O Build an optimized executable.

-setup Set up the default compiler and libraries. This option
should be the only argument passed.

-U<name> Undefine C++ preprocessor macro <name>.

-v Verbose; print all compiler and linker settings.

Table 1-2: mbuild Options on UNIX (Continued)

Option Description

Building a Stand-Alone Application on PCs

1-23

Building a Stand-Alone Application on PCs
This section:

• Explains how to set-up your build environment

• Describes how to compile and link C++ source code into a stand-alone UNIX
application.

This section also contains information about packaging your application for
distribution.

Configuring the Build Environment
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 1-3, Windows File Extensions for mbuild shows
the file extensions that mbuild interprets as indicating C or C++ files. If you
include both C and C++ files, mbuild uses the C++ compiler and the MATLAB
C++ Math Library. If mbuild cannot deduce from the file extensions whether
to compile in C or C++, mbuild invokes the C compiler.

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see Table 1-5.

Locating Options Files
To locate your options file (compopts.bat), the mbuild script searches the
following:

Table 1-3: Windows File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.cxx
.cc

1 Getting Started

1-24

• The current directory

• The user Profiles directory
• <matlab>\bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C++ compiler and uses
the factory default options file for that compiler. If multiple compilers are
found, you are prompted to select one.

The User Profile Directory Under Windows. The Windows user Profiles directory is
a directory that contains user-specific information such as Desktop
appearance, recently used files, and Start Menu items. The mbuild utility
stores the options file (compopts.bat) it create during the -setup process in a
subdirectory of your user Profiles directory, named
Application Data\MathWorks\MATLAB\R12.

Under Windows NT and Windows 95/98/2000 with user profiles enabled, your
user profile directory is %windir%\Profiles\username. Under Windows 95/98
with user profiles disabled, your user profile directory is %windir%. Under
Windows 95/98, you can determine whether or not user profiles are enabled by
using the Passwords control panel.

Systems with Exactly One C/C++ Compiler
If your supported C++ compiler is installed on your system, you are ready to
create C++ stand-alone applications. On systems where there is exactly one
C++ compiler available to you, the mbuild utility automatically configures
itself for the appropriate compiler. So, for many users, to create a C++
stand-alone application, you can simply enter

mbuild filename.cpp

This simple method works for the majority of users. It uses your installed C++
compiler as your default compiler for creating your stand-alone applications:

• If you are a user who does not need to change compilers, or you do not need
to modify your compiler options files, you can skip ahead in this section to
“Building an Application.”

• If you need to know how to change the options file or select a different
compiler, continue with this section.

Building a Stand-Alone Application on PCs

1-25

Systems with More than One Compiler
On systems where there is more than one C++ compiler, the mbuild utility lets
you select which of the compilers you want to use. Once you choose your C++
compiler, that compiler becomes your default compiler and you no longer have
to select one when you compile your stand-alone applications.

For example, if your system has both the Borland and Watcom compilers, when
you enter for the first time

mbuild filename.cpp

you are asked to select which compiler to use.

mbuild has detected the following compilers on your machine:

[1] : Borland compiler in T:\Borland\BC.500
[2] : MSVC compiler in T:\DevStudio\c.106

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify your information.

Changing the Default Compiler
To change your default C++ compiler, you select a different options file. You
can do this at any time by using the setup command.

This example shows the process of changing your default compiler to the
Microsoft Visual C/C++ Version 6.0 compiler.

mbuild -setup

Please choose your compiler for building standalone MATLAB
applications.

Would you like mbuild to locate installed compilers [y]/n? n

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0, 5.2, or 5.3)
[2] Microsoft Visual C/C++ (version 4.2, 5.2, or 6.0)

1 Getting Started

1-26

[0] None

Compiler: 2

Choose the version of your C/C++ compiler:
[1] Microsoft Visual C/C++ 4.2
[2] Microsoft Visual C/C++ 5.0
[3] Microsoft Visual C/C++ 6.0

version: 3

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Program Files\DevStudio6.
Do you want to use this compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Program Files\DevStudio6

Are these correct?([y]/n): y

The default options file:
"C:\WINNT\Profiles\username
\Application Data\MathWorks\MATLAB\R12\compopts.bat" is being
updated...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used every time you use the mbuild script.

Modifying the Options File
Another use of the setup option is if you want to change your options file
settings. For example, if you want to make a change the current linker settings,
or you want to disable a particular set of warnings, use the setup option.

Building a Stand-Alone Application on PCs

1-27

The setup option copies the appropriate options file to your user profile
directory and names it compopts.bat. Make your user-specific changes to
compopts.bat in the user profile directory and save the modified file. This sets
your default compiler’s options file to your specific version.

Table 1-4, Compiler Options Files on the PC lists the names of the PC master
options files included in this release of the MATLAB C++ Math Library.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2 …]

to generate a list of all the current compiler settings used by mbuild.

You can also embed the settings obtained from the verbose option into an
integrated development environment (IDE) or makefile that you need to
maintain outside of MATLAB. Often, however, it is easier to call mbuild from
your makefile. See your system documentation for information on writing
makefiles.

Note Any changes that you make to the local options file compopts.bat will
be overwritten the next time you run mbuild -setup. If you want to make
your edits persist through repeated uses of mbuild -setup, you must edit the
master file itself. The master options files are located in
<matlab>\bin\win32\mbuild..

Table 1-4: Compiler Options Files on the PC

Compiler Master Options File

Borland C/C++, Version 5.0 bcccompp.bat

Borland C/C++, Version 5.2 bcc52compp.bat

Borland C++Builder 3.0 bcc53compp.bat

Borland C++Builder 4.0 bcc54compp.bat

Borland C++Builder 5.0 bcc55compp.bat

1 Getting Started

1-28

Combining Customized C and C++ Options Files
The options files for mbuild have changed as of MATLAB 5.3 (Release 11) so
that the same options file can be used to create both C and C++ stand-alone
applications. If you have modified your own separate options files to create C
and C++ applications, you can combine them into one options file.

To combine your existing options files into one universal C and C++ options file:

1 Copy from the C++ options file to the C options file all lines that set the
variables COMPFLAGS, OPTIMFLAGS, DEBUGFLAGS, and LINKFLAGS.

2 In the C options file, within just those copied lines from step 1, replace all
occurrences of COMPFLAGS with CPPCOMPFLAGS, OPTIMFLAGS with
CPPOPTIMFLAGS, DEBUGFLAGS with CPPDEBUGFLAGS, and LINKFLAGS with
CPPLINKFLAGS.

This process modifies your C options file to be a universal C/C++ options file.

Temporarily Changing the Compiler
To temporarily change your C++ compiler, use the -f option, as in

mbuild -f <file> …

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Lcc 2.4 (bundled with MATLAB) lcccompp.bat

Microsoft Visual C/C++, Version 5.0 msvc50compp.bat

Microsoft Visual C/C++, Version 6.0 msvc60compp.bat

Table 1-4: Compiler Options Files on the PC

Compiler Master Options File

Building a Stand-Alone Application on PCs

1-29

Building an Application
C++ source code for example ex1.cpp is included in the
<matlab>\extern\examples\cppmath directory; <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, enter at the DOS prompt:

mbuild ex1.cpp

This should create the file called ex1.exe. Stand-alone applications created on
Windows 95 or Windows NT always have the extension .exe. The created
application is a 32-bit Microsoft Windows console application. If you have a
problem using mbuild, see “Troubleshooting mbuild” on page 1-33.

Shared Libraries (DLLs)
All the WIN32 Dynamic Link Libraries (DLLs) for the MATLAB C++ Math
Library are in the directory

<matlab>\bin

The .def files for the Microsoft and Borland compilers are in the
<matlab>\extern\include directory. Import libraries for supported compilers
can be found in <matlab>\extern\lib\win32\<compiler>.

Before running a stand-alone application, you must ensure that the directory
containing the DLLs is on your path. The directory must be on your operating
system $PATH environment variable. On Windows 95, set the value in your
autoexec.bat file; on Windows NT, use the Control Panel to set it.

Running Your Application
You can now run your stand-alone application by launching it from the
command line. For example,

ex1

[
 1 3 5 ;
 2 4 6
]

 [

1 Getting Started

1-30

 1 4 ;
 2 5 ;
 3 6
]

Please enter a matrix:

mbuild Options
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
additional details of the mbuild script; they use it in its simplest form. The
following information is provided for those users who require more flexibility
with the tool.

The mbuild syntax and options are

mbuild [-options] filename1 [filename2 …]

Table 1-5: mbuild Options on Microsoft Windows

Option Description

@filename Replace @filename on the mbuild
command line with the contents of
filename. filename is a response file,
i.e., a text file that contains additional
command line options to be processed.

-c Compile only; do not link.

-D<name> [#<def>] Define C preprocessor macro <name> as
having value [#<def>]

-f <file> Use <file> as the options file; <file> is
a full pathname if it is not in the current
directory.

-g Build an executable with debugging
symbols included.

Building a Stand-Alone Application on PCs

1-31

-h[elp] Help; prints a description of mbuild and
the list of options.

-I<pathname> Include <pathname> in the list of
directories to search for header files.

<name>#<def> Override options file setting for variable
<name>. This option is equivalent to
<ENV_VAR>#<val>, which temporarily
sets the environment variable <ENV_VAR>
to <val> for the duration of the call to
mex. <val> can refer to another
environment variable by prepending the
name of the variable with a $, e.g.,
COMPFLAGS#"$COMPFLAGS -myswitch".

-inline Inlines matrix accessor functions (mx*).
The generated MEX-function may not be
compatible with future versions of
MATLAB.

-lang <language> Override language choice implied by file
extension.
<language> =c for C
cpp for C++

This option is necessary when you use an
unsupported file extension, or when you
pass all .o files and libraries.

-n No execute flag. Using this option
displays the commands that compile and
link the target but does not execute
them.

Table 1-5: mbuild Options on Microsoft Windows (Continued)

Option Description

1 Getting Started

1-32

-outdir <dirname> Place any generated object, resource, or
executable files in the directory
<dirname>. Do not combine this option
with -output if the -output option gives
a full pathname.

-output <name> Create an executable named <name>. (An
appropriate executable extension is
automatically appended.)

-O Build an optimized executable.

-setup Set up the default compiler and libraries.
This option should be the only argument
passed.

-U<name> Undefine C++ preprocessor macro
<name>.

-v Verbose; print all compiler and linker
settings.

Table 1-5: mbuild Options on Microsoft Windows (Continued)

Option Description

Troubleshooting mbuild

1-33

Troubleshooting mbuild
This section identifies some of the more common problems that may occur
when configuring mbuild to create applications.

Options File Not Writable
When you run mbuild -setup, mbuild makes a copy of the appropriate options
file and writes some information to it. If the options file is not writable, you are
asked if you want to overwrite the existing options file. If you choose to do so,
the existing options file is copied to a new location and a new options file is
created.

Directory or File Not Writable
If a destination directory or file is not writable, ensure that the permissions are
properly set. In certain cases, make sure that the file is not in use.

mbuild Generates Errors
On UNIX, if you run mbuild filename and get errors, it may be because you
are not using the proper options file. Run mbuild -setup to ensure proper
compiler and linker settings.

Compiler and/or Linker Not Found
On PCs running Windows, if you get errors such as Bad command or filename
or File not found, make sure the command line tools are installed and the
path and other environment variables are set correctly.

mbuild Not a Recognized Command
If mbuild is not recognized, verify that <matlab>\bin is on your path. On
UNIX, it may be necessary to rehash.

Cannot Locate Your Compiler (PC)
If mbuild has difficulty locating your installed compilers, it is useful to know
how it goes about finding compilers. mbuild automatically detects your
installed compilers by first searching for locations specified in the following
environment variables:

• BORLAND for the Borland C/C++ Compiler, Version 5.0 and 5.2, and Borland
C++Builder, Version 3.0, 4.0, and 5.0.

1 Getting Started

1-34

• MSVCDIR for Microsoft Visual C/C++, Version 5.0 or 6.0

• MSDEVDIR for Microsoft Visual C/C++, Version 4.2

Next, mbuild searches the Windows Registry for compiler entries. Note that
Watcom does not add an entry to the registry.

Internal Error When Using mbuild -setup (PC)
Some antivirus software packages such as Cheyenne AntiVirus and Dr.
Solomon may conflict with the mbuild -setup process. If you get an error
message during mbuild -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mbuild Fails
If none of the previous solutions addresses your difficulty with mbuild, contact
Technical Support at The MathWorks at support@mathworks.com or
508-647-7000.

Linking Applications Without mbuild

1-35

Linking Applications Without mbuild
To build the examples or your own applications without mbuild, compile the
file with a robust C++ compiler. The compiler you use must support both
templates and exceptions. Set the include file search path to contain the
directory that contains the file matlab.hpp; compilers typically use the –I
switch to add directories to the include file search path. See Appendix A to
determine where matlab.hpp is installed. Link the resulting object files
against the libraries in this order:

1 MATLAB C++ Math Library (libmatpp on UNIX; libmatp* on Windows,
where * is replaced by the suffix for your compiler)

2 MATLAB M-File Math Library (libmmfile)

3 MATLAB Built-In Library (libmatlb)

4 MATLAB MAT-file Library (libmat)

5 MATLAB Array Access and Creation Library (libmx)

6 Standard C Math Library (libm)

Specifying the libraries in the wrong order on the command line typically
causes linker errors.

On some platforms, additional libraries are necessary; see the platform-specific
section of the mbuild script for the names and order of these libraries on the
platforms we support.

On PCs, import libraries can be found in
<matlab>\extern\lib\win32\<compiler>.

1 Getting Started

1-36

Distributing Stand-Alone Applications
You may freely distribute applications you develop with the MATLAB C++
Math Library, subject to The MathWorks software license agreement. When
you package your application for distribution, remember to include, along with
your application executable, these additional files:

• The contents, if any, of a directory named bin, created by mbuild in the same
directory as your application executable

• Any custom MEX files your application uses

• All the MATLAB math run-time libraries

To make packaging an application easier, the C++ math library has
prepackaged all the necessary MATLAB run-time libraries into a single,
self-extracting archive file. For more information about how you can use this
archive, see “Packaging the MATLAB Math Run-Time Libraries”. For
information about how customers who receive your application can use this
archive, see “Installing Your Application” on page 1-37.

Packaging the MATLAB Math Run-Time Libraries
The MATLAB C++ Math library has prepackaged all the MATLAB run-time
libraries required by stand-alone applications into a single, self-extracting
archive file, called the MATLAB Math and Graphics Run-Time Library
Installer. Instead of including all the run-time libraries individually in your
stand-alone application distribution package, you can simply include this
archive file.

The following table lists the name of the archive file for both PCs and UNIX
systems. In the table $MATLAB represents your MATLAB installation directory
and $ARCH represents your UNIX platform.

Platform MATLAB Math and Graphics Run-Time Library Installer

UNIX systems $MATLAB/extern/lib/$ARCH/mglinstaller

PCs $MATLAB\extern\lib\win32\mglinstaller.exe

Distributing Stand-Alone Applications

1-37

Installing Your Application
To install your application, your customers must:

• Run the MATLAB Math and Graphics Run-Time Library Installer. This
program extracts the libraries from the archive and installs them in
subdirectories of a directory specified by the user.

• Add the bin/$ARCH subdirectory to their path. This is the only MATLAB
Math and Graphics Run-time library subdirectory that needs to be added to
the path.

Note If a customer already has the MATLAB math and graphics run-time
libraries installed on their system, they do not need to reinstall them. They
only need to ensure that the library search path is configured correctly.

On UNIX Systems
On UNIX systems, your customer runs the MATLAB Math and Graphics
Run-Time Library Installer by executing the mglinstaller command at the
system prompt. Your customer can specify the name of the directory into which
they want to install the libraries. By default, the installer puts the files in the
current directory.

After the installer unpacks and uncompresses the libraries, your customers
must add the name of the bin/$ARCH subdirectory to the LD_LIBRARY_PATH
environment variable. (The equivalent variable on HP-UX systems is the
SHLIB_PATH and LIBPATH on IBM AIX systems.)

For example, if a customer working on a Linux system specifies the installation
directory mgl_runtime_dir, then they must add
mgl_runtime_dir/bin/glnx86 to the LD_LIBRARY_PATH environment variable.

On PCs
On PCs, your customer can run the MATLAB Math and Graphics Run-Time
Library Installer by double-clicking on the mglinstaller.exe file. Your
customer can specify the name of the directory into which they want to install
the libraries. By default, the installer puts the files in the current directory.

After the installer unpacks and uncompresses the libraries, your customers
must add the bin\win32 subdirectory to the system path variable (PATH).

1 Getting Started

1-38

For example, if your customer specifies the installation directory
mgl_runtime_dir, then they must add mgl_runtime_dir\bin\win32 to PATH.

Problem Starting Stand-Alone Application
Your application may compile successfully but fail when you or one of your
customers tries to start it. If you run the application from a DOS command
window, you or one of your customers may see an error message such as:

The ordinal #### could not be located in the dynamic-link library
dforrt.dll.

To fix this problem, locate the files named dforrt.dll or dformd.dll in your
Windows system directory and replace them with the versions of these files in
the <MATLAB>\bin\win32 directory, where <MATLAB> represents the name of
your MATLAB installation directory.

This same solution works for customers of your application who encounter the
same problem; however, they can replace the versions of these files in the
Windows system directory with the versions they find in
<MGLRUNTIMELIBRARY>\bin\win32 directory, where <MGLRUNTIMELIBRARY> is
the name of the directory in which they installed the MATLAB Math and
Graphics Run-Time Libraries. See “Distributing Stand-Alone Applications” on
page 1-36 for more information.

2

Fundamentals

MATLAB Basics 2-3
Data Types . 2-3
Operators . 2-4
Functions . 2-6
Input and Output 2-6
Errors . 2-7
Flow of Control 2-7

MATLAB for C++ Programmers 2-8

C++ for MATLAB Users 2-10
How the Library Is Similar to MATLAB 2-10
How C++ and the Library Differ from MATLAB 2-10

MATLAB C++ Math Library Basics 2-12
Data Types . 2-12
Operators . 2-13
Functions . 2-14
Input and Output 2-15
Errors . 2-16
Memory Management 2-16

Stand-Alone Programs 2-18
Example Program: Writing Simple Functions (ex4.cpp) . . . 2-19
Writing Efficient Programs 2-22

Learning More 2-24

2 Fundamentals

2-2

This section introduces the MATLAB C++ Math Library. Once you’ve read this
chapter, you’ll understand how MATLAB and the MATLAB C++ Math Library
work and understand the most important differences between the MATLAB
and C++ programming languages.

The section includes these topics:

• “MATLAB Basics” on page 2-3

• “MATLAB for C++ Programmers” on page 2-8

• “C++ for MATLAB Users” on page 2-10

• “Stand-Alone Programs” on page 2-18

• “Learning More” on page 2-24

This overview contains just enough information to get you started. See
“Building C++ Applications” in Chapter 1 to learn how to build a simple C++
application. Subsequent chapters contain the examples and the details that
this chapter omits.

MATLAB Basics

2-3

MATLAB Basics
This section contains an overview of the MATLAB language and programming
environment. It does not substitute for a thorough reading of Using MATLAB,
but it does describe most of the basic concepts in MATLAB. Most of the
material in this section, and in this chapter, is repeated and elaborated on in
subsequent chapters.

This section describes the interpreted MATLAB environment, not the
MATLAB C++ Math Library. Understanding the material in this section will
help you understand why the MATLAB C++ Math Library works the way it
does.

MATLAB’s central data type is the array. Using the MATLAB interpreter, you
can create array variables, form arithmetic expressions with arrays, and call
functions on arrays. In addition, you can print arrays to and read arrays from
files and the screen.

Most of the built-in MATLAB functions and operators are vectorized, that is,
they operate on entire arrays. For example, to add one array to another,
instead of writing a doubly nested for-loop, as you would in C or Fortran, you
simply call MATLAB’s + operator. Similarly, to compute the square root of all
the elements in an array, don’t loop through the array elements individually
calling sqrt() on each one. Instead, call sqrt() on the entire array; sqrt()
loops for you.

MATLAB programs consist of a collection of functions. Each MATLAB file can
store one or more functions; the filename must end with the extension .m
(hence the name M-files). The primary function in each M-file must have the
same name as the file itself.

Note This section concentrates on the MATLAB features supported by the
MATLAB C++ Math Library. Some features of the MATLAB language are not
yet supported.

Data Types
There are six fundamental data types (classes) in MATLAB, each one a
multidimensional array. The six classes are double, char, sparse, int8, cell,

2 Fundamentals

2-4

and struct. The two-dimensional versions of these arrays are called matrices,
hence the name MATLAB. The double precision matrix (double) and the
character array (char) are the data types that are used most frequently. The
other data types are for specialized situations like large-scale programming.

Note The MATLAB C++ Math Library does not support the int8 data type.

In MATLAB, every piece of data is an array. For example, a number like 17,
which you might think is an integer, is stored by MATLAB as 1-by-1 array
containing a double-precision floating-point number.

Every MATLAB array has some basic attributes: the size and shape of the
array (i.e., the number of rows, columns, and pages for multidimensional
arrays) and the array of double-precision floating-point numbers, which
contains the data in the matrix. The data in an array can be either real or
complex numbers. If an array stores complex numbers, it acquires a fourth
attribute, a second double-precision array of floating-point numbers, the same
size as the first. This second array stores the complex part of the matrix data.
If an array has zero rows or columns it is a null, or empty, matrix.

Almost every operation or function call in MATLAB creates a new array. There
are too many ways to create an array to list them all here. See Chapter 3,
“Working with MATLAB Arrays” for a systematic discussion of this topic.

MATLAB also supports string arrays. Each character is 16 bits long; the array
prints as strings of characters. To create a string array, surround the string
with single quotes, for example, 'This is a string array'.

Operators
MATLAB supports relational and arithmetic operators. Relational operators
typically perform some type of comparison between their two operands, both of
which must be the same size, and return an array of ones and zeros the same
size as the input arrays. A one in the result array indicates the relationship
between the corresponding elements of the input arrays is true, while a zero
indicates that relationship is false. The result of a relational operation is
always a logical array, an array consisting entirely of ones and zeros.

Arithmetic statements in MATLAB look much like arithmetic expressions in
mathematics textbooks or programming languages like C or Fortran. For

MATLAB Basics

2-5

example, to multiply two arrays, X and Z, and store the result in a third array
Y, write Y = X * Z. Note that Y does not necessarily have to exist (but that X
and Z must) before this expression is executed.

MATLAB supports the familiar arithmetic operators, +, *, -, / as well as
several others, including ^ (exponentiation) and ’ (transpose). There are two
broad types of arithmetic operators in MATLAB, array operators and matrix
operators.

The array operators are two character operators (except for + and -); the first
character is always a . (period). Array operators treat the elements of their
array operands individually. For example, C = A .* B represents elementwise,
rather than matrix, multiplication of A and B. Each element of the result, C, is
the product of the corresponding elements of A and B, that is,
C[i] = A[i] * B[i].

Matrix operators are less uniform. There is no single simple formula that
describes the behavior of all the matrix operators in MATLAB.

Three of the most useful MATLAB operators are :, (), and []. The first special
operator, :, has two different meanings. : permits the generation of sequences
of numbers and acts as a wildcard in array subscripts. For example, the
expression 1:10 expands into the sequence 1 2 3 4 5 6 7 8 9 10.

The second special operator, (), for array indexing, works closely with :. A
simple array subscript, for example, A(3,9), returns the element at the
intersection of row three and column nine in the array A. If you want more than
a single element, use the : wildcard operator. For example, the expression
A(3, :) returns a vector (1-by-N) of all the elements in the third row of the
array A.

The third of the three special operators, [], concatenates arrays, either
vertically or horizontally. For example, [1 2 ; 3 4] horizontally
concatenates 1 and 2 into a vector, 3 and 4 into another vector, and then
vertically concatenates the two vectors into a square array.

1 2
3 4

Within the [] operator, spaces or commas indicate horizontal concatenation,
and the semicolon, vertical concatenation.

2 Fundamentals

2-6

Functions
In addition to the operators defined by the language, MATLAB ships with a
large collection of functions. While there is no way for you to add a new operator
to the language, you may add as many functions as you want to MATLAB.

A MATLAB function can take zero, one, or more input arguments, and return
zero, one, or more output arguments. In general, a MATLAB function call looks
like this:

[x, y] = foo(a, b, c);

This calls the function foo() with three input arguments, a, b, and c, and
assigns the two results to the output arguments x and y.

You can also compose functions:

x = bar(foo(a, b, c))

Note that there is no way to pass multiple return values from one function to
the next. In this example, only the first of foo()’s return values is passed to
bar().

Finally, one or more of a MATLAB function’s input or output arguments may
be optional. A MATLAB function can never be called with more input or output
arguments than it is declared with, but it can always be called with fewer. It is
up to the function implementer to put in any necessary error checking.

See “How to Call C++ Library Functions” in Chapter 5 for a complete
description of the rules that govern function calls in MATLAB.

Input and Output
MATLAB supports several functions for input and output. The simplest one is
disp(), short for display. Pass disp() an array, and the array appears on the
terminal screen. For example:

disp('Hello World');

Here, 'Hello World' is a string array.

One group of I/O functions in MATLAB are like their namesakes in the C
programming language. MATLAB supports fprintf(), sprintf(), scanf(),
and sscanf(). fprintf() prints to files, sprintf() to strings, while scanf()

MATLAB Basics

2-7

and sscanf() read from files and strings, respectively. The arguments to these
functions can be simple or complex. For example:

sprintf('The answer is: %f\n', magic(2));

This call creates this string array:

The answer is: 1.000000
The answer is: 4.000000
The answer is: 3.000000
The answer is: 2.000000

Notice how the sprintf() command recycled its format string argument
through the four elements of its data argument.

The I/O functions load() and save() allow you to save array variables from
your application to what’s called a MAT-file. That data can then be loaded back
in by your application or by another application.

See “Example – Using load() and save() (ex7.cpp)” and “Example – Using File
I/O Functions (ex6.cpp)” in Chapter 8 for more details on MATLAB input and
output.

Errors
In general MATLAB notifies you of errors by emitting a beep and returning you
to the MATLAB prompt. If you need to do more sophisticated error handling in
your M-files, you can use a try and catch block to change the flow of control
when an error occurs, perform any cleanup, and exit or continue your program.
You can also design a method of your own for handling errors and implement it.

Flow of Control
The MATLAB programming language provides an if-statement and a
switch-statement for making decisions and two loop constructs, the for loop
and the while loop, for program iteration. Each of these statements begins a
program block (the body of the loop or if-statement); you must end the block
with the end keyword.

See “Control Structure” on page 9-6 for more details.

2 Fundamentals

2-8

MATLAB for C++ Programmers
If you’re a C++ programmer who has never used MATLAB, make sure you
understand the previous section before reading this one. The MATLAB
language isn’t complicated, but there are important differences between it and
C++. These differences won’t affect your use of this product directly, because
you will, after all, be using C++, but if you understand the differences, you will
have a better understanding of the constraints that guided the design of the
MATLAB C++ Math Library.

The major differences between MATLAB and C++ include:

• Every MATLAB data object is an array. The two-dimensional version of an
array is called a matrix.

• Array objects have value semantics. Think of assignment as copying.

• All functions have call-by-value semantics.

• MATLAB functions can return multiple values.

• MATLAB functions are vectorized.

• In general, MATLAB functions do not have side effects; they do not modify
their inputs.

• In MATLAB, subscripts begin at 1 rather than 0.

• MATLAB arrays store data in column-major, rather than C++’s row-major,
order.

• Memory management is handled by the MATLAB interpreter.

MATLAB is a more specialized programming language than C++ and, as a
result, lacks much of the machinery of C++, such as typed variables and name
space management. MATLAB is not a general-purpose programming language
like C++, so it is not nearly as versatile as C++. However, in its domain,
numerical linear algebra, MATLAB is far easier to use and much more concise
than C++. This library brings some of that power to C++ programmers.

Much of MATLAB’s expressive power stems from its rich collection of
numerical operators. In C++ it is impossible to emulate perfectly MATLAB’s
operator syntax, because some of the MATLAB operators like .* consist of two
characters, while others like 'are not legal C++ operators. However, many of
MATLAB’s operators are present in C++, overloaded to provide commutativity
and inlined for efficiency. Those MATLAB operators that are not present as
C++ operators are available as function calls.

MATLAB for C++ Programmers

2-9

Fortunately, one of MATLAB’s most powerful operators, (), for array indexing,
is a valid C++ operator. The indexing operator can access a single element or a
group of elements in an array. For example, in MATLAB, A(2:4, 1:3) returns
a 3-by-3 array consisting of the second, third and fourth elements in the first
three columns of array A. Because the : is not a valid C++ operator, the
equivalent expression in C++ requires the use of the colon() function:
A(colon(2,4), colon(1,3)). The indexing operator is also the only operator
that can modify an array. For example, the expression

A(4,7) = 13

writes the value 13 into the entry at row 4 and column 7 of array A. This is the
only way to modify the contents of an array. Because the MATLAB cell array
indexing operator, {}, is not a valid C++ operator, the MATLAB C++ Math
Library uses the cellhcat() routine to emulate it.

You have seen that an array subscript can itself be an array. When an array
subscript is a logical array containing only zeros and ones, it is called a logical
index. A logical index acts like a mask or filter. Each element in the logical
index corresponds to an element in the subscripted array. If the element in the
logical index is 1, the corresponding element in the subscripted array appears
in the result. The result of any nontrivial (array of all ones or all zeros) logical
indexing operation can have various shapes depending on the shape of the
indices.

See “Differences Between C++ and MATLAB” on page 9-2 for a more
comprehensive list of differences between MATLAB and C++. See “MATLAB
C++ Math Library Basics” on page 2-12 to learn how these principles are
expressed in the MATLAB C++ Math Library.

2 Fundamentals

2-10

C++ for MATLAB Users
The MATLAB C++ Math Library should hold very few surprises for the
average MATLAB user, as it was designed to be as similar to MATLAB as
possible. There are however, a few areas of difference, mostly due to immutable
features of C++.

How the Library Is Similar to MATLAB
• All the variables are arrays.

• Most of the mathematical operators (+, *, /, - and others) are available.

• The indexing operator, (), works just as it does in MATLAB.

• The MATLAB C++ Math Library manages memory for you.

Though this list is short, it represents a substantial similarity between
MATLAB and the library. Many MATLAB expressions translate verbatim into
C++. The fundamental goal of MATLAB and the MATLAB C++ Math Library
is the same: to provide an expression-oriented programming environment for
the development of numerical linear algebraic algorithms.

How C++ and the Library Differ from MATLAB
• The syntax is slightly different; for example, there is no : operator or cell

array { } indexing operator.

• Functions in C++ can return only one value.

• C++ flow-of-control statements (if, for, and while) are different from their
MATLAB equivalents.

• C++ supports pointers and references.

• You must declare variables before using them.

• C++ uses exceptions to report errors.

The most obvious difference between C++ and MATLAB is the syntax. Many of
MATLAB’s neat syntactic tricks, such as : and ', are not valid C++ syntax, and
therefore are available only through function calls in C++. Though the lack of
operators may at first seem to be the biggest difference, it is not. Since each of
the operators has an equivalent function, the only thing missing is convenience
of syntax.

C++ for MATLAB Users

2-11

A much bigger difference is the lack of multiple return values in C++. A C++
function returns either zero or one value. To simulate MATLAB’s multiple
return values, the MATLAB C++ Math Library requires that you pass all but
the first of your return values as inputs to the function; you must pass these
arguments as pointers to arrays so that the called function can modify them.

The differences between the flow of control statements (if-statements, for-
and while-loops) in MATLAB and C++ are minor. Certainly the syntax is a bit
different, but the most important difference is that the arguments to these
statements in C++ must be scalars. Because if and while require Boolean
values, you must use the MATLAB C++ Math Library tobool() function to
reduce any array that appears in one of these statements to a scalar. tobool()
returns a Boolean result.

Variable declaration, required by C++, is another difference, but a minor one,
especially since C++ allows you to declare variables at any point in the
program. Also, the C++ compiler will forcefully remind you of any variables you
have forgotten to declare.

C++ and MATLAB both support try and catch blocks, which allow you to
detect and recover from an error. However, C++’s exception-handling
mechanism is somewhat more comprehensive than MATLAB’s error handling
because you can associate an object with a catch block. In MATLAB, a catch
block catches any error.

A C++ exception is an object created when an error occurs. The exception
typically identifies the type of error and its location. Like a MATLAB error, an
unhandled C++ exception will terminate the program. Unlike a MATLAB
error, you won’t get to see the error message associated with the exception
unless you catch the exception and print it out manually — C++ will not do this
for you automatically.

See “Differences Between C++ and MATLAB” in Chapter 9 for more details on
the differences between C++ and MATLAB.

2 Fundamentals

2-12

MATLAB C++ Math Library Basics
This section contains an overview of the MATLAB C++ Math Library. It
provides an introduction to most of the basic concepts in the library. Because
of its brevity, it does not discuss each concept in great detail; subsequent
chapters provide much more depth. Before you read this section, make sure you
understand all of the concepts in “MATLAB Basics” on page 2-3.

Like MATLAB, the MATLAB C++ Math Library’s central data type is the
array. Using the MATLAB C++ Math Library, you can create array variables,
form arithmetic expressions with arrays, and call functions on arrays. In
addition, you can print an array to a file or display it on the screen, or read an
array from a file or from the screen.

Most of the built-in MATLAB functions and operators are vectorized, that is,
they operate on an entire array. This is true of the routines in the MATLAB
C++ Math Library as well. For example, to add one array to another, instead of
writing a doubly nested for-loop, as you would in C or Fortran, simply call the
library’s + operator. Similarly, to compute the square root of all the elements
in an array, don’t loop through the array elements individually calling sqrt()
on each one. Instead, call sqrt() on the entire array; sqrt() will loop for you.

Data Types
Arrays are represented by objects of the class mwArray. However, unlike
MATLAB, C++ allows numbers like 17 to be declared integers rather than
1-by-1 arrays, at a considerable savings in space and increased speed. All the
routines in the MATLAB C++ Math Library can handle integers,
double-precision floating-point numbers, or strings as easily as arrays. C++
automatically converts the scalars or strings into arrays before the routines are
called.

Every mwArray class object contains a pointer to a MATLAB array structure.
For this reason, the attributes of an mwArray object are a superset of the
attributes of a MATLAB array. Every MATLAB array contains information
about the size and shape of the array (i.e., the number of rows, columns, and
pages) and either one or two arrays of data. The first array stores the real part
of the array data and the second array stores the imaginary part. For arrays
with no imaginary part, the second array is not present. The data in the array
is arranged in column-major, rather than row-major, order.

MATLAB C++ Math Library Basics

2-13

The mwArray class has a small interface. Most of the functions in the MATLAB
C++ Math Library are not members of the mwArray class. Having a small
interface means that mwArray is an easy class to understand and one that is
less likely to change as the library grows. Chapter 10 describes the interface
completely.

The MATLAB C++ Math Library defines two other important data types:
mwIndex and mwSubArray. Both of these classes are used by the array indexing
routines. mwIndex objects represent the index applied to the array and
mwSubArray objects represent the subscripting operation itself. Casual users of
the library won’t need to use these two classes. See “The mwIndex Class” in
Chapter 4 for complete details.

You can make an mwArray from any number of other data types: integers,
double-precision floating-point real numbers, strings (delimit C++ strings with
"" rather than ''), an instance of an mwIndex or mwSubArray. Like the routines
in MATLAB, most of the operators and function calls in the MATLAB C++
Math Library return a newly allocated array.

Operators
Operator syntax is a very convenient and natural looking shorthand for
function calls. The MATLAB C++ Math Library supports a subset of the
operators available in MATLAB. The library provides all of the relational
operators and those arithmetic and miscellaneous operators that do not violate
rules of C++ syntax. The operators that are not available as operators are
available via function calls.

In MATLAB there are two classes of arithmetic operators: array operators and
matrix operators. In the MATLAB C++ Math Library the arithmetic operators
are matrix operators, except for + and - for which the distinction is
meaningless. This means that, for example, A * B is the linear algebraic
product (matrix multiplication) of A and B, rather than the elementwise product
of A and B. A and B are mwArray objects. All of the arithmetic array operators
are also available via function calls.

Operators in the MATLAB C++ Math Library are vectorized. This means you
can use the + operator, for example, to compute the sum of two arrays without
using a loop. In C++, without some kind of an array class, you’d use one or two
for-loops to compute the sum of two arrays; e.g., for every row in the array and
for every column in the row, compute the sum at the row/column intersection.

2 Fundamentals

2-14

The operators in the MATLAB C++ Math Library all contain loops of this sort
already, so there is no need for you to write them.

The section “Operators” in Chapter 11 lists the available operators and their
function call equivalents.

Functions
The MATLAB C++ Math Library contains over 400 mathematical functions
and a collection of utility routines. The mathematical functions are C++
versions of their MATLAB counterparts, while the utility routines provide
services that the mathematical functions previously received from interpreted
MATLAB; for example, printing and memory management.

Unlike C++ functions, MATLAB functions may have multiple return values.
The MATLAB C++ Math Library provides for multiple return values by
requiring that you pass all your return values except the first into the function
as output parameters. In a function argument list, output parameters always
precede input parameters. For example, the MATLAB function call
[V, D] = eig(X) becomes V = eig(&D, X) in the MATLAB C++ Math
Library.

By default all MATLAB functions have optional input and output arguments
(see “Functions” on page 2-6). However, for each function, only certain
combinations of input and output arguments are valid. The MATLAB C++
Math Library uses a combination of function overloading and C++ default
arguments to make available for each function those exact combinations of
input and output arguments that are valid in MATLAB. For example, the
MATLAB function svd() has a maximum of two inputs and three outputs, a
total of 12 different ways it might be called. However, only three of those
combinations are valid. There are, therefore, three versions of svd() in the
MATLAB C++ Math Library.

See “How to Call C++ Library Functions” in Chapter 5 for a more thorough
explanation of how to determine what arguments to pass to the MATLAB C++
Math Library version of a MATLAB function call. You can also use the online
MATLAB C++ Math Library Reference available from the Help Desk to find the
specific arguments for each library function. “Accessing Online Reference
Documentation” on page 1-7 describes how to access the Help Desk.

MATLAB C++ Math Library Basics

2-15

Input and Output
MATLAB programs use scanf() and fprintf() to read and write from input
and output and load() and save() to read and write array variables from and
to MAT-files. C++ introduces a new concept: input and output streams. The
MATLAB C++ Math Library supports MATLAB’s fscanf() and fprintf()
style of input and output along with load() and save(), and also provides the
necessary operators for C++ stream input and output.

The MATLAB and MATLAB C++ Math Library versions of the fprintf() and
fscanf() style functions are essentially the same. See “Example – Using File
I/O Functions (ex6.cpp)” in Chapter 8 for more information on the input and
output functions. The MATLAB C++ Math Library versions of load() and
save() allow you to share data with MATLAB applications or with other
applications developed with the MATLAB C++ or C Math Library; however
they do not provide as many options as the MATLAB versions. See “Importing
and Exporting MAT-File Data” in Chapter 8 to learn how the functions differ.

In many ways, streams are more convenient than functions like fprintf(),
because they are more consistent, flexible, and extensible. There are two basic
types of streams, input streams and output streams. A C++ stream is a
sequence of data objects. Often a stream consists of a sequence of characters.
Streams can be attached to one of many types of data sources, or sinks: files,
strings, and the screen, for example.

Each object in a C++ program is responsible for printing itself to a stream and
reading itself from a stream. This decentralizes the responsibility for input and
output formats, which means objects have complete control over their own
printed format, and new objects can be added without changing the code in the
basic streams mechanism. Furthermore, since the interface to each type of
stream is the same, the code to save an object into a file is identical to that used
to print that object on the screen or send it over the network to another process.

C++ defines three standard streams, cin, cout, and cerr. cin is bound to
standard input, cout to standard output and cerr to standard error. To send
an array A to the standard output, you write:

cout << A << endl;

To read an array in from standard input, you write:

cin >> A;

To send an array A to standard error, you write:

2 Fundamentals

2-16

cerr << A << endl;

<< is the output operator and >> the input operator. The direction in which the
operator points suggests the direction in which data flows. “Using Array
Stream I/O” in Chapter 8 describes C++ stream-style output and the array I/O
format completely. Refer to that section for more information.

Errors
The MATLAB C++ Math Library uses C++ exceptions to report errors. The
MATLAB C++ Math Library divides the errors it reports into categories and for
each of these categories it provides a class. All of the exception classes are
subclasses of mwException. Because all the exceptions are derived from the
same superclass, it is easy to write a general exception handler. For example:

try {
 // Some MATLAB C++ Math Library code
}

catch(mwException &ex) {
cout << ex << endl;

}

This try-catch block catches any exception that occurs during the execution of
the indicated MATLAB C++ Math Library code and prints the error message
associated with the exception to standard output. You should put a try-catch
block like this one in every main() routine you write.

See “Handling Exceptions” in Chapter 7 for more information on the error
handling mechanism and Appendix C for a list of the library’s error messages.

Memory Management
MATLAB users usually don’t worry about memory management because the
MATLAB interpreter manages memory for them. This is in marked contrast to
most programming languages, which require their users to explicitly manage
their own memory. The MATLAB C++ Math Library uses a memory
management scheme that both performs well and ensures there are no memory
leaks. This means that, in most cases, users of the MATLAB C++ Math Library
do not need to implement complex memory management mechanisms because
the library already contains one.

MATLAB C++ Math Library Basics

2-17

If you need to change the way the library allocates its memory, the library
provides memory management routines that let you substitute your own
scheme. “Memory Management” in Chapter 7 describes how to use the
routines.

2 Fundamentals

2-18

Stand-Alone Programs
In addition to writing M-files, there are three other ways you can call MATLAB
functions: via MEX-files or via the MATLAB Engine, or by using either the
MATLAB C or C++ Math Library. Any M-file, MEX file, or Engine code you
write requires the entire MATLAB environment to run. However, with the
MATLAB C and C++ Math libraries, you can write stand-alone (external)
programs.

A stand-alone program offers several advantages:

• It is often faster than the equivalent interpreted MATLAB program.

• It is generally smaller in executable size and requires less memory than the
same program written as an M-file.

• It can be redistributed to your customers, even if those customers don’t own
MATLAB. See “Building a Stand-Alone Application on PCs” on page 1-23
and “Distributing Stand-Alone Applications” on page 1-36.

However, there are disadvantages to stand-alone programs:

• You can’t use the MATLAB functions eval() or input().

• You can’t call a Handle Graphics® function.

• Certain parts of MATLAB syntax, for example, : and [], are not available in
C or C++.

• You can’t call functions in the MATLAB toolboxes.

• You have no access to Simulink®.

Stand-alone programs are best suited for highly numeric applications. You can,
of course, incorporate calls to third-party libraries, such as the X Window
System, the Microsoft Windows Graphical Device Interface or MFC, in your
stand-alone programs.

You can also use the MATLAB C++ Math Library to develop one or more
modules or parts of a larger program. For example, you may have a signal
processing application for which you want to do algorithm development in
MATLAB. To do this, you write M-files that solve your signal processing
problems. Using the MATLAB C++ Math Library, you can quickly translate
these M-files into C++. Then you plug the resulting C++ code into your larger
program. The translation will be even faster if you use the MATLAB Compiler,
which is sold separately, to automatically translate M-files to C++.

Stand-Alone Programs

2-19

By using interpreted MATLAB for algorithm development and rapid
prototyping, the MATLAB Compiler for translation to C++, the MATLAB C++
Math Library to enable the construction of external modules, and C++ for the
larger program framework, you use the strengths of each.

Example Program: Writing Simple Functions
(ex4.cpp)
This example demonstrates how to write a simple function that takes two
matrix arguments and returns a matrix value. You can find the code for this
example in the <matlab>/extern/examples/cppmath directory on UNIX
systems and in the <matlab>\extern\examples\cppmath directory on PCs,
where <matlab> represents the top-level directory of your installation. See
“Building C++ Applications” on page 1-13 for information about building and
running the example program.

In the example, note the following:

• Your routines should return an mwArray object, not a reference to one.

• mwArray objects are most efficiently passed by reference.

• Input arrays should be declared const.

• The vectorized routines in the MATLAB C++ Math Library eliminate, in
many cases, the need for you to write explicit for-loops in your own code.

2 Fundamentals

2-20

// ex4.cpp

#include <stdlib.h>
#include "matlab.hpp" // <1>

static double data0[] = { 2, 6, 4, 8 }; // <2>
static double data1[] = { 1, 5, 3, 7 };

mwArray average(const mwArray &m1, const mwArray &m2) // <3>
{
 return rdivide(plus(m1, m2), 2); // (m1 + m2) / 2
}

int main(void) // <4>
{
 // Create two matrices
 mwArray mat0(2, 2, data0); // mat0 = [2 4; 6 8] <5>
 mwArray mat1(2, 2, data1); // mat1 = [1 3; 5 7]
 mwArray mat2;

 mat2 = average(mat0, mat1); // <6>

 cout << mat0 << "\t + \n" << mat1
 << "\t / 2 = \n" << mat2; // <7>

 return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare the data that is used to initialize the arrays in the main program.
As noted in “Example Program: Creating Arrays and Array I/O (ex1.cpp)” on
page 3-15, use a one-dimensional C++ array to initialize a Math Library

1

2

3

4

5

6

7

3

Stand-Alone Programs

2-21

array from C++ static data; the mwArray constructor takes a
one-dimensional array as an argument.

Remember that C++ stores its two-dimensional arrays in row-major order,
whereas the C++ Math Library stores arrays in column-major order. When
setting up static matrix data, always enter the data in column-major order.

3 Declare the average() function, which ‘‘averages’’ two matrices. For each
pair of elements in the two input matrices, m1(i,j) and m2(i,j), the
function computes the average of the two elements and stores the result in
the corresponding element of the output array.

For efficiency, pass the two input matrices by const reference. The const
indicates that the input parameters are not modified.

average() returns an mwArray rather than a reference to an mwArray. Your
functions should never return a reference to an mwArray because returning
a reference to a local variable is an error in C++. Refer to a C++ reference
guide for more information.

Note that this routine does not contain an explicit loop. The functions you
call – rdivide() and plus() – contain the necessary loops. Vectorized
functions like these are common in the MATLAB C++ Math Library and
provide a great convenience: you don’t need to write the loops to process
array data.

4 Declare the main routine. main() declares the matrix variables, calls the
average() function, and prints the results.

5 Declare three matrices. Initialize mat0 and mat1 to 2-by-2 square matrices,
using the static data declared earlier. The data initializing mat0 and mat1 is
arranged in column-major order. The first row of mat0 is 2 4, the second 6
8. The first row of mat1 is 1 3, the second 5 7. Without a specified size or
initial data, mat2 is a null or empty array.

6 Call the average() function. Pass mat0 and mat1 as input arguments and
assign the result to mat2.

7 Print the result. This code demonstrates another convenience of C++: a
single line of code sending more than one object to an output stream. The
output appears on the stream in the same order it appears in the code.

2 Fundamentals

2-22

Output
The program produces this output:

 [
 2 4 ;
 6 8
]

 +
 [
 1 3 ;
 5 7
]

 / 2 =
 [
 1.50000 3.50000 ;
 5.50000 7.50000
]

Writing Efficient Programs
The general rule for writing efficient programs with this library is to use
scalars wherever possible.

Operations on integers and doubles are at least one order of magnitude faster
than the corresponding operations on arrays. The use of scalars has the most
impact in indexing and arithmetic expressions. Wherever possible, use
integers instead of 1-by-1 arrays in indexing expressions, and doubles rather
than 1-by-1 arrays in arithmetic expressions.

However, do not let the preceding comments discourage you from using the full
power of the interface. Using the efficiency of scalars helps your code run
faster, but you should not base your designs on it. Your design and
development time are worth much more than a few CPU-cycles.

Stand-Alone Programs

2-23

The table below demonstrates several cases where you can use doubles and
integers to improve the efficiency of your programs.

Table 2-1: Using Scalars for Efficiency

MATLAB code Naive C++
Translation

Efficient C++
Translation

Reasons

C = A(3) * B(4); mwArray A, B, C;
C = A(3) * B(4);

double C;
mwArray A, B;
C = A(3) * B(4);

Use of double as result.

n = max(size(A))
A(n) = n*n;

mwArray n, A;
n = max(size(A));
A(n) = n*n;

int n;
mwArray A;
n = max(size(A));
A(n) = n*n;

Use of integer as index.
Integer rather than
matrix multiplication.

2 Fundamentals

2-24

Learning More
This short chapter doesn’t cover all the details of MATLAB and the MATLAB
C++ Math Library. To help you navigate through the rest of this document,
here is a list of the topics discussed in this chapter and references to help you
find further information:

• Arrays and Matrices

“Overview” in Chapter 3

“Performing Common Array Programming Tasks” in Chapter 3

“Example Program: Creating Arrays and Array I/O (ex1.cpp)” in Chapter 3

• Indexing or Subscripting

“Indexing into Arrays” in Chapter 4

“Duplicating a Row or Column” in Chapter 4

• Calling Functions

“How to Call C++ Library Functions” in Chapter 5

“Example Program: Calling Library Functions (ex2.cpp)” in Chapter 5
• Operators

“Overview” in Chapter 6

“Operators” in Chapter 11
• Input and Output

“Example – Using load() and save() (ex7.cpp)” in Chapter 8

“Example – Using File I/O Functions (ex6.cpp)” on page 8-15

“Using Array Stream I/O” in Chapter 8

“Using File I/O Functions” in Chapter 8

“Importing and Exporting MAT-File Data” in Chapter 8

• Errors

“Example Program: Handling Exceptions (ex5.cpp)” in Chapter 7

“Exception Handling in the MATLAB C++ Math Library” in Chapter 7
• Syntax

“Differences Between C++ and MATLAB” in Chapter 9

“Example Program: Rewriting roots.m in C++ (ex8.cpp)” in Chapter 9

Learning More

2-25

If your question isn’t answered in this document, there are several other places
you can go for help:

• Other reference books:

MATLAB C Math Library User’s Guide

MATLAB Application Program Interface Guide

Online MATLAB Function Reference

Using MATLAB

• The MathWorks Technical Support on our home page:
http://www.mathworks.com

• The MathWorks Technical Support Solution Search Engine at:
http://www.mathworks.com/solution.html

• The MATLAB Usenet newsgroup, comp.soft-sys.MATLAB.

• MATLAB Technical Support e-mail address: support@mathworks.com.

• The MATLAB Technical Support phone center:

(508) 647-7000 (voice)

(508) 647-7201 (fax)

• U.S. Mail:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

2 Fundamentals

2-26

3
Working with MATLAB
Arrays

Overview . 3-2
Supported MATLAB Array Types 3-2
MATLAB Array C++ Object 3-3

Numeric Arrays 3-4
Creating Numeric Arrays 3-5
Initializing a Numeric Array with Data 3-13
Example Program: Creating Arrays and Array I/O (ex1.cpp) . 3-15

Sparse Matrices 3-19
Creating a Sparse Matrix 3-20
Converting a Sparse Matrix to Full Matrix Format 3-23
Evaluating Arrays for Sparse Storage 3-23

Character Arrays 3-24
Creating MATLAB Character Arrays 3-25

Cell Arrays . 3-28
Creating Cell Arrays 3-28
Displaying the Contents of a Cell Array 3-33

MATLAB Structures 3-35
Creating Structures 3-35

Performing Common Array Programming Tasks . . . 3-39
Converting Data to MATLAB Arrays 3-39
Determining Array Size 3-42

3 Working with MATLAB Arrays

3-2

Overview
To use the routines in the MATLAB C++ Math Library, you must pass your
data to the routines in the form of a MATLAB array object. This chapter:

• Describes the MATLAB arrays supported by the library and the C++ object
defined to represent them.

• Describes how to create arrays of all types and perform other common array
programming tasks.

Because the library routines work the same as the corresponding MATLAB
functions, this chapter does not describe their function in detail. For more
information about MATLAB arrays and their use, see Using MATLAB.
Instead, this chapter provides an overview of working with MATLAB arrays
and highlights where the syntax of the library routine is significantly different
than its MATLAB counterpart.

Supported MATLAB Array Types
The MATLAB C++ Math Library supports the following MATLAB array types
(or classes).

• Numeric arrays—The library supports multidimensional numeric arrays,
where values are represented in double precision format. All MATLAB
arithmetic functions operate on numeric arrays. For more information, see
“Numeric Arrays” on page 3-4.

• Sparse arrays—To conserve space, two-dimensional numeric arrays can be
stored in sparse format, where only nonzero elements of the array are stored.
Numeric arrays with more than two dimensions cannot be converted to
sparse format. For more information, see “Sparse Matrices” on page 3-19.

• Character arrays—The library supports multidimensional arrays of
characters, represented in 16-bit ASCII Unicode format. For more
information, see “Character Arrays” on page 3-24.

• Cell arrays—The library supports multidimensional arrays of MATLAB’s
primary container type called cells. Each cell can contain any type of
MATLAB array, including other cell arrays. For more information, see “Cell
Arrays” on page 3-28.

• Structures—The library supports multidimensional arrays of MATLAB’s
other container type called structures. A structure can be thought of as a

3-3

one-dimensional cell array where each cell is assigned a name. These named
cells, called fields, define the organization of the structure. Do not confuse
MATLAB structures with standard C structures. For more information, see
“MATLAB Structures” on page 3-35.

Choose the MATLAB array type that best fits your data. For more detailed
information about these array types, see Using MATLAB.

MATLAB Array C++ Object
The MATLAB C++ Math Library uses one object (or class), mwArray, to
represent all types of MATLAB arrays. Each instance of this object contains
information including the type of MATLAB array and its size and shape. The
object also contains the data stored in the array. This class, like any other C++
classes, defines a set of constructors. Whenever you create a variable of this
type, one of these constructors is called.

Note Do not confuse the mwArray object with the mxArray data type
supported by the MATLAB C Math Library.

3 Working with MATLAB Arrays

3-4

Numeric Arrays
The MATLAB C++ Math Library includes routines to create and manipulate
numeric arrays. Numeric arrays are the fundamental MATLAB array type.
MATLAB supports other numeric array types, such as uint8; however, these
data types are only used for importing and exporting image data.

The following table lists the MATLAB C++ Math Library routines to create
numeric arrays and perform some basic tasks with them. The sections that
follow provide more detail about using these routines. For more detailed
information about using numeric arrays, see Using MATLAB. For more
detailed information about any of the library routines, see the online MATLAB
C++ Math Library Reference.

Table 3-1: Numeric Array Routines

To ... Use ...

Create an uninitialized array. mwArray default constructor:
mwArray A;

Create an empty ([]) array. empty()

Create an initialized scalar (1-by-1)
array from a double precision
floating point number.

mwArray scalar constructor:
mwArray(double)

Create an initialized scalar (1-by-1)
array from an integer.

mwArray scalar constructor:
mwArray(int)

Create an initialized m-by-n array
(matrix) from double, integer, or
unsigned short data.

mwArray matrix constructors:
mwArray(int, int,

double*, double*)
mwArray(int, int,

int*, int*)
mwArray(int, int,

unsigned short*,
unsigned short*)

Copy an existing mwArray object. mwArray copy constructor:
mwArray(mxArray *)

Numeric Arrays

3-5

Creating Numeric Arrays
You can create a numeric array in a C++ program by:

• Using an mwArray constructor

• Using an array creation routine

• Calling an arithmetic routine

• Concatenating existing arrays

• Assigning a value to an element in an array

The following sections provide more detail about using each of these
mechanisms, highlighting areas where the C++ syntax is significantly different
from the corresponding MATLAB syntax.

Copy an existing mxArray data type
(returned by a MATLAB C Math
Library routine or MATLAB API
routine.)

mwArray copy constructor:
mwArray(const mwArray&)

Create a 1-by-n integer ramp. mwArray ramp constructor:
mwArray(int, int, int)

Create an mwArray from a subarray
(used in indexing.)

mwArray subarray constructor:
mwArray(const mwSubArray&)

Create an m-by-n array by
concatenating existing arrays

horzcat()
vertcat()

Create an array with more than two
dimensions (m-by-n-by-p-by...)

cat()
or by using assignment

Create an array with more than two
dimensions (m-by-n-by-p-by...) of
ones, zeros, or random numbers.

ones()
zeros()
rand(), randn()

Create an identity matrix or magic
square.

eye()
magic()

Table 3-1: Numeric Array Routines (Continued)

To ... Use ...

3 Working with MATLAB Arrays

3-6

Creating Arrays with C++ Constructors
As a C++ class, the mwArray interface includes many useful constructors that
allow you to create many different types of array. There is no MATLAB
equivalent for a constructor.

When you declare a mwArray object, as in the following

mwArray A;

you invoke the default constructor which creates a uninitialized array.

Note Do not pass an uninitialized array to a MATLAB C++ Math Library
routine. Assign it a value before passing it to a routine.

The mwArray object supports other constructors that accept various
combination of arguments that allow you to create numerical scalar arrays or
copy an existing array. (For a complete list of all mwArray constructors, see
“Constructors” in Chapter 10.)

The following example uses the mwArray matrix constructor to create an 2-by-3
matrix, initialized to the values in a C++ array of double precision values. You
can also use C++ arrays of integers or unsigned short values to initialize a
MATLAB mwArray. This constructor can optionally take a second C++ array to
initialize the imaginary part of an array of complex numbers. The example
then uses the mwArray copy constructor to make a copy of the 2-by-3 array.

double data[] = {1,4,2,5,3,6};

mwArray C(2, 3, data); // matrix constructor
mwArray D(C); // make a copy of C

cout << "C =" << C << endl;
cout << "copy of C =" << D << endl;

This code produces the following output:

C = [
1 2 3;
4 5 6

]
Copy of C = [

Numeric Arrays

3-7

1 2 3;
4 5 6

]

Creating Multidimensional Arrays with Constructors. You cannot create an array of
more than two dimensions using an mwArray constructor. Use an array creation
routine or concatenation to create multidimensional arrays. Alternately, you
can create a two-dimensional array using a constructor and then change it into
a multidimensional array using the reshape() routine. For more information
about the reshape() routine, see the online MATLAB C++ Math Library
Reference.

Using Array Creation Routines
The MATLAB C++ Math Library provides routines that create commonly used
MATLAB arrays, such as arrays of 0’s or 1’s.

• Array filled with ones, ones()

• Array filled with zeros, zeros()

• An empty array, equivalent to the MATLAB [], empty()

• Identity matrices, eye()

• Random numbers, rand()

• Normally distributed random numbers, randn()

• Magic squares (limited to two-dimensions), magic()

When you call these routines, you define the number of dimensions of the array
by the number of dimensions you specify as arguments. Given n arguments,
the routines return a multidimensional array with the n dimensions. (The eye()
routine and the magic() routine only support two dimensional arrays.)

For example, this code fragment creates a 2-by-3-by-2 array of normally
distributed random numbers.

mwArray B;

B = randn(2,3,2); // Create 3-d array

cout << "B =" << B << endl;

This code produces the following array:

3 Working with MATLAB Arrays

3-8

B =[
(:,:,1) =

[
 -0.4326 0.1253 -1.1465 ;
 -1.6656 0.2877 1.1909

]
(:,:,2) =

[
 1.1892 0.3273 -0.1867 ;
 -0.0376 0.1746 0.7258

]
]

Note You can specify a zero value for any dimension. MATLAB considers any
array with a zero dimension an empty array.

Creating Integer Ramps. In MATLAB, the : (colon) operator can be used as a fast
way to create a vector of monotonically increasing numbers. This capability is
often used as a wildcard in MATLAB array indexing expressions. The
MATLAB C++ Math Library uses two routines to emulates the : operator:

• ramp() to create vectors

• colon() to specify a range of values in indexing expressions. Unlike the
MATLAB colon operator, the colon() routine cannot be used to specify the
bounds of a C++ for-loop. For more information about using the colon()
routine in array indexing expressions, see Chapter 4.

When you use ramp(), the first argument represents the starting value and the
second argument represents the end value. As an example, the following code
fragment creates a vector of all the numbers between 1 and 10.

mwArray A = ramp(1,10);

The library also supports the three-argument form of ramp(), where the first
argument represents the starting value, the second argument represents the
size of the increment between values and the third argument.

Numeric Arrays

3-9

Calling MATLAB Arithmetic Routines
As in MATLAB, most of the operators and functions in the MATLAB C++ Math
Library create at least one new array as their result. For example, when you
multiply two arrays, the result is a new array. This code demonstrates how
multiplying a 4-by-4 array of 1’s by the 4-by-4 identity matrix creates a new
array, C.

mwArray A, B;

A = ones(4);
B = eye(4);

mwArray C = A * B;

C is a new array; the result of the multiplication.

Using Concatenation
Vertical and horizontal concatenation are useful ways to construct arrays of
any size and shape. In MATLAB, the concatenation operator ([]) performs
both operations. The MATLAB C++ Math Library uses two routines to emulate
this operator:

• horzcat() concatenates arrays horizontally.

• vertcat() concatenates arrays vertically.

Concatenating Horizontally. In MATLAB, you can horizontally concatenate the
scalar arrays 1, 2, 3, 4, 5, and 6 into a vector containing one row and six
columns.

A = [1 2 3 4 5 6]

A =

1 2 3 4 5 6

You can create the same vector in C++ code using horzcat().

mwArray A;

A = horzcat(1, 2, 3, 4, 5, 6);

3 Working with MATLAB Arrays

3-10

cout << “A = “ << A << endl;

This code fragment produces this output:

A = [
1 2 3 4 5 6

]

Concatenating Vertically. To vertically concatenate the same scalar arrays into a
2-by-2 matrix in MATLAB, insert a semicolon in the list of arrays where you
want to create rows:

A = [1 2 3; 4 5 6]

A =

1 2 3
4 5 6

To create this matrix in a C++ program, you must use vertcat(), using nested
calls to horzcat() to create the rows.

mwArray A;

A = vertcat(horzcat(1, 2, 3), horzcat(4, 5, 6));

This code fragment produces this output:

A = [
1 2 3 ;
4 5 6

]

horzcat() and vertcat() work on vectors and two-dimensional arrays as well
as scalars. For example, the following code fragment concatenates the two
dimensional arrays A and B to create the two-dimensional array C.

mwArray A = vertcat(horzcat(1, 2, 3), horzcat(4, 5, 6));
mwArray B = vertcat(horzcat(1, 2, 3), horzcat(4, 5, 6));
mwArray C = vertcat(A, B);

Horizontally concatenated arrays must have the same number of rows;
vertically concatenated arrays must have the same number of columns.

Numeric Arrays

3-11

Using Concatenation to Create Arrays of More Than Two Dimensions. To create arrays
of more than two-dimensions through concatenation, use the cat() routine.
You cannot create arrays of more than two dimensions using horzcat() and
vertcat().

In MATLAB, the cat function concatenates a group of arrays along a specified
dimension using the following syntax

B = cat(dim,A1,A2...)

where A1, A2, and so on are the arrays to concatenate, and dim is the dimension
along which to concatenate the arrays.

For example, this MATLAB code concatenates the two-dimensional arrays A
and B into a three-dimensional array using the cat function.

A = [1 1 1; 2 2 2];
B = [3 3 3; 4 4 4];

C = cat(3, A, B)
C(:,:,1) =
 1 1 1
 2 2 2
C(:,:,2) =
 3 3 3
 4 4 4

This code fragment creates the same three-dimensional array in a C++
program:

mwArray A = vertcat(horzcat(1, 1, 1), horzcat(2, 2, 2));
mwArray B = vertcat(horzcat(3, 3, 3), horzcat(4, 4, 4));
mwArray C = cat(3, A, B);

cout << "C =" << C << endl;

This code produces the following output:

C =[
(:,:,1) =

[
 1 1 1;
 2 2 2

]

3 Working with MATLAB Arrays

3-12

(:,:,2) =
[

 3 3 3;
 4 4 4
]

]

If the number of dimensions you specify in dim is greater than the number of
arrays you specify as arguments, cat automatically adds subscripts of 1
between dimensions, if necessary. For example, if you change cat(3,A,B) to
cat(4,A,B), the code produces the following output. Note the added dimension
in the index subscripts.

C =[
(:,:,1,1) =
[

 1 1 1 ;
 2 2 2
]

(:,:,1,2) =
[

 3 3 3 ;
 4 4 4
]

]

Using Assignment
You can create scalar arrays using the C++ assignment (=) operator. For
example, the following C++ code creates an array named A and assigns the
value 5 to A.

mwArray A = 5;

The result of this assignment is a 1-by-1 array (one row, one column)
containing the single number 5.0 represented in double-precision
floating-point format.

You can assign a nonscalar value to a variable that contains a scalar array, or
a scalar value to a variable that contains a nonscalar array. In both cases, the
MATLAB C++ Math Library manages the memory associated with each array
to ensure that there are no memory leaks.

Numeric Arrays

3-13

You can also create string arrays using the C++ assignment operator. The
following C++ code creates an array named A and assigns the value “abcd” to A.

mwArray A = "abcd";

Creating Multidimensional Arrays By Assignment. You can create multidimensional
arrays using indexed assignment statements. You use MATLAB array
indexing to specify a location in an array. MATLAB creates the array (or
extends an existing array) to accommodate the location specified.

For example, the following assignment statement creates a new three
dimensional array by assigning a single value to the location specified by row
2, column 2, page 2. MATLAB fills the elements of the array with zeros before
making the assignment.

H(2,2,2) = 5

H(:,:,1) =
 0 0
 0 0
H(:,:,2) =
 0 0
 0 5

The MATLAB C++ Math Library supports this same syntax. You can create a
multidimensional array by assigning a value to a location in the array. The
library creates an array (or extends an existing array) to accommodate the
location. The following C++ code fragment creates the same three dimensional
array.

mwArray H;
H(2,2,2) = 5;

Note Do not declare an array and perform an indexed assignment in the
same statement. The statement mwArray H(2,2,2)= 5 is not valid.

Initializing a Numeric Array with Data
Using concatenation to build large arrays can become cumbersome. As an
alternative, you can put the data into a standard C++ array and pass it to the

3 Working with MATLAB Arrays

3-14

mwArray matrix constructor, specifying the size and shape of the array. (See
page 3-6 for more information.) For complex numbers, pass the imaginary part
to the constructor in a separate C++ array. This method of creating an array is
more efficient than using concatenation.

Column-Major versus Row-Major Storage
When you are initializing a MATLAB array with a standard C++ array, store
the C++ array data in column-major order. For example, to create a 2-by-3
array (two rows, three columns) containing 1 2 3 in the first row and 4 5 6 in
the second, you would use a six-element, one-dimensional C++ array with the
elements listed in column-major order:

static double data[] = { 1, 4, 2, 5, 3, 6 };
mwArray A(2, 3, data);

To list the data in an array in column-major order, read down the columns,
from the left-most column to the right-most column. The three columns of this
array are 1 4, 2 5, and 3 6.

Using Row-Major Data to Create a Column-Major Array
In some cases, specifying a C++ array in column-major order is inconvenient.
An additional function, row2mat(), creates a matrix from a C++ array that
stores its data in row-major order. Rewriting the above example to use
row2mat() yields this code:

static double data[] = { 1, 2, 3, 4, 5, 6 };
mwArray A = row2mat(2, 3, data);

The row2mat function takes an optional fourth argument used for creating
complex arrays. The fourth argument points to a C++ array of doubles the same
size as the third argument. This fourth argument contains the complex values
for the mwArray.

Using Scalar Expansion to Fill an Array with Values
If you used the MATLAB : operator as a wildcard in an indexed assignment
statement, the MATLAB scalar expansion capability fills all the elements on
the same dimension as the target assignment with the value specified.

The following C++ example uses the colon wildcard in the indexing subscript.
The example creates a three-dimensional array, filling the second page of the
array with the value specified.

Numeric Arrays

3-15

mwArray A;
A(colon(),colon(),2) = 5;

Example Program: Creating Arrays and Array I/O
(ex1.cpp)
This example demonstrates how to create an array from static data. Its
primary purpose is to present a simple yet complete program. The code creates
two matrices, prints them, and then reads in and prints out a third matrix.
Each of the numbered sections of code is explained in more detail below.

You can find the code for this example in the
<matlab>/extern/examples/cppmath directory on UNIX systems and in the
<matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13 for information about building and running the
example program.

3 Working with MATLAB Arrays

3-16

// ex1.cpp

#include <stdlib.h>
#include "matlab.hpp"

static double data[] = { 1, 2, 3, 4, 5, 6 };

int main(void)
{
 // Create two matrices.
 mwArray mat0(2, 3, data);
 mwArray mat1(3, 2, data);

 // Print the matrices.
 cout << mat0 << endl;
 cout << mat1 << endl;

 // Read a matrix from standard in, then print the matrix to
 // standard out.
 cout << "Please enter a matrix: " << endl;
 cin >> mat1;
 cout << mat1 << endl;

 return (EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare a static array of real numbers for later use as input to an mwArray
constructor. Note that the C++ array is one-dimensional, even though it is
used to create two-dimensional matrices. Because MATLAB stores its
arrays in column-major order, data that initializes a MATLAB C++ Math

1

2

6

3

4

5

Numeric Arrays

3-17

Library array must also be in column-major order. C++ itself, however,
stores arrays in row-major order.

To arrange mwArray data in column-major order, read down the columns of
an array from the leftmost column to the rightmost column. To avoid
confusion, always use one-dimensional C++ arrays to initialize mwArray
objects.

3 Create two matrices by using mwArray constructors, which declare and
initialize the variables, mat0 and mat1. The first matrix, mat0, has two rows
and three columns; the second matrix, mat1, has three rows and two
columns. Each call to the constructor takes the static array data as an
argument. Constructors copy data.

4 Print the matrices using the C++ standard output stream, cout. By default,
objects printed with cout appear on the terminal screen, though you can
redirect the output to a file. A stream is a sequence of bytes that can be read
from or written to. It is more general than a file, encompassing all the I/O
devices attached to a computer (keyboard, terminal screen, disk, etc.). Refer
to your C++ reference for a complete explanation of streams and C++’s input
and output facilities.

5 Prompt the user to type in a matrix. Read the matrix into mat1 using the
C++ standard input stream, cin. The matrix does not need to be the same
size as the matrix already stored in mat1. The input operator >> creates a
new matrix and assigns that matrix to mat1. UNIX systems and PCs read
from the terminal by default; you can redirect them to read from an input
file. See “Using Array Stream I/O” in Chapter 8 to learn about the I/O format
for the library and how it differs from MATLAB’s.

6 Print the newly read matrix.

Output
The program prints the matrices, mat0 and mat1, and then prompts the user to
enter a matrix.

 [
 1 3 5 ;
 2 4 6
]

3 Working with MATLAB Arrays

3-18

 [
 1 4 ;
 2 5 ;
 3 6
]

Please enter a matrix:

If you enter a valid matrix, for example, [1 0; 0 1], the program prints it.

 [
 1 0 ;
 0 1
]

Note that the output format is the same as the input format, enabling the
output from one program to be used as the input to another. The input format
is simple. Matrix text begins with the character [. The opening bracket is
followed by any number of rows of integers or floating-point numbers separated
by semicolons. Each row must contain the same number of columns. Matrix
text ends with a]. Spaces, tabs, and carriage returns are ignored. For complete
information about using stream I/O, see “Using Array Stream I/O” on page 8-3.

Note Because the array input format is the same as the array output format,
data written out by one program can be easily read in by another program.

Sparse Matrices

3-19

Sparse Matrices
The MATLAB C++ Math Library includes routines to create and manipulate
sparse matrices. Sparse matrices provides a more efficient storage format for
two-dimensional numeric arrays with few non-zero elements. Only
two-dimensional numeric arrays can be converted to sparse storage format.

The following table lists the MATLAB C++ Math Library routines to create
sparse matrices and perform some basic tasks with them. The sections that
follow provide more detail about using these routines. For more detailed
information about using sparse arrays, see Using MATLAB. For more detailed
information about any of the library routines, see the MATLAB C++ Math
Library Reference.

Table 3-2: Sparse Matrix Routines

To ... Use ...

Create a sparse matrix sparse()

Convert a sparse matrix into a full
matrix

full()

Replace nonzero sparse matrix
elements with ones

spones()

Replace nonzero sparse matrix
elements with random numbers.

sprand()
sprandn()
sprandnsym()

Convert a text file into a sparse
matrix

spconvert()

Create a sparse identity matrix speye()

Extract a band or diagonal group of
elements from a matrix and create a
sparse matrix.

spdiags()

Determine the number of nonzero
elements in a numeric matrix.

nnz()

3 Working with MATLAB Arrays

3-20

Creating a Sparse Matrix
To create a sparse matrix in a C++ program, use the MATLAB C++ Math
Library sparse() routine. Using this routine, you can create sparse arrays in
two ways:

• By converting an existing array to sparse format

• By specifying the data and the location of the data in the sparse array.

Converting an Existing Matrix into Sparse Format
To create a sparse matrix from a standard numeric array, use the sparse()
routine. sparse() converts the numeric array into sparse storage format. The
following code fragment creates a sparse matrix from an identity matrix and
then converts it to sparse format.

mwArray A,B;

A = eye(12);
cout << A << endl;

B = sparse(A);
cout << B << endl;

This code displays the identity matrix in full and sparse formats.

Determine if a matrix has any
nonzero elements or if all elements
are nonzero.

any() or
all()

Determine the amount of storage
allocated for the nonzero elements of
a sparse matrix.

nzmax()

Obtain a vector containing all the
nonzero elements of a sparse matrix.

nonzeros()

Apply a function to all the nonzero
elements of a sparse matrix

spfun()

Table 3-2: Sparse Matrix Routines (Continued)

To ... Use ...

Sparse Matrices

3-21

[
1 0 0 0 0 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 0 0 0 0;
0 0 1 0 0 0 0 0 0 0 0 0;
0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 0 0 0 0;
0 0 0 0 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 0 0 0 1 0 0 0;
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 0 0 0 0 1

]

ans =
(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1
(6,6) 1
(7,7) 1
(8,8) 1
(9,9) 1
(10,10) 1
(11,11) 1
(12,12) 1

Creating a Sparse Matrix from Data
You can also create a sparse matrix by specifying the value and location of all
the nonzero elements when you create it. Using sparse(), you specify as
arguments:

• Two vectors, i and j, that specify the row and column subscripts

• One vector, s, containing the real or complex data you want to store in the
sparse matrix. Vectors i, j and s should all have the same length.

• Two scalar arrays, m and n, that specify the dimensions of the sparse matrix
to be created

3 Working with MATLAB Arrays

3-22

• An optional scalar array that specifies the maximum amount of storage that
can be allocated for this sparse array

The following code example illustrates how to create a 8-by-7 sparse matrix
from data. This call specifies a single value, 9, for all the nonzero elements of
the sparse matrix which is replicated in all nonzero elements by scalar
expansion. To see the pattern formed by this sparse matrix, see the output of
this code which follows.

// declare C++ arrays of index values
double inums[] = {3,4,5,4,5,6};
double jnums[] = {4,3,3,5,5,4};

// declare MATLAB arrays
mwArray S;
mwArray i(1,6,inums,NULL); // Use constructors to create
mwArray j(1,6,jnums,NULL); // initialized index vectors

// create sparse matrix
S = sparse(i, j, 9, 8, 7);

cout << S << endl;

cout << full(S) << endl;

This code produces the following output:

(4,3) 9
(5,3) 9
(3,4) 9
(6,4) 9
(4,5) 9
(5,5) 9

[
0 0 0 0 0 0 0;
0 0 0 0 0 0 0;
0 0 0 9 0 0 0;
0 0 9 0 9 0 0;
0 0 9 0 9 0 0;
0 0 0 9 0 0 0;

Sparse Matrices

3-23

0 0 0 0 0 0 0;
0 0 0 0 0 0 0;

]

Converting a Sparse Matrix to Full Matrix Format
You can convert a sparse matrix to a full format matrix by using the full()
routine. The previous example nested a call to this routine in output to show
the pattern created by the values in the sparse matrix:

cout << full(S) << endl; // print full matrix

Evaluating Arrays for Sparse Storage
To see if a MATLAB array is a good candidate for sparse format storage,
determine the number of nonzero elements in an array, using the nnz()
routine. The following code fragment creates a 5-by-5 identity matrix and then
obtains the number of nonzero elements in the identity matrix.

mwArray A = eye(5);

cout << nnz(A) << endl;

3 Working with MATLAB Arrays

3-24

Character Arrays
The MATLAB C++ Math Library also includes routines to create and
manipulate character arrays. One-dimensional character arrays are also called
strings. Multidimensional character arrays are also called arrays of strings. In
an array of strings, each string must be the same length. The routines that
create arrays of strings use blanks to pad the strings to the same length. In a
cell array of strings, individual strings can be different lengths. For
information about cell arrays, see page 3-28.

The following table lists the MATLAB C++ Math Library routines to create
character arrays and perform some basic tasks with them. The sections that
follow provide more detail about using these routines. For more detailed
information about using character arrays, see Using MATLAB. For more
detailed information about any of the library routines, see the MATLAB C++
Math Library Reference.

Table 3-3: Character Array Routines

To ... Use ...

Create a character array mwArray string constructor:
mwArray("abcd")

Create a character array from a
numeric array

char_func()

Convert a character array to its
underlying numeric representation.

double_func()

Concatenate character strings into a
multidimensional, blank-padded
character array

str2mat()
strcat()
strvcat()

Convert an array of blank-padded
character strings into a cell array of
strings

cellstr()

Concatenate character strings into a
cell array of strings

char_func()

Character Arrays

3-25

Creating MATLAB Character Arrays
MATLAB represents characters in 16-bit, Unicode format. You can create
MATLAB strings using any of the following array creation mechanisms:

• Using an mwArray constructor

• Converting an array of a different type into a character array

• Concatenating existing arrays

The following sections provide more detail about creating arrays with each of
these mechanisms, highlighting areas where the C++ syntax is significantly
different from the corresponding MATLAB syntax.

Using the Character Array Constructor
The easiest way to create a MATLAB character string is to pass a standard C++
character string to the mwArray string constructor.

mwArray A("my string");

cout << "A = " << A << endl;

This code produces the following output:

'my string'

Remove extra blank characters from
individual rows in a character array.

deblank()

Display a character string. disp()

Convert a number to its string
representation, specifying format.

num2Str()

Round the elements in an array to
integers and convert the results into
a string matrix.

int2str()

Convert character string into a
numeric array.

str2num()

Table 3-3: Character Array Routines (Continued)

To ... Use ...

3 Working with MATLAB Arrays

3-26

Converting Numeric Arrays to Character Arrays
To convert a numeric array into a character array, use the char_func()
routine. The following code creates an array of numeric values and then
converts it into a string.

mwArray C,D;

C = horzcat(109,121,32,115,116,114,105,110,103);

D = char_func(C);

cout << D << endl;

This code produces the following output:

'my string'

To convert this character array back into its underlying numeric
representation in double precision format, use the double_func() routine.

Creating Multidimensional Arrays of Strings
You can create a multidimensional array of MATLAB character strings;
however, each string must have the same length. The MATLAB C Math
Library routines that create arrays of character strings pad the strings with
blanks to make them all a uniform length.

Note To create a multidimensional character array where individual strings
aren’t padded with blanks, use cell arrays. See page 3-28 for more
information.

The following code fragment uses the char_func() routine to create a
two-dimensional array of strings from two strings of different lengths.

mwArray Z("my string");
mwArray Y("my dog");

mwArray Q = char_func(Z,Y);

cout << Q << endl;

Character Arrays

3-27

This code fragment produces the following output. Note how char_func() adds
three blanks to the string "my dog" to make it the same length as "my string",
creating a 2-by-9 character array.

[
'my string';
'my dog ';

]

3 Working with MATLAB Arrays

3-28

Cell Arrays
MATLAB cell arrays provide a way to group together a collection of dissimilar
MATLAB arrays.

The following table lists the MATLAB C++ Math Library routines to create cell
arrays and perform basic tasks with them. The sections that follow provide
more detail about using these routines. For more detailed information about
using cell arrays, see Using MATLAB. For more detailed information about
any of the library routines, see the MATLAB C++ Math Library Reference.

Creating Cell Arrays
The MATLAB C++ Math Library allows you to create cell arrays by:

• Using a cell array creation function

• Using a cell array conversion function

• Concatenating existing arrays

• Assigning a value to an element in a cell array

Table 3-4: Cell Array Routines

To ... Use ...

Create a multidimensional array of
empty cells.

cell()

Create a cell array of strings from a
character array

cellstr()

Create a cell array by concatenating
existing arrays

cellhcat()

Convert a structure into a cell array struct2cell()

Convert a numeric array into a cell
array

num2cell()

View the contents of each cell in a
cell array

celldisp()

Cell Arrays

3-29

Using a Cell Array Creation Routine
Using the MATLAB C++ Math Library cell() routine, you can create a cell
array of any size and dimension. You specify the size of each dimension as
arguments to the routine. The cell() routine creates an array of empty cells.
The following code fragment creates a 2-by-3-by-2 cell array. If you specify a
single argument, MATLAB creates a square matrix.

mwArray C;

C = cell(2,3,2);

cout << C << endl;

This code produces the following output:

(:,:,1) =
[] [] []
[] [] []

(:,:,2) =
[] [] []
[] [] []

Using a Cell Array Conversion Routines
You can also create cell arrays by converting other MATLAB arrays into cell
arrays. The MATLAB C++ Math Library includes routines that convert a
numeric array into a cell array, num2cell(), or a structure into a cell array,
struct2cell().

The following code fragment creates a numeric array, using ones(), and
converts it into a cell array using the num2cell() routine.

mwArray B = ones(2,3);

cout << "B" << B << endl;

mwArray C = num2cell(B);

cout << "C" << C << endl;

In this output, the brackets indicate that each element in the numeric array
has been placed into a cell in the cell array.

3 Working with MATLAB Arrays

3-30

B [
1 1 1;
1 1 1

]

C [1] [1] [1]
[1] [1] [1]

The brackets indicate cell array elements.

Creating Cell Arrays through Concatenation
In MATLAB, you can create a cell array by combining groups of arrays together
using the MATLAB cell concatenation operator: curly braces ({}). For
example, the following MATLAB statement horizontally concatenates several
individual arrays into a 1-by-4 array of cells.

C = { 'jon' ones(2) magic(3) 5 }

C =
 'jon' [2x2 double] [3x3 double] [5]

To create a cell array with multiple rows in MATLAB, use the same syntax,
inserting semicolons into the list of arrays at row breaks.

The MATLAB C++ Math Library uses the cellhcat() routine to emulate the
MATLAB {} operator. For example, the following code fragment creates the
same 1-by-4 cell array.

mwArray C;

C = cellhcat("jon", ones(2), magic(3), 5);

cout << “C = \n” << C << endl;

This code produces the following cell array:

C =
 'jon' [2x2 double] [3x3 double] [5]

To create a cell array with multiple rows, you must use cellhcat() to create
the horizontal rows and vertcat() to stack the rows in columns.

mwArray C;

Cell Arrays

3-31

C = vertcat(cellhcat("jon",ones(2)),cellhcat(magic(3), 5));

cout << “C = \n” << C << endl;

This code produces the following two-dimensional cell array:

C =
 'jon' [2x2 double]
 [3x3 double] [5]

Creating Multidimensional Cell Arrays by Concatenation. To create a cell array of more
than two dimensions, you must concatenate several existing cell arrays using
the cat() routine. The cat() routine uses the following syntax

B = cat(dim,A1,A2...)

where A1, A2, and so on are the cell arrays to concatenate, and dim is the
dimension along which to concatenate them.

For example, the following code fragment creates a pair of two-dimensional cell
arrays and then uses cat() to concatenate them along three-dimensions to
create a 2-by-2-by-2 cell array.

mwArray C = vertcat(cellhcat("jon",5),
cellhcat(magic(3),ones(2)));

mwArray D = vertcat(cellhcat("jim",zeros(3)),
cellhcat("joe",12));

mwArray E = cat(3, C, D);
cout << E << endl;

This code produces the following output:

(:,:,1)
 'jon' [5]
 [3x3 double] [2x2 double]

(:,:,2)
 'jim' [3x3 double]
 'joe' [12]

3 Working with MATLAB Arrays

3-32

Creating Cell Arrays by Assignment
When you assign a value to an element in a cell array, the MATLAB C++ Math
Library creates the array (or extends an existing array) to accommodate the
assignment. For cell arrays, the library supports two ways to perform this
assignment:

• Cell indexing

• Content indexing

With cell indexing, you identify the target location of the assignment (the left
hand side of the assignment statement) using standard MATLAB indexing
syntax, and you enclose the values to be assigned to the cell array (the right
hand side of the assignment statement) with the MATLAB cell concatenation
({ }) operator. For example, the following MATLAB syntax creates a 2-by-2 cell
array by assignment: D(2,2) = { 'jones' }.

With content addressing, you use the braces ({ }) operator on the left hand side
of the assignment statement to indicate that you want to affect the value
contained in the cell. On the right hand side of the assignment statement, you
do not need to specify braces. For example, the following MATLAB syntax
creates a 2-by-2 cell array by assignment: D{2,2} = ''jones'.

You can use either indexing method interchangeably: the result is the same.
For more information about using indexing to access elements in a cell array,
see Chapter 4.

Using Cell Indexing to Create a Cell Array. The MATLAB C++ Math Library uses the
cellhcat() routine to emulate the cell array concatenation ({ }) operator in cell
indexing statements.

For example, the following code fragment creates a 2-by-2 cell array by
assigning a value to element at row 2, column 2. This example is the same as
the MATLAB syntax D(2,2) = { 'jones' }. Note that you must declare the
cell array before using it in the cell indexing statement.

mwArray D;

D(2,2) = cellhcat("jones");

cout << D << endl;

This produces the following output:

Cell Arrays

3-33

[] []
[] 'jones'

Using Content Indexing to Create a Cell Array. The MATLAB C++ Math Library uses
the mwArray::cell() member function to emulate the use of the braces
operator in content indexing statements.

The following code fragment illustrates how to use content indexing to create a
cell array by assignment. Note that you must declare the array before using it
in the content indexing statement. This example is the same as the MATLAB
syntax Z{2,2} = 'jones'.

mwArray Z;

Z.cell(2,2) = "jones";

cout << Z << endl;

This produces the following output:

[] []
[] 'jones'

Note Do not confuse the mwArray::cell() member function with the cell()
library routine. The cell() library routine creates arrays of empty cells.

Displaying the Contents of a Cell Array
The C++ output operator (<<) is used to direct a value to an output stream such
as the predefined ostream cout (standard output). For numeric arrays, the
output operator displays the contents of each array element. However, for cell
arrays, the output operator displays the contents of a cell only if the value
stored there is a MATLAB character array or scalar array. For cells containing
multidimensional arrays, cell arrays or other MATLAB arrays, the output
operator only displays the size of the array stored in the cell.

To display the contents of each cell in a cell array, you must use the celldisp()
routine. To illustrate, the following code fragment creates a cell array that
contains a MATLAB character array, a scalar array, and several

3 Working with MATLAB Arrays

3-34

multidimensional arrays. The example then prints out the cell array using the
output operator and celldisp().

mwArray C = vertcat(cellhcat("jon",5),
cellhcat(magic(3),
ones(2,3,2)));

cout << "cout output:\n" << C << endl;
cout << "celldisp() output:\n" << endl;
celldisp(C,”C”);

This code produces the following output:

cout output:
 'jon' [5]
 [3x3 double] [2x2 double]

celldisp() output:

C{1,1} =
jon
C{2,1} =

8 1 6
3 5 7
4 9 2

C{1,2} =
5

C{2,2} =

(:,:,1) =
1 1 1
1 1 1

(:,:,2) =
1 1 1
1 1 1

MATLAB Structures

3-35

MATLAB Structures
A MATLAB structure can be thought of as a one-dimensional cell array in
which each cell is assigned a name. These named cells are called fields. You can
create multidimensional arrays of structures; all the structures in an array of
structures must have the same fields.

The following table lists the MATLAB C++ Math Library routines to create
structures and perform basic tasks with them. The sections that follow provide
more detail about using these routines. For more detailed information about
using structures, see Using MATLAB. For more detailed information about any
of the library routines, see the MATLAB C++ Math Library Reference.

Creating Structures
The MATLAB C++ Math Library allows you to create structures by:

• Using a structure creation routine

Table 3-5: MATLAB Structure Routines

To ... Use ...

Create a structure an initialize it
with values.

struct_func()

Convert a cell array into a
structure.

cell2struct()

Determine the names of the fields
in a structure.

fieldnames()

Determine if a string is the name
of a field in a structure.

isfield()

Access the contents of a field in a
structure.

getfield()

Specify the value of a field in a
structure.

setfield()

Remove a field from each structure
in an array of structures.

rmfield()

3 Working with MATLAB Arrays

3-36

• Using a structure conversion routine

• Assigning a value to an element in a structure.

Using a Structure Creation Routine
You can create a structure using the struct_func() routine. This routine lets
you define the fields in the structure and assign a value to each field. For
example, the following code fragment creates a structure that contains two
fields, a text string and a scalar value.

mwArray A;

A = struct_func("name", // field name
"John", // value
"number", // field name
 311); // value

cout << A << endl;

This code produces the following output:

name: 'John'
number: 311

Note The struct_func() routine defines the fields and their values in a
single instance of a structure. To create an array of structures, use MATLAB
indexing syntax in the assignment statement, as described in “Using
Assignment to Create Structures” on page 3-37.

Using a Structure Conversion Routine
You can also create structures by converting an existing MATLAB cell array
into a structure, using the cell2struct() routine. When converting a cell
array into a structure, you must create a separate cell array that contains the
names you want to assign to fields in the structure.

The following code fragment creates a cell array, C, containing data and a
second cell array, F, containing field names. The example then passes these cell
arrays to cell2Struct().

MATLAB Structures

3-37

mwArray C,F,S;

// create cell array to be converted

C = cellhcat("tree",
37.4,

"birch");

cout << C << endl;

// create cell array of field names

F = cellhcat("category",
"height",

 "name");

// convert cell array to structure

S = cell2struct(C,F,2);

cout << S << endl;

This code generates the following output:

'tree' [37.4000] 'birch'

category: 'tree'
height: 37.4000
name: 'birch'

Using Assignment to Create Structures
As with other MATLAB arrays, if you assign values to fields in a structure that
is in an array of structures, the MATLAB C++ Math Library creates an array
of structures large enough to accommodate the location specified by the index
string.

The following example defines a structure with two fields, name and number.
Because it is an indexed assignment statement, the library creates an array of
3 of these structures, assigning values to the third structure in the array. The
first two structures in the array are initialized to contain empty arrays for each

3 Working with MATLAB Arrays

3-38

field. This C++ code is equivalent to the MATLAB statement,
S(2) = struct('name','jim','number',312).

mwArray S;

// Create array of structures by assignment

S(3) = struct_func("Name", // Field name
"Jim", // Value
"Number", // Field name
312); // Value

cout << S << endl;

This code generates the following output:

1x3 struct array with fields
Name
Number

For more detailed information about using indexing, see Chapter 4.

Performing Common Array Programming Tasks

3-39

Performing Common Array Programming Tasks
The following sections describe some common programming tasks that you
must perform for all types of MATLAB array.

Converting Data to MATLAB Arrays
The operators and functions in the MATLAB C++ Math Library operate on
arrays and produce arrays as results. However, because all data is not
available in array form, the library provides functions for converting data to
and from arrays. In general, anywhere the library interface requires an
mwArray, you can use a data type that can be converted to an mwArray.

In C++, two types of routines, constructors and casts, handle the conversions.
Constructors transform raw data into C++ objects. Casts extract data from
already-constructed objects. Constructors always result in new objects,
whereas casts either produce new objects or provide pointers to the data in the
original objects. C++ automatically performs many of these conversions for
you.

Converting Data into a MATLAB Array
You can convert five types of data to an mwArray:

• A scalar

• A string

• An array of double-precision floating-point numbers

• A MATLAB mxArray pointer, also known as a MatlabMatrix pointer

• An mwSubArray

A new mwArray object is created when any of these data types is converted to
an mwArray object.

The most common conversions are from scalars, strings, and arrays of doubles
to mwArrays. If you are working with MEX-Files or the MATLAB C Math
Library, you may need to convert the mxArray pointers that those routines
return into mwArray objects since the MATLAB C++ Math Library does not
handle mxArray pointers. mwSubArray objects result from indexing operations;
the library itself handles them for you.

3 Working with MATLAB Arrays

3-40

The table below demonstrates how to convert the various data types to an
mwArray. The table shows an implicit conversion and an explicit conversion for
each data type. C++ automatically performs implicit conversions for you.
Explicit conversions are ones that you can explicitly invoke.

For most uses, the code in the implicit column is sufficient. C++ determines
which constructor to invoke from the types of the operands on either side of the
assignment statement. In some cases, however, C++ may not be able to
determine unambiguously which conversion to apply, and an explicit
conversion may be necessary.

You can also use cast syntax in the explicit case. See a C++ manual for more
information about the equivalence between constructors and casts.

Converting a MATLAB Array into Data
mwArrays can be converted into two types of data:

• Scalars

• MATLAB mxArray pointers

Table 3-6: Converting to an mwArray

From... Implicit Constructor Explicit Constructor

Scalar mwArray A;
A = 5;

mwArray A;
A = mwArray(5)

String mwArray A;
A = "abcd";

mwArray A;
A = mwArray("abcd");

Array of
doubles

Not Available mwArray A;
static double x[]={1,5};
A = mwArray(1,2,x);

mxArray
pointer

mwArray A;
mxArray *mat;
A = mat;

mwArray A;
mxArray *mat;
A = mwArray(mat);

mwSubArray mwArray A, B;
B = ramp(1,10);
mwSubArray sub=B(8);
A = sub;

mwArray A, B;
B = ramp(1,10);
mwSubArray sub = B(8);
A = mwArray(sub);

Performing Common Array Programming Tasks

3-41

The table below demonstrates how to extract data from an mwArray. In the
pointer case (mxArray pointer), the conversion returns a pointer to the internal
data of the mwArray object rather than to a new object. Take care not to modify
the data referenced by the pointer. The returned pointer is defined as const to
remind you that the data it points to should not be modified.

There are two limitations to the types of mwArray you can cast into a double:

• You cannot assign a nonscalar mwArray to a C++ scalar variable (int or
double). You can only cast 1-by-1 arrays to scalars.

• You cannot cast a complex mwArray (scalar or nonscalar) to a
double-precision scalar or an array. Before assigning a complex array to a
real-valued variable, convert the complex mwArray to a real mwArray with the
real() or imag() functions.

Both of these cases raise an exception.

Refer to “Extracting Data from an mwArray” in Chapter 10 to learn about
mwArray::GetData() and mwArray::ToString().

Efficiency Considerations
Conversions are not always efficient operations. It is important to minimize
their use in certain situations. In particular, using a scalar array as a loop
index bound is very inefficient. You obtain much better performance by first
converting the mwArray to an integer and then using the integer as the loop
bound variable.

Table 3-7: Extracting Data from an mwArray

To... Implicit Cast Explicit Cast

Integer int32 i;
mwArray A = 5;
i = A;

int32 i;
mwArray A = 5;
i = (int32)A;

Double double x;
mwArray A = 5;
x = A;

double x;
mwArray A = 5;
x = (double)A;

3 Working with MATLAB Arrays

3-42

The following code demonstrates an inefficient use of an mwArray as a loop
bound variable. In each iteration of the for-loop, the comparison i < A requires
that A be converted from an mwArray to a scalar. This conversion is expensive.

// Inefficient loop bound variable
mwArray A = 5;
int i;
for (i=0; i<A; i++)
 cout << "Counting: " << i << endl;

The code below runs much faster because the variable A is explicitly cast to an
integer before the loop begins; integer j rather than A is used as the for-loop
bound variable.

// Efficient loop bound variable
mwArray A = 5;
int i, j = A;
for (i=0; i < j; i++)

cout << "Counting: " << i << endl;

In this case, the cast operation is invoked only once.

Determining Array Size
You can determine the size of an array in several ways:

• Using the size() routine, which returns the number of rows and columns in
an array

• Using an overloaded version of size() that returns integers

• Using the mwArray::Size() member function

• Using the mwArray::EltCount() member function

Using the size() Routine
mwArray A = rand(4,7) ;
mwArray m, n;
size(mwVarargout(m,n), A);

This version of size() returns the number of rows and columns in one or more
separate arrays. Because it returns the dimensions as MATLAB scalar arrays,
size() is consistent with the rest of the interface. However, because it returns

Performing Common Array Programming Tasks

3-43

arrays, it is far slower and uses more storage than the overloaded version of
size() that returns dimensions as integers.

Using the Overloaded size() Routine
mwArray A = rand(4,7);
int m, n;
m = size(&n, A);

The overloaded version of size() returns array dimensions as integers rather
than scalar arrays. This version of size() is efficient and easy to use; however,
it only supports two dimensional arrays. It has been superseded by the member
function, mwArray::Size(), which works for multidimensional arrays.

Using the mwArray Size() Member Functions
The mwArray object supports several member functions that returns array
dimensions as integers rather than scalar arrays. These member functions are
the most efficient way to compute the dimensions of an array.

The following examples show the various ways to determine array dimensions
using these member functions.

int32 dims[2];
int32 ndims[3];

mwArray A = rand(4,7); // Two-dimensional array
mwArray B = rand(4,7,4); // Three-dimensional array

A.Size(dims); // Sets dims to (4, 7), maxdims defaults to 2
B.Size(ndims,3); // Sets ndims to (4, 7, 4)
A.Size(); // Returns the number of dimensions: 2
A.Size(1); // Returns the size of the 1st dimension: 4
A.Size(2); // Returns the size of the 2nd dimension: 7

mwArray EltCount() Member Function
In addition to the size member functions, the mwArray object includes a
member function, named EltCount(), that returns the number of elements in
the array, determined by the product of the length of each dimension:

A.EltCount(); // Returns the product of M and N: 28

3 Working with MATLAB Arrays

3-44

Note The capitalization of these function names is significant; C++ function
names are case-sensitive.

4

Indexing into Arrays

Overview . 4-2

Using One-Dimensional Subscripts 4-9

Using N-Dimensional Subscripts 4-13

Using Logical Subscripts 4-20

Using Indexing in Assignment Statements 4-24

Deleting Elements from an Array 4-29

Indexing into Cell Arrays 4-31

Indexing into MATLAB Structure Arrays 4-38

Indexing Techniques 4-44

C++ and MATLAB Indexing Syntax 4-47

The mwIndex Class 4-49

Programming Efficient Indices 4-50

4 Indexing into Arrays

4-2

Overview
The MATLAB interpreter provides a sophisticated and powerful indexing
operator that accesses and modifies multiple array elements. The MATLAB
C++ Math Library also supports an indexing operator. This chapter describes
how to:

• Use one-dimensional, n-dimensional, and logical subscripts

• Make assignments using indexing expressions

• Make deletions using indexing

• Index into cell arrays

• Index into structure arrays

Terminology
This diagram illustrates the terminology used in this chapter.

Figure 4-1: From the MATLAB and MATLAB C++ Math Library Perspective

Dimensions and Subscripts in MATLAB
There are three types of data in MATLAB: numeric arrays, cell arrays, and
structures (objects are just a special kind of structure). Therefore, there are
three types of indexing, one for each type of data:

• Standard indexing, which uses parentheses ()

• Cell array indexing, which uses curly braces {}

• Structure indexing, which uses named fields, for example, color

Both standard indexing and cell array indexing take numeric arguments, one
argument for each dimension of the array being indexed into, while structure
indexing uses only the name of the structure field.

A (3, 1)
SubscriptTarget Array

Indices

4-3

Note Standard indexing can be used with all three types of data, while cell
array indexing can only be used on cell arrays, and structure indexing only on
structures. You can combine, for example, standard indexing and structure
indexing on a structure.

Dimensions and Subscripts in the MATLAB C++ Math
Library
The MATLAB C++ Math Library supports N-dimensional standard, cell array,
and structure indexing. You use:

• The indexing operator () for standard indexing

• mwArray::cell() for cell array indexing

• mwArray::field() for structure indexing

The indexing operator () and mwArray::cell() take numeric arguments, one
index for each dimension of the array being indexed. mwArray::field() takes
the name of the structure field as an argument.

Note You cannot index into an array with more dimensions than the array
has, although you can use fewer dimensions.

Applying a subscript to an array allows you to:

• Access

• Modify

• Delete

elements of an array. For example, the two-dimensional indexing expression

A(3,1)

applies the subscript (3,1) to A and returns the element at row 3, column 1.
A(9), a one-dimensional indexing expression, returns the ninth element of
array A.

4 Indexing into Arrays

4-4

Note The indexing functions follow the MATLAB convention for array
indices: indices begin at one rather than zero.

An index can be a scalar, a vector, a matrix, or a call to the special function
colon().

• A scalar subscript selects a scalar value.

• A subscript with vector or matrix indices selects a vector or matrix of values.

• The colon() index, which loosely interpreted means ‘‘all,’’ selects, for
example, all the columns in a row or all the rows in a column.

If you provide arguments to colon(), the subscript specifies a vector. For
example, colon(1,10) specifies the vector [1 2 3 4 5 6 7 8 9 10].

Tip for-loops provide an easy model for thinking about indexing. A
one-dimensional index is equivalent to a single for-loop; a two-dimensional
index is equivalent to two nested for-loops. The size of the subscript
determines the number of iterations of the for-loop. The value of the subscript
determines the values of the loop iteration variables.

The MATLAB C++ Math Library implements indexing via the interaction of
three classes: mwArray, mwIndex, and mwSubArray. mwArray represents the
array itself. mwIndex represents an index. mwSubArray represents the result of
an index operation. The indexing routines themselves create mwSubArray
objects when an indexing expression appears as the target of an assignment
operation (on the left-hand side of an assignment operator). The library
handles mwSubArray objects for you; you do not need to create them.

Array Storage
MATLAB stores each array as a column of values regardless of the actual
dimensions. This column consists of the array columns, appended top to
bottom. For example, MATLAB stores

A = [2 6 9; 4 2 8; 3 0 1]

4-5

as

 2
 4
 3
 6
 2
 0
 9
 8
 1

Accessing A with a single subscript indexes directly into the storage column.
A(3) accesses the third value in the column, the number 3. A(7) accesses the
seventh value, 9, and so on.

If you supply more subscripts, MATLAB calculates an index into the storage
column based on the dimensions you assigned to the array. For example,
assume a two-dimensional array like A has size [d1 d2], where d1 is the
number of rows in the array and d2 is the number of columns. If you supply two
subscripts (i,j) representing row-column indices, the offset is

(j–1)*d1+i

Given the expression A(3,2), MATLAB calculates the offset into A’s storage
column as (2-1)*3+3, or 6. Counting down six elements in the column accesses
the value 0.

This storage and indexing scheme also extends to multidimensional arrays.
You can think of an N-dimensional array as a series of “pages,” each of which
is a two-dimensional array. The first two dimensions in the N-dimensional
array determine the shape of the pages, and the remaining dimensions
determine the number of pages.

In a three- (or higher) dimensional array, for example, MATLAB iterates over
the pages to create the storage column, again appending elements columnwise.
You can think of three-dimensional arrays as “books,” with a two-dimensional
array on each page. The term page is used frequently in this document to refer
to a two-dimensional array that is part of a larger N-dimensional array.

Labeling the dimensions past three is more difficult. You can imagine shelves
of books for dimension 4, rooms of shelves for dimension 5, libraries of rooms
for dimension 6, but at that point the analogy loses meaning. This document

4 Indexing into Arrays

4-6

rarely uses an array of dimension greater than three or four, although
MATLAB and the MATLAB C Math Library handle any number of dimensions
that doesn’t exceed the amount of memory available on your computer.

For example, consider a 5-by-4-by-3-by-2 array C.

4-7

page(1,1) =

 1 4 3 5
 2 1 7 9
 5 6 3 2
 0 1 5 9
 3 2 7 5

page(2,1) =

 6 2 4 2
 7 1 4 9
 0 0 1 5
 9 4 4 2
 1 8 2 5

page(3,1) =

 2 2 8 3
 2 5 1 8
 5 1 5 2
 0 9 0 9
 9 4 5 3

page(1,2) =

 9 8 2 3
 0 0 3 3
 6 4 9 6
 1 9 2 3
 0 2 8 7

page(2,2) =

 7 0 1 3
 2 4 8 1
 7 5 8 6
 6 8 8 4
 9 4 1 2

page(3,2) =

 1 6 6 5
 2 9 1 3
 7 1 1 1
 8 0 1 5
 3 2 7 6

M displays C asATLAB M stores C asATLAB

 1
 2
 5
 0
 3
 4
 1
 6
 1
 2
 3
 7
 3
 5
 7
 5
 9
 2
 9
 5
 6
 7
 0
 9
 1
 2
 1
 0
 4
 8
 4
 4
 1
 4
 2
 2
 9
 5
 2
 5
 2
 2
 5
 0
 9
 2
 5
 1
 9
 4

...

4 Indexing into Arrays

4-8

Again, a single subscript indexes directly into this column. For example, C(4)
produces the result

ans =

0

If you specify two subscripts (i,j) indicating row-column indices, MATLAB
calculates the offset as described above. Two subscripts always access the first
page of a multidimensional array, provided they are within the range of the
original array dimensions.

If more than one subscript is present, all subscripts must conform to the
original array dimensions. For example, C(6,2) is invalid, because all pages of
C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing scheme
accordingly. For example, consider four subscripts (i,j,k,l) into a
four-dimensional array with size [d1 d2 d3 d4]. MATLAB calculates the offset
into the storage column by

(l–1)(d3)(d2)(d1)+(k–1)(d2)(d1)+(j–1)(d1)+i

For example, if you index the array C using subscripts (3,4,2,1), MATLAB
returns the value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d1 d2 d3 ... dn]
using any subscripts (s1 s2 s3 ... sn) is:

(sn–1)(dn–1)(dn–2)...(d1)+(sn–1–1)(dn–2)...(d1)+...+(s2–1)(d1)+s1

Because of this scheme, you can index an array using any number of subscripts.
You can append any number of 1s to the subscript list because these terms
become zero. For example, C(3,2,1,1,1,1,1,1) is equivalent to C(3,2)

Using One-Dimensional Subscripts

4-9

Using One-Dimensional Subscripts
This section describes how to select:

• A single element with a one-dimensional scalar index

• A vector with a one-dimensional vector index

• A subarray with a one-dimensional matrix index

• All elements in a matrix with a colon index

All examples work with example matrix A. Notice that the value of each
element in A is equal to that element’s position in the column-major
enumeration order. For example, the third element of A is the number 3 and
the ninth element of A is the number 9.

A =
1 4 7
2 5 8
3 6 9

Overview
A one-dimensional subscript contains a single index, which can be a scalar, a
vector, a matrix, or a call to the colon() function. The size and shape of the
one-dimensional index determine the size and shape of the result. For example,
a one-dimensional column vector index produces a one-dimensional column
vector result.

To apply a one-dimensional subscript to an N-dimensional array, you need to
know how to go from the one-dimensional index value to a location inside the
array. See “Array Storage” on page 4-4 for complete details on how MATLAB
counts one-dimensionally through arrays of N dimensions.

Note The range for a one-dimensional index depends on the size of the array.
For a given array A, it ranges from 1, the first element of the array, to
prod(size(A)), the last element in an N-dimensional array. Contrast this
range with the two ranges for a two-dimensional index where the row value
varies from 1 to M, and the column value from 1 to N.

4 Indexing into Arrays

4-10

Selecting a Single Element
Use a scalar index to select a single element from an array. For example,

A(5)

selects the fifth element of A, the number 5.

Selecting a Vector
Use a vector index to select multiple elements from an array. For example,

 A(horzcat(2,5,8))

selects the second, fifth and eighth elements of the matrix A:

2 5 8

Because the index is a 1-by-3 row vector, the result is also a 1-by-3 row vector.

The expression

A(vertcat(2,5,8))

selects the same elements of A, but returns the result as a column vector
because vertcat() produced a column vector:

2
5
8

Specifying a Vector Index with end()
Sometimes you don’t know how large an array is in a particular dimension, but
you want to perform an indexing operation that requires you to specify the last
element in that dimension. In MATLAB, you can use the end function to refer
to the last element in a given dimension.

For example, A(6:end) selects the elements from A(6) to the end of the array.
The MATLAB C++ Math Library’s end() function corresponds to the MATLAB
end() function. Given an array, a dimension (1 = row, 2 = column, 3 = page, and
so on), and the number of indices in the subscript, end() returns (as a 1-by-1
array) the index of the last element in the specified dimension. You can then
use that scalar array to generate a vector index.

Using One-Dimensional Subscripts

4-11

Given the row dimension for a vector or scalar array, end() returns the number
of columns. Given the column dimension for a vector or scalar array, it returns
the number of rows. For a matrix, end() treats the matrix as a vector and
returns the number of elements in the matrix.

This C++ code selects all but the first five elements in matrix A, just as
A(6:end) does in MATLAB.

A(colon(6, end(A, 1, 1)))

The second argument (1) to end() identifies the dimension where end() is
used, here the row dimension. The third argument (1) indicates the number of
indices in the subscript; for one-dimensional indexing, it is always one. This
code selects these elements from matrix A:

6 7 8 9

Selecting a Matrix
Use a matrix index to select a matrix. A matrix index works just like a vector
index, except the result is a matrix rather than a vector. For example, let B be
the index matrix:

1 2
3 2

Then, A(B) is:

1 2
3 2

Note that the example matrix A was chosen so that A(X) = X for all types of
one-dimensional indexing. This is not generally the case. For example, if Awere
changed to A = magic(3),

8 1 6
3 5 7
4 9 2

then A(B) would equal

8 3
4 3

4 Indexing into Arrays

4-12

Note In both cases, size(A(B)) is equal to size(B). This is a fundamental
property of one-dimensional indexing.

Selecting the Entire Matrix As a Column Vector
Use the colon() index to select all the elements in a matrix. The result is a
column vector. For example, A(colon()) is:

1
2
3
4
5
6
7
8
9

The colon() index means ‘‘all.’’ Think of it as a context-sensitive function. It
expands to a vector array containing all the indices of the dimension in which
it is used (its context). In the context of an M-by-N matrix A, A(colon()) is
equivalent to A(transpose(ramp(1,M*N))).

Using N-Dimensional Subscripts

4-13

Using N-Dimensional Subscripts
This section describes how to:

• Extract a scalar from a matrix

• Extract a vector from a matrix

• Extract a subarray from a matrix

• Extend two-dimensional indexing to N-dimensions

There is no functional difference between two-dimensional indexing and
N-dimensional indexing (where N > 2). Because it is easier to understand
two-dimensional arrays, most of the examples in this section deal with
two-dimensional arrays. See “Extending Two-Dimensional Indexing to N
Dimensions” on page 4-17 to learn how to work with arrays of dimension
greater than two.

All two-dimensional examples work with example matrix A.

1 4 7
2 5 8
3 6 9

Overview
An N-dimensional subscript contains N indices. The first index is the row
index, the second is the column index, the third the page index, and so on. Each
index can store a scalar, vector, matrix, or the result from a call to the function
colon().

The size of the indices rather than the size of the subscripted matrix
determines the size of the result; the size of the result is equal to the product
of the sizes of the N indices. For example, assume matrix A is set to:

1 4 7
2 5 8
3 6 9

If you index matrix A with a 1-by-5 vector and a scalar, the result is a
five-element vector: five elements in the first index times one element in the
second index. If you index matrix A with a three-element row index and a
two-element column index, the result has six elements arranged in three rows
and two columns.

4 Indexing into Arrays

4-14

Selecting a Single Element
Use two scalar indices to extract a single element from a matrix.

For example,

A(2,2)

selects the element 5 from the center of matrix A (the element at row 2, column
2).

Selecting a Vector of Elements
Use a scalar index with either a vector or a matrix index to extract a vector of
elements from a matrix. You can use the function horzcat(), vertcat(), or
colon() to make the vector or matrix index, or use an mwArray variable that
contains a vector or matrix.

The indexing routines iterate over the vector index, pairing each element of the
vector with the scalar index. Think of this process as applying a (scalar, scalar)
subscript multiple times; the result of each selection is collected into a vector.
The indexing code iterates down the columns of the matrix index in exactly the
same way it iterates over a vector index.

For example, A(horzcat(1,3), 2) selects the first and third element (or first
and third rows) of column 2:

4
6

In MATLAB A([1 3], 2) performs the same operation.

If you reverse the positions of the indices, A(2, horzcat(1, 3)), you select the
first and third element (or first and third columns) of row 2:

2 8

If the vector index repeats a number, the same element is extracted multiple
times. For example, A(2, horzcat(3, 3)) returns two copies of the element at
A(2,3):

8 8

Using N-Dimensional Subscripts

4-15

Specifying a Vector Index with end()
The end() function, which corresponds to the MATLAB end() function,
provides another way of specifying a vector index. Given an array, a dimension
(1 = row, 2 = column, 3 = page, and so on), and the number of indices in the
subscript, end() returns the index of the last element in the specified
dimension. You then use that scalar array to generate a vector index. See
“Specifying a Vector Index with end()” on page 4-10 for a more complete
description of how and why you use the end function in MATLAB.

Given the row dimension, end() returns the number of columns. Given the
column dimension, it returns the number of rows.

This code selects all but the first element in row 3:

A(3, colon(2, end(A, 2, 2)));

just as

A(3, 2:end)

does in MATLAB.

The second argument end(), 2, identifies the dimension where end() is used,
here the column dimension. The third argument, 2, indicates the number of
indices in the subscript; for two-dimensional indexing, it is always 2. This code
selects these elements from matrix A:

6 9

Selecting a Row or Column
Use the colon() index and a scalar index to select an entire row or column. For
example, A(1, colon()) selects the first row:

1 4 7

A(colon(), 2) selects the second column:

4
5
6

4 Indexing into Arrays

4-16

Selecting a Matrix
Use two vector indices or a vector index and a matrix index to extract a matrix.
You can use the function horzcat(), vertcat(), or colon() to make the vector
or matrix index, or use mwArray variables that contain vectors or matrices.

The indexing code iterates over two vector indices in a pattern similar to a
doubly nested for-loop:

for each element I in the row index
for each element J in the column index

select the matrix element A(I,J)

For each of the indicated rows, this operation selects the column elements at
the specified column positions. For example,

A(horzcat(1,2), horzcat(1,3,2))

selects the first, third, and second (in that order) elements from rows 1 and 2,
yielding:

1 7 4
2 8 5

Notice that the result has two rows and three columns. The size of the result
matrix matches the size of the index vectors: the row index had two elements,
the column index had three elements, so the result is 2-by-3.

The two-dimensional indexing routines treat a matrix index as one long vector,
moving down the columns of the matrix. The loop for a subscript composed of a
matrix in the row position and a vector in the column position works like this:

for each column I in the row index matrix B
for each row J in the Ith column of B

for each element K in the column index vector
select the matrix element A(B(I,J), K)

For example, let the matrix B equal:

1 1
2 3

Then the expression A(B, horzcat(1, 2)) selects the first, second, first, and
third elements of columns 1 and 2:

1 4

Using N-Dimensional Subscripts

4-17

2 5
1 4
3 6

Note that the result has two columns because horzcat(1, 2) has two columns.

Selecting Entire Rows and Columns
Use the colon() index and a vector or matrix index to select multiple rows or
columns from a matrix. For example,
A(horzcat(2, 3), colon()) selects all the elements in rows 2 and 3:

2 5 8
3 6 9

You can use colon() in the row position as well. For example, the expression
A(colon(), horzcat(3, 1)) selects all the elements in columns 3 and 1, in
that order:

7 1
8 2
9 3

Subscripts of this form make duplicating the rows or columns of a matrix easy.
See the “Duplicating a Row or Column” on page 4-44 to learn another technique
for duplicating rows and columns.

Selecting an Entire Matrix
Using the colon() index as both the row and column index selects the entire
matrix. Although this usage is valid, referring to the matrix itself without
subscripting is much easier.

Extending Two-Dimensional Indexing to
N Dimensions
Two-dimensional indexing extends very naturally to N-dimensions; simply use
more indices. Let A be a 3-by-3-by-2 three-dimensional array (two 3-by-3
pages):

Page 1:

1 4 7
2 5 8

4 Indexing into Arrays

4-18

3 6 9

Page 2:

10 13 16
11 14 17
12 15 18

Then the MATLAB expression A(:,:,2) selects all of page 2; A(1,:,:) selects
all the columns in row 1 on all the pages; A(2,2,2) selects the element at the
middle of page 2 (the number 14), and so on.

It is very simple to convert these MATLAB indexing expressions into MATLAB
C++ Math Library indexing expressions.

A(:,:,2) becomes

A(colon(),colon(),2)

The result of this operation is the 3-by-3 array on page 2 of A:

10 13 16
11 14 17
12 15 18

A(1,:,:) becomes

A(1,colon(),colon())

The result of this operation is a three-dimensional array 1-by-3-by-2 in which
each “page” consists of the first row of the corresponding page of A.

Page 1:

1 4 7

Page 2:

10 13 16

Finally, A(2,2,2) becomes:

A(2,2,2)

The result of this operation is the 1-by-1 array 14.

Using N-Dimensional Subscripts

4-19

If the array A had more than three dimensions, you would use more than three
indices. All of the other types of indexing discussed in this chapter (selecting
entire rows and columns, etc.) work equally well on N-dimensional arrays.

4 Indexing into Arrays

4-20

Using Logical Subscripts
This section describes how to use:

• A logical index as a one-dimensional subscript

• Two logical vectors as indices in a two-dimensional subscript

• A colon index and a logical vector as a two-dimensional subscript

• A logical index to select elements from a row or column

The examples work with matrix A and the logical array B.

A
1 4 7
2 5 8
3 6 9

B
1 0 1
0 1 0
1 0 1

Overview
Logical indexing is a special case of n-dimensional indexing. A logical index is
a vector or a matrix that consists entirely of ones and zeros. Applying a logical
subscript to a matrix selects the elements of the matrix that correspond to the
nonzero elements in the subscript.

Logical indices are generated by the relational operators (<, >, <=, >=, ==, !=)
and by the function logical(). Because the MATLAB C++ Math Library
attaches a logical flag to a logical matrix, you cannot create a logical index
simply by assigning ones and zeros to a vector or matrix.

You can form an n-dimensional logical subscript by combining a logical index
with scalar, vector, matrix, or colon() indices.

Using a Logical Matrix As a One-Dimensional Index
When you use a logical matrix as an index, the result is a column vector. For
example, you can create the logical index matrix B:

1 0 1

Using Logical Subscripts

4-21

0 1 0
1 0 1

by calling mlfLogical().

mwArray B = logical(vertcat(horzcat(1,0,1),
horzcat(0,1,0),
horzcat(1,0,1)));

Then A(B) equals:

1
3
5
7
9

Notice that B has ones at the corners and in the center, and that the result is a
column vector of the corner and center elements of A.

If the logical index is not the same size as the subscripted array, the logical
index is treated like a vector. For example, if B = [1 0; 0 1] then A(B) equals

1
4

since B has a zero at positions 2 and 3, and a 1 at positions 1 and 4. Logical
indices behave just like regular indices in this regard.

Using Two Logical Vectors as Indices
Two vectors can be logical indices into an M-by-N matrix A. The size of a logical
vector index often matches the size of the dimension it indexes though this is
not a requirement.

For example, let B = [1 0 1] and C = [0 1 0], two 1-by-3 logical vectors. Then,
A(B, C) is

4
6

B, the row index vector, has nonzero entries in the first and third elements.
This selects the first and third rows. C, the column index vector, has only one
nonzero entry, the second element. This selects the second column. The result

4 Indexing into Arrays

4-22

is the intersection of the two sets selected by B and C, all the elements in the
second columns of rows 1 and 3.

Or, if B = [1 0] and C = [0 1], then A(B,C) equals:

4

This is tricky. B, the row index, selects row 1. C, the column index, selects
column 2. There is only one element in array A in both row 1 and column 2, the
element 4.

Using One colon() Index and One Logical Vector as
Indices
This type of indexing is very similar to the two-vector case. Here, however, the
colon() index selects all of the elements in a row or column, acting like a vector
of ones the same size as the dimension to which it is applied. The logical index
works just like a nonlogical index in terms of size.

For example, let the index vector B = [1 0 1]. Then A(colon(), B) equals:

1 7
2 8
3 9

The colon() index selects all rows and B selects the first and third columns in
each row. The result is the intersection of these two sets, that is, the first and
third columns of the matrix.

For comparison, A(B,colon()) equals:

1 4 7
3 6 9

B selects the first and third rows, and colon() selects all the columns in each
row. The result is the intersection of the sets selected by each index: the first
and third rows of the matrix.

Using a Scalar and a Logical Vector
Let matrix X be a 4-by-4 magic square.

X = magic(4);

Using Logical Subscripts

4-23

16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Let B be a logical matrix that indicates which elements in row 2 of matrix X are
greater than 9. B is the result of the greater than (>) operation

B = X(2, colon()) > 9;

and contains the vector

0 1 1 0

Use B as a logical index that selects those elements from matrix X.

X(2,B)

selects these elements:

11 10

Extending Logical Indexing to N Dimensions
Logical indexing works on n-dimensional arrays just as you’d expect. The
logical filtering happens the same way, and the subscript size governs the
result size in the same manner. For details on the syntax, see “Extending
Two-Dimensional Indexing to N Dimensions” on page 4-17.

4 Indexing into Arrays

4-24

Using Indexing in Assignment Statements
This section describes how to assign:

• A single element to an array

• Multiple elements to an array

• Values to all the elements in an array

The examples work with matrix A.

A =

1 4 7
2 5 8
3 6 9

There is no functional difference between two-dimensional indexed assignment
and n-dimensional indexed assignment (where N > 2). Because it is easier to
understand two-dimensional arrays, most of the examples in this section deal
with two-dimensional arrays. See “Extending Two-Dimensional Assignment to
N Dimensions” on page 4-27 to learn how to work with arrays of dimension
greater than two.

Overview
You can use any indexing expression – an array together with one or more
subscripts – as the target of an assignment statement. An assignment
statement consists of a destination to the left of the equals (=) operator and a
source to the right. When the destination is an indexing expression, the
indexing expression selects the elements that are to be modified; the source
specifies the new values for those elements.

You can use five different kinds of indices:

• Scalar

• Vector

• Matrix

• Colon

• Logical

Using Indexing in Assignment Statements

4-25

The examples below do not present all the possible combinations of these index
types.

Note The size of the destination array (after the subscript has been applied)
and the size of the source array must be the same.

Assigning to a Single Element
Use one or two scalar indices to assign a value to a single element in a matrix.
For example,

A(2,1) = 17

changes the element at row 2 and column 1 to the integer 17. Here, both the
source and destination (after the subscript has been applied) are scalars, and
thus the same size.

Assigning to a Multiple Elements
Use a vector index to modify multiple elements in a matrix.

The colon() index frequently appears in the subscript of the destination
because it allows you to modify an entire row or column. For example, the code

A(2,colon()) = ramp(1,3);

replaces the second row of an M-by-3 matrix with the vector 1 2 3. If we use
the example matrix A, A is modified to contain:

1 4 7
1 2 3
3 6 9

You can also use a logical index to select multiple elements. For example, the
assignment statement

A(A>5)= horzcat(17,17,17,17);

changes all the elements in A that are greater than 5 to 17:

1 4 17
2 5 17

4 Indexing into Arrays

4-26

3 17 17

Assigning to a Subarray
Use two vector indices to generate a matrix destination. For example, let the
vector index B equal 1 2, and the vector index C equal 2 3. Then,

A(B,C) = vertcat(horzcat(1, 4) horzcat(3, 2));

copies a 2-by-2 matrix into the second and third columns of rows 1 and 2: the
upper right corner of A. The example matrix A becomes:

1 1 4
2 3 2
3 6 9

You can also use a logical matrix as an index. For example, let B be the logical
matrix:

0 1 1
0 1 1
0 0 0

Then,

A(B) = vertcat(horzcat(1, 4) horzcat(3, 2));

changes A to:

1 1 4
2 3 2
3 6 9

Assigning to All Elements
Use the colon() index to replace all the elements in a matrix with alternate
values. The colon() index, however, is infrequently used in this context
because you can accomplish approximately the same result by using an
assignment without any indexing. For example, although you can write:

A(colon()) = rand(3);

writing

A = rand(3);

Using Indexing in Assignment Statements

4-27

is simpler.

The first statement reuses the storage already allocated for A. The first
statement will be slightly slower because the elements from the source must be
copied into the destination.

Note rand(3) is equivalent to rand(3,3).

Extending Two-Dimensional Assignment to N
Dimensions
Two-dimensional assignment extends naturally to N-dimensions; simply use
more indices. Let A be a 3-by-3-by-2 three-dimensional array (two 3-by-3
pages):

Page 1:

1 4 7
2 5 8
3 6 9

Page 2:

10 13 16
11 14 17
12 15 18

Then the MATLAB expression A(:,:,2) = eye(3) changes page 2 to the 3-by-3
identity matrix; A(1,:,:) = ones(1, 3, 2) changes row 1 on both pages to
be all ones; A(2,2,2) = 42 changes the element at the middle of page 2 (the
number 14) to the number 42, and so on.

It is very simple to convert these MATLAB indexed assignment expressions
into MATLAB C++ Math Library indexed assignment expressions.

A(:,:,2) = eye(3) becomes

A(colon(),colon(),2) = eye(3);

As a result of this operation the 3-by-3 array on page 2 of A becomes:

1 0 0

4 Indexing into Arrays

4-28

0 1 0
0 0 1

A(1,:,:) = ones(1, 3, 2) becomes

A(1,colon(),colon()) = ones(1, 3, 2);

As a result of this operation row 1 on both pages of A becomes all ones.

Page 1:

1 1 1
2 5 8
3 6 9

Page 2:

1 1 1
11 14 17
12 15 18

Finally, A(2,2,2) = 42 becomes:

A(2,2,2) = 42;

As a result of this operation the element at (2,2,2) changes to the number 42.

Page 2:

10 13 16
11 42 17
12 15 18

If the array A had more than three dimensions, the subscript would have more
than three indices. All of the other types of indexing discussed in this chapter
(assigning to entire rows and columns, etc.) work equally well on
N-dimensional arrays.

Deleting Elements from an Array

4-29

Deleting Elements from an Array
You can use indexing expressions to delete elements from an array. Deletion is
a special case of using indexing expressions in assignment statements. Instead
of assigning a new value to an element in an array, you assign the null array
to a position in the array. The MATLAB C++ Math Library interprets that
assignment as a deletion of the element and shrinks the array.

For example, to delete an element from example matrix A, you assign the null
array to that element. You create a null array with the empty() function.

When you delete a single element from a matrix, the matrix is converted into a
row vector that contains one fewer element than the original matrix. For
example, when element (8) is deleted from matrix A

A(8) = empty();

matrix A becomes this row vector with element 8 missing:

1 2 3 4 5 6 7 9

You can also delete more than one element from a matrix, shrinking the matrix
by that number of elements. To retain the rectangularity of the matrix,
however, you must delete one or more entire rows or columns. For example,

A(2,colon()) = empty();

produces this rectangular result:

1 4 7
3 6 9

Note that the right side of an assignment statement that expresses a deletion
is always a call to empty(). The left side of the assignment statement must be
a valid indexing expression. The null array is applied to each element selected
by the subscript.

4 Indexing into Arrays

4-30

Note An N-dimensional subscript on the left side of the assignment
statement can contain only one scalar, vector, or matrix index. The other
indices used in deletion operations must be colon indices. For example, if an
array is three-dimensional and you delete row 2, you must delete row 2 from
all pages.

Similar to reference and assignment, two-dimensional deletion extends to N
dimensions. If A has more than two dimensions, simply specify more than two
dimensions as indices in the subscript.

Indexing into Cell Arrays

4-31

Indexing into Cell Arrays
This section describes how to:

• Reference a cell in a cell array

• Reference a subset of a cell array

• Reference the contents of a cell

• Reference a subset of the contents of a cell

• Index nested cell arrays

• Assign values to a cell array

• Delete elements from a cell array

The examples all use the cell array N. N contains four cells: a 2-by-2 double
array, a string array, an array that contains a complex number, and a scalar
array.

This MATLAB code creates the array:

N{1,1} = [1 2; 4 5];
N{1,2} = 'Eric';
N{2,1} = 2-4i;
N{2,2} = 7;

This MATLAB C++ Math Library code creates the array:

N.cell(1,1) = vertcat(horzcat(1, 2), horzcat(4, 5));
N.cell(1,2) = "Eric";
N.cell(2,1) = complex(2,-4);

'Eric'
1 2

4 5

2-4i 7

cell 1,2cell 1,1

cell 2,2cell 2,1

4 Indexing into Arrays

4-32

N.cell(2,2) = 7;

Overview
A cell array is a regularly shaped N-dimensional array of cells. Each cell is
capable of containing any type of MATLAB data, including another cell array.
When using cell arrays, you must be careful to distinguish between the data
values stored in the cells and the cells themselves, which are data values in
their own right.

MATLAB supports two types of indexing on cell arrays. The first, standard
indexing, uses parentheses () and allows you to manipulate the cells in a cell
array. The second, cell array indexing, uses braces {} to manipulate the data
values stored in the cells.

The MATLAB C++ Math Library supports the same two types of indexing on
cell arrays. Standard indexing uses parentheses (). Cell array indexing uses
mwArray::cell() to manipulate the data values stored in the cells. You pass
index values to cell().

For example, given the cell array N, above, N{2,2} in MATLAB and
N.cell(2,2) in the MATLAB C++ Math Library is the scalar 7, but N(2,2) is
a 1-by-1 cell array (a single cell) containing the scalar 7.

Tips for Working with Cell Arrays

• Cell arrays must be regularly shaped. All rows must have the same number
of columns, and all columns the same number of rows. This requirement
extends into dimensions higher than two, as well. For example, all pages
must be the same size in a three-dimensional cell array.

• You can’t do arithmetic on a cell. You cannot, for example, write N(2,2)+1,
which attempts to add one to a cell. However, N.cell(2,2)+1works perfectly
well, because the cell array indexing returns the contents of cell (2,2) rather
than the cell itself.

• Cell array indexing follows the same rules as standard indexing. You can use
the colon() index to refer to multiple rows or columns; you can use vector
and matrix indices to extract sub-cell arrays from a cell array.

For simplicity, this section focuses on two-dimensional cell arrays. If N were a
cell array of higher dimension, the examples would still work on N, if you added
the appropriate number of dimensions to the indexing expressions.

Indexing into Cell Arrays

4-33

Referencing a Cell in a Cell Array
To obtain a cell from a cell array, use standard array notation (parentheses) on
the right-hand side of the assignment to indicate that you are referencing the
cell itself, not its contents.

c = N(1,2);

c is a 1-by-1 cell array containing the string array ’Eric’.

c = N(1,2) performs the same operation in MATLAB.

Referencing a Subset of a Cell Array
To obtain a subset of the cells in a cell array, use the colon() index or a vector
or matrix index to access a group of cells. For example, to extract the second
row of the cell array N, write this code:

B = N(2,colon());

The result, B, is a 1-by-2 cell array containing the complex number 2-4i and
the integer 7.

B = N(2,:) performs the same operation in MATLAB.

Cell arrays support vector-based (one-dimensional) indexing as well. To extract
the first and last elements of N, first make a vector v that contains the integers
1 and 4. Use horzcat() to construct v.

B = N(horzcat(1, 4));

The result, B, is a 1-by-2 cell array that contains a 2-by-2 matrix (element (1,1)
of N) and the scalar 7 (element (2,2) of N).

B = N([1 4]) performs the same operation in MATLAB.

Referencing the Contents of a Cell
To obtain the contents of a single cell, use the mwArray cell()member function
to reference the cell contents instead of the cell itself. Pass the indices to
cell().

c = N.cell(1,2);

c is the string array ’Eric’.

4 Indexing into Arrays

4-34

c = N{1,2} performs the same operation in MATLAB.

Referencing a Subset of the Contents of a Cell
To obtain a subset of a cell’s contents, concatenate indexing expressions. For
example, to obtain element (2,2) from the array in cell N{1,1}, use an
indexing expression that concatenates an index that references the entire
contents of a cell (using the mwArray cell() member function) with an index
that references a portion of those contents (using standard indexing).

d = N.cell(1,1)(2,2);

d = N{1,1}(2,2) performs the same operation in MATLAB.

Note that the result d is a scalar array, not a cell array, and equal to 5.

Indexing Nested Cell Arrays
To index nested cells, concatenate subscripts. The first set of subscripts
accesses the top layer of cells, and subsequent sets of braces access successively
deeper layers of cells.

For example, array A represented in this diagram has three levels of cell
nesting: the 1-by-2 cell array itself, the 2-by-2 cell array nested in cell (1,2),
and the 1-by-2 cell array nested in cell (2,2).

Indexing into the First Level
To access the 2-by-2 cell array in cell (1,2):

cell 1,1 cell 1,2

[2–4i 5+7i]

'Test 1'
5 2 8

7 3 0
17 24 1 8 15

23 5 7 14 16

 4 6 13 20 22

10 12 19 21 3 17

Indexing into Cell Arrays

4-35

A.cell(1,2)

In MATLAB A{1,2} performs the same operation.

Indexing into the Second Level
To access the 1-by-2 array in position (2,2) of cell (1,2):

A.cell(1,2).cell(2,2)

A{1,2}{2,2} in MATLAB performs the same operation.

Indexing into the Third Level
To access the empty cell in position (2,2) of cell (1,2):

A.cell(1,2).cell(2,2).cell(1,2)

A{1,2}{2,2}{1,2} in MATLAB performs the same operation.

Assigning Values to a Cell Array
You put a value into a cell array in much the same way that you read a value
out of a cell array. In MATLAB, the only difference between the two operations
is the position of the cell array relative to the assignment operator: left of the
equal sign (=) means assignment, right of the operator means reference. No
matter if you’re reading or writing values, the indexing operations you use to
specify which values to access remain the same. This is true in the MATLAB
C++ Math Library as well.

• Use parentheses in indexing expressions for standard array assignments.

• Use mwArray::cell() in indexing expressions for cell array assignments.

For example, to assign a vector [1 2 5 7 11] to the contents of the cell (1,2)
of N, you write N{1,2} = [1 2 5 7 11] in MATLAB and

N.cell(1,2) = horzcat(1, 2, 5, 7, 11);

in C++ with the MATLAB C++ Math Library.

You could have written the previous assignment in MATLAB as
N(1,2) = { [1 2 5 7 11] }. The corresponding MATLAB C++ Math Library
code is:

N(1,2) = cellhcat(horzcat(1, 2, 5, 7, 11));

4 Indexing into Arrays

4-36

Because this assignment uses parentheses instead of braces, it is an
assignment between cells, which means the source array (on the right-hand
side of the assignment operator) must be a cell array as well.

Deleting Elements from a Cell Array
Cell arrays follow the same rules as numeric arrays and structure arrays for
element deletion. You can delete a single element from a cell array, or an entire
dimension element, for example, a row or column of a two-dimensional cell
array or a row, column, or page of a three-dimensional cell array. In MATLAB,
you delete elements by assigning [] to them. In the MATLAB C++ Math
Library, you assign the null array.

Deleting a Single Element
In order to delete a single element from an array of any type, you must use
one-dimensional indexing. Deleting a single element from a two-dimensional
cell array collapses it into a vector cell array. For example, using
one-dimensional indexing, N(2) refers to element (2,1) of N. Deleting the
(2,1) element of N (the complex number 2-4i) produces a three-element cell
array. In MATLAB you write N(2) = []. See the graphical representation of N
on page 4-31.

You remove element (2,1) from N like this:

N(2) = empty();

Deleting an Entire Dimension
You can delete an entire dimension by using vector subscripting to delete a row
or column of cells. Use parentheses within the indexing string to indicate that
you are deleting the cells themselves.

N(2,colon()) = empty();

N(2,:) = [] performs the same operation in MATLAB.

Indexing into Cell Arrays

4-37

Note N.cell(2,colon()) = empty(); is an error, because the number of
items on the right- and left-hand sides of the assignment operator is not the
same. The MATLAB C++ Math Library does not do scalar expansion on cell
arrays. If you want to set both cells in the second row of N to [], write
N(2,colon()) = cellhcat(empty(), empty()), thereby assigning a 1-by-2
cell array to another 1-by-2 cell array.

4 Indexing into Arrays

4-38

Indexing into MATLAB Structure Arrays
This section describes how:

• To access a field in a structure array

• To access elements within a field of a structure

• To assign a value to a field in a structure array

• To assign a value to an element of a field

• Cell arrays and structure arrays interact

• To delete a field from a structure

The MATLAB C++ Math Library supports two types of indexing on structures.
The first, standard indexing, uses parentheses () and allows you to manipulate
the structures in a structure array. The second, structure indexing, uses
mwArray::field() to access the fields in the structure You pass the name of
the field to values to mwArray::field().

Overview
A MATLAB structure is very much like a structure in C; it is a variable that
contains other variables. Each of the contained variables is called a field of the
structure, and each field has a unique name.

For example, imagine you were building a database of images. You might want
to create a structure with three fields: the image data, a description of the
image, and the date the image was created. The following MATLAB code
creates this structure:

images.image = image1;
images.description = ’Trees at Sunset’;
images.date.year = 1998;
images.date.month = 12;
images.date.day = 17;

The structure images contains three fields: image, description and date. The
date field is itself a structure, and contains three additional fields: year, month
and day. Notice that structures can contain different types of data. images
contains a matrix (the image), a string (the description), and another structure
(the date).

Indexing into MATLAB Structure Arrays

4-39

Like standard arrays, structures are inherently array oriented. A single
structure is a 1-by-1 structure array, just as the value 5 is a 1-by-1 numeric
array. You can build structure arrays with any valid size or shape, including
multidimensional structure arrays.

For example, assume you’d like to arrange the images from your database of
images in a series of “pages,” where each page is three images wide (three
columns) and four images tall (four rows). The images might be arranged this
way in a photo album or for publication in a journal. The following code
demonstrates how you use standard MATLAB indexing to create and access
the elements of a 3-by-4-by-n structure array:

images(3,4,2).image = image24;
images(3,4,2).description = ’Greater Bird of Paradise’;
images(3,4,2).date.year = 1993;
images(3,4,2).date.month = 7;
images(3,4,2).day = 15;

For simplicity, the examples in the book focus on two-dimensional structure
arrays, but they’d work just as well with structure arrays of any dimension.

Tips for Working with Structure Arrays

• All the structures in a structure array have the same form: every structure
has the same fields.

• Adding a field to one structure in a structure array adds it to all the
structures in the structure array. Similarly, deleting a field from one
structure in the array deletes it from all the structures in the array.

• You can access and modify data stored in the fields of a structure just as you
would data stored in an ordinary variable.

• Structure fields are analogous to cell array indices, only they are names
rather than numbers.

• Each field in a structure array is an array itself. For example, in the
3-by-4-by-2 example above, the array contains 24 structures. There are 24
images, 24 descriptions, etc., and you can treat each field of the structure as
an array of 24 elements. If you typed images.description, for example,
you’d get a 24-by-1 array of strings containing all the image descriptions in
the structure array.

4 Indexing into Arrays

4-40

Accessing a Field
The simplest operation on a structure is retrieving data from one of the
structure fields. To extract the image field from the second structure in a
structure array:

image = images(2).field("image");

image = images(2).image performs the same operation in MATLAB.

Accessing the Contents of a Structure Field
A structure field may contain another array. By performing additional
indexing operations, you can access the data stored in that array. You must
specify the field name as an argument to mwArray::field() and then apply the
appropriate type of indexing to the data in that field:

• Use array subscripting if the field contains an array.

• Use cell array subscripting if the field contains a cell array.

For example, this code retrieves the first row of the image in the third
structure:

n =x(3).field("image")(1,colon());

n = x(3).image(1,:) performs the same operation in MATLAB.

Assigning Values to a Structure Field
To assign an initial value to a field (creating the field if it doesn’t exist) or to
modify the value of an existing field, use structure array indexing on the
left-hand side of the assignment operator. For example, to change the
description field of the seventeenth image, you’d write this code:

images(17).field("description") = "Ferris Wheel";

images(17).description = ’Ferris Wheel’ performs the same operation in
MATLAB.

Assigning Values to Elements in a Field
You can also modify array data contained in a structure field. You must pass
the field name to mwArray::field() and the type of indexing to perform on the
contained array. For example, this code replaces a 3-by-3 subarray of the image

Indexing into MATLAB Structure Arrays

4-41

data of the ninth image, with the data in the 3-by-3 array x. You might do this
as part of some image processing operation.

images(9).field("image")(colon(1,3),colon(2,4)) = x;

images(9).image(1:3,2:4) = x performs the same operation in MATLAB.

Referencing a Single Structure in a Structure Array
To access a single structure within the structure array, use standard array
notation. For example, to reference the forty-second image structure in a
structure array, use this code:

B = images(42);

B = images(42) performs the same operation in MATLAB.

Referencing into Nested Structures
Structures can contain other structures. For example, the image structure
used in these examples contains a date structure. To retrieve data from nested
structures, nest calls to mwArray::field().

y = images(2).field("date").field("year");

y = images(2).date.year performs the same operation in MATLAB.

Note You can only reference or assign to single instances of nested
structures. Though you might expect this MATLAB C++ Math Library code
y = images.field("date").field("year") to set y to the array of years in
the date field of the images structure array, this code generates an error
because the result of images.field("date") is a structure array rather than
a single structure.

Accessing the Contents of Structures Within Cells
Cell arrays can contain structure arrays and vice-versa. Accessing a structure
stored in a cell array is very similar to accessing a structure stored in a regular
variable; you just need to extract it from the cell array first. You use
mwArray::cell() to extract the cell array.

4 Indexing into Arrays

4-42

Assume the cell array c contains a three-element structure array of images.

You can also combine cell array and standard indexing to access a single field
of a single structure:

second_date = c.cell(1)(2).field("date");

second_date = c{1}(2).date performs the same operation in MATLAB. In
this case, the result is a single date structure.

Deleting Elements from a Structure Array
There are three kinds of deletion operations you can perform on a structure
array.

You can delete:

• An entire structure from the array

• A field from all the structures in the array

• Elements from an array contained in a field

Deleting a Structure from the Array
To delete an entire structure from a structure array, assign the null array to
that structure. For example, if you have a three-element array of image
structures, you can delete the second image structure like this:

images(2) = empty();

images(2) = [] performs the same operation in MATLAB. The result is a
two-element array of image structures.

Deleting a Field from All the Structures in an Array
To delete a field from all the structures in the array, use rmfield(). For
example, you can remove the description field from an array of image
structures, with this code:

images = rmfield(images, "description");

images = rmfield(images, ’description’) performs the same operation in
MATLAB.

Indexing into MATLAB Structure Arrays

4-43

Note rmfield() does not allow you to remove a field of a nested structure
from a structure array. For example, you cannot remove the day field of the
nested date structure with rmfield(images.field("date"), "day"). This is
an error in the MATLAB C++ Math Library and in MATLAB.

Deleting an Element from an Array Contained by a Field
To delete an element from an array contained by a field, assign the null array
to the indexing expression. For example, to remove the fifth column of the
image in the third image structure:

images(3).field("image")(colon(),5) = empty();

images(3).image(:,5) = [] performs the same operation in MATLAB.

4 Indexing into Arrays

4-44

Indexing Techniques
The following sections describe some common indexing task and how to
accomplish them.

Duplicating a Row or Column
You can make duplicate copies of an array row or column in two different ways:
an intuitive way and a short way.

Assume that you want to make a matrix that consists of four copies of the first
row of a 5-by-5 matrix, for example, the matrix returned by magic(5):

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

The Intuitive Solution
For the straightforward approach, you use the vertcat() or horzcat()
functions in the MATLAB C++ Math Library. (In MATLAB you would use the
concatenation operator [].) This approach requires two lines of code (one
assignment and one concatenation) or one long line:

mwArray A = magic(5);
mwArray B = A(1,colon());
mwArray C = vertcat(B, B, B, B);

The code makes C into a 4-by-5 matrix, using two lines of code. (Don’t count the
line that declares A.) First, the first row of A is assigned to B. Then vertcat()
concatenates B four times into C, producing this result:

17 24 1 8 15
17 24 1 8 15
17 24 1 8 15
17 24 1 8 15

The Shortcut
You can accomplish the same task with a single short line.

mwArray A = magic(5);

Indexing Techniques

4-45

mwArray C = A(ones(1,4), colon());

This code produces the same matrix as the previous code fragment, but does
not require the declaration of the intermediate matrix B. The ones() function
creates a vector of four 1’s, which as a subscript, selects the first row in matrix
A four times.

You can use this trick to duplicate columns instead of rows by switching the
positions of the calls to ones() and colon():

mwArray C = A(colon(), ones(1,4));

This creates a 5-by-4 matrix containing duplicates of the first column of A:

17 17 17 17
23 23 23 23
4 4 4 4

10 10 10 10
11 11 11 11

Concatenating Subscripts
In MATLAB, you apply an index operation to a variable. You cannot apply an
index to the result of a function call or to the result of an arithmetic operation,
without first assigning the result to an array variable.

In C++, however, you can apply an index to any object of type mwArray or of a
type that can be automatically converted into an mwArray, including mwArray
results from function calls, arithmetic operations and indexing operations.
Being able to perform an indexing operation without having to declare a
temporary variable first is very convenient.

This is a notational convenience only; your code does not run faster.

Applying a Subscript to the Result of a Function Call
You can easily compose function calls using this technique. Applying a
subscript to the result of a function call lets you extract a subarray from the
result and pass that result directly to a second function, without having to
assign the result to a variable first.

For example, this code extracts a 3-by-3 array from a 10-by-10 magic square,
and passes the 3-by-3 array to sqrt().

mwIndex i = ramp(4,6);

4 Indexing into Arrays

4-46

mwArray A = sqrt(magic(10)(i,i));

Applying a Subscript to the Result of an Arithmetic Operation
You can apply a subscript to the result of an arithmetic operation. For example,
this code multiplies two random 4-by-4 arrays, A and B, and extracts the (2,2)
element of the result into a double precision floating-point scalar, x.

mwArray A = rand(4), B = rand(4);
double x = (A * B)(2,2);

By moving the calls to rand() to the second line, you can rewrite this example
in one line:

double x = (rand(4) * rand(4))(2,2);

This technique works with logical operations as well.

C++ and MATLAB Indexing Syntax

4-47

C++ and MATLAB Indexing Syntax
The table below summarizes differences between C++ and MATLAB standard
array indexing syntax. Although the MATLAB C++ Math Library provides the
same functionality as the MATLAB interpreter, the syntax of some operations
is slightly different. In particular, you must use the colon() function rather
than the colon operator.

Though not listed here, you must use mwArray.cell() rather than {} and
mwArray::field() rather than the period (.) that references a structure field.

Note For the examples in the table, matrix X is set to the 2-by-2 matrix
[4 5 ; 6 7], a different value from the 3-by-3 matrix A in the previous
sections.

Example Matrix X
4 5
6 7

Table 4-1: MATLAB/C++ Indexing Expression Equivalence

Description MATLAB Expression C++ Expression Result

Extract 1,1 element X(1,1) X(1,1) 4

Extract first element X(1) X(1) 4

Extract third element X(3) X(3) 5

Extract all elements into a
column vector

X(:) X(colon()) 4
6
5
7

Extract first row X(1,:) X(1,colon()) 4 5

Extract second row X(2,:) X(2,colon()) 6 7

4 Indexing into Arrays

4-48

Extract first column X(:,1) X(colon(), 1) 4
6

Extract second column X(:,2) X(colon(), 2) 5
7

Replace first element
with 9

X(1) = 9 X(1) = 9 9 5
6 7

Replace first row with
[11 12]

X(1,:) = [11 12] X(1,colon())=
horzcat(11,12);

11 12
 6 7

Replace element 2,1 with 9 X(2,1) = 9 X(2,1) = 9; 4 5
9 7

Replace elements 1 and 4
with 8 (one-dimensional
indexing)

X([1 4]) = [8 8] X(horzcat(1,4))=
horzcat(8, 8);

8 5
6 8

Table 4-1: MATLAB/C++ Indexing Expression Equivalence (Continued)

Description MATLAB Expression C++ Expression Result

The mwIndex Class

4-49

The mwIndex Class
mwArray overloads the () operator for MATLAB-like indexing. The
mwArray::operator() functions can accept mwIndex objects. An mwIndex can
represent a single integer, a sequence of integers specified by a tuple (start,
step, stop), or an arbitrary vector of integers. Array subscripts are always
integers; the MATLAB C++ Math Library truncates floating-point numbers to
integers in indexing expressions.

You can create mwIndex objects in several ways. The way most familiar to
MATLAB users is the colon() function. An mwIndex constructor exists for each
form of the colon() function, as this table demonstrates.

Note The default mwIndex constructor (entry one in the table below)
produces an mwIndex object representing : (colon).

Table 4-2: mwIndex Class and the colon() Function

Description MATLAB
Expression

C++ colon() Equivalent mwIndex Constructor

All elements of X X(:) X(colon()) mwIndex k;
X(k)

First 10 elements of row 1 X(1,1:10) X(1,colon(1,10)) mwIndex k(1,10);
X(k)

Elements 2,4,6,8,10 of X X(2:2:10) X(colon(2,2,10)) mwIndex k(2,2,10);
X(k)

4 Indexing into Arrays

4-50

Programming Efficient Indices
If you use the same index repeatedly, store it in an mwIndex variable instead of
creating it each time. The cost of creating mwIndex objects is low, but
measurable. If you are bothered by having to type colon() too frequently, you
can create an mwIndex variable with a shorter name,
mwIndex all, for example, and use it instead of the colon() function.

5

Calling Library Functions

Overview . 5-2

How to Call C++ Library Functions 5-3
One Result and Only Required Input Arguments 5-3
Passing Optional Input Arguments 5-3
Passing Optional Output Arguments 5-4
Passing Optional Input and Output Arguments 5-5
Passing Any Number of Inputs 5-6
Passing Any Number of Outputs 5-8
Summary of Library Calling Conventions 5-10
Example Program: Calling Library Functions (ex2.cpp) . . . 5-12

How to Call Operators 5-18

Example – Passing Functions As Arguments (ex3.cpp) . 5-19

Representing Input Arguments As a Cell Array 5-32

5 Calling Library Functions

5-2

Overview
The MATLAB C++ Math Library includes over 400 functions. Every routine in
the library works the same way as its corresponding routine in MATLAB. This
chapter describes the calling conventions that apply to the library functions,
including how the C++ interface to the functions differs from the MATLAB
interface. Once you understand the calling conventions, you can translate any
call to a MATLAB function into a C++ call.

This chapter includes information about passing a function as an argument to
a MATLAB function or a function of your own creation.

Chapter 11 contains a listing of all the routines in the MATLAB C++ Math
Library. For complete reference information about the library functions,
including the list of arguments and return value for each function, see the
MATLAB C Math Library Reference. Each function reference page includes a
link to the documentation for the MATLAB version of the function. “Accessing
Online Reference Documentation” on page 1-7 describes how to use the Help
system.

How to Call C++ Library Functions

5-3

How to Call C++ Library Functions
The following sections use the cos(), tril(), find(), and svd() functions to
demonstrate how to translate a MATLAB call to a function into a C++ Math
Library call. Each of the functions demonstrates a different aspect of the
calling conventions, including what data type to use for C++ input and output
arguments, how to handle optional arguments, and how to handle MATLAB’s
multiple output values in C++. Specifically, the topics covered include:

• “One Result and Only Required Input Arguments” on page 5-3

• “Passing Optional Input Arguments” on page 5-3

• “Passing Optional Output Arguments” on page 5-4

• “Passing Optional Input and Output Arguments” on page 5-5

• “Passing Any Number of Inputs” on page 5-6

• “Passing Any Number of Outputs” on page 5-8

• “Summary of Library Calling Conventions” on page 5-10

• “Example Program: Calling Library Functions (ex2.cpp)” on page 5-12

One Result and Only Required Input Arguments
For many functions in the MATLAB C++ Math Library, the translation from
interpreted MATLAB to C++ is simple. For example, in interpreted MATLAB,
you invoke the cosine function, cos(), like this

Y = cos(X)

where both X and Y are arrays.

Using the MATLAB C++ Math Library, you invoke cosine in exactly the same
way

Y = cos(X);

where both X and Y are mwArray objects.

Passing Optional Input Arguments
Some MATLAB functions take optional input and output arguments. tril(),
for example, which returns the lower triangular part of a matrix, takes either
one or two input arguments. If present, the second input argument, k, indicates

5 Calling Library Functions

5-4

which diagonal to use as the upper bound; k=0 indicates the main diagonal and
is the default if no k is specified. In interpreted MATLAB you invoke tril()
either as

L = tril(X)

or

L = tril(X, k)

where L, X, and k are matrices. k is a 1-by-1 array.

The MATLAB C++ Math Library contains two versions of the tril() function.
The first version takes one argument; the second takes two arguments. The two
ways to call the MATLAB C++ Math Library versions of tril() are exactly the
same as the two ways you can call tril() in interpreted MATLAB

L = tril(X);

and

L = tril(X, k);

where L, X and k are mwArray objects.

Passing Optional Output Arguments
MATLAB functions may also have optional or multiple output arguments. For
example, you invoke the find() function, which locates nonzero entries in
matrices, with one, two, or three output arguments:

k = find(X);
[i, j] = find(X);
[i, j, v] = find(X);

In interpreted MATLAB, find() returns one, two or three values. In C++, no
function can return more than one value. Therefore, the additional output
arrays are passed to find() in the argument list. Output arguments are
always pointers to mwArray objects, (mwArray* variables), and they always
appear before input arguments in the parameter list.

To accommodate all the combinations of output arguments, there are three
overloaded versions of find() in the MATLAB C++ Math Library. Using the
MATLAB C++ Math Library, you call find() like this:

How to Call C++ Library Functions

5-5

k = find(X);
i = find(&j, X);
i = find(&j, &v, X);

k, i, j, v, and X are mwArray objects. You do not need to preallocate k, i, j, or
v; when you declare them as mwArray objects, they are appropriately initialized.

Note how easy it is to distinguish input variables from output variables; an
ampersand (&) always precedes each output variable. In C++, the & operator,
when placed in front of an array, computes the address of, or pointer to, that
array. All of the arguments with & placed in front of them are output
arguments, corresponding to the variables on the left-hand side of the
MATLAB expression.

The general rule for multiple output arguments: use the function return value,
an mwArray, as the first output argument; pass all additional output arguments
into the function as mwArray* parameters. By convention, output arguments
always come first, followed by input arguments. Putting the output arguments
first may surprise some C++ programmers because it prevents the use of
default values for optional arguments. However, this ordering is more natural
for MATLAB programmers, since it keeps the output arguments, which in
MATLAB would be on the left-hand side of the assignment operator, as close to
the left-hand side as possible.

Passing Optional Input and Output Arguments
Finally, a MATLAB function may have both optional input and optional output
arguments. The MATLAB C++ Math Library provides multiple overloaded
functions to implement the various calls. The svd() function, for example, has
three forms. The first takes one input and returns one output. The second takes
one input and returns three outputs. The third takes two inputs and returns
three outputs. Note that the return value counts as one output.

S = svd(X);
U = svd(&S, &V, X);
U = svd(&S, &V, X, Zero);

U, S, V, X, and Zero are all mwArray objects.

5 Calling Library Functions

5-6

Passing Any Number of Inputs
Some MATLAB functions accept any number of input arguments. In MATLAB
these functions are called varargin functions. When the variable varargin
appears as the last input argument in the definition of a MATLAB function,
you can pass any number of input arguments to the function, starting at that
position in the argument list.

MATLAB takes the arguments you pass and stores them in a cell array, which
can hold any size or kind of data. The varargin function then treats the
elements of that cell array exactly as if they were arguments passed to the
function.

Whenever you see an ellipsis (...) at the end of the input argument list in a
MATLAB syntax description, the function is a varargin function. For example,
the syntax for the MATLAB function cat includes the following specification in
the online MATLAB Function Reference.

B = cat(dim,A1,A2,A3,A4,...)

cat accepts any number of arguments. The dim and A1 arguments to cat are
required. You then concatenate any number of additional arrays along
dimension dim. For example, this call concatenates six arrays along the second
dimension

B = cat(2,A1,A2,A3,A4,A5,A6)

Because the C++ language does not support functions that accept
variable-length argument lists, the MATLAB C++ Math Library supports
MATLAB varargin functions through overloading and the mwVarargin class.

In the MATLAB C++ Math Library, you invoke the cat function like this if you
are passing 32 or fewer array arguments. The call looks just like the MATLAB
call

B = cat(2,A1,A2,A3,A4,A5,A6);

where B and the six A matrices are mwArray objects.

However, if you need to pass more than 32 arguments to a varargin function
in the MATLAB C++ Math Library, you must construct an mwVarargin object
that you pass as the first argument following any required or optional input
arguments. The mwVarargin object stores up to 32 input arguments, the first of
which can be another mwVarargin object, allowing you to create any length
input argument list.

How to Call C++ Library Functions

5-7

Constructing an mwVarargin Object
MATLAB C++ Math Library functions that take a variable number of input
arguments have one mwVarargin argument followed by 31 additional mwArray
arguments:

• If you pass 32 or fewer arguments, you can ignore the mwVarargin parameter
and simply pass a series of mwArrays as with any other function.

• If you need to pass more than 32 inputs, you must construct an mwVarargin
object and pass it as the mwVarargin parameter.

The mwVarargin constructor has the standard varargin parameter list: one
mwVarargin argument followed by 31 additional mwArray arguments. The
mwVarargin constructors can be nested enabling you to pass an unlimited
number of inputs.

The inputs used to construct the mwVarargin argument appear first on the
argument list for the function, followed by the remaining 31 inputs. It is not
necessary to fill out the mwVarargin constructor parameter list. The arguments
can be distributed between the mwVarargin constructor and the remaining 31
arguments.

For example, the library function horzcat() is a varargin function that
demonstrates the standard varargin parameter list. Its function prototype is

mwArray horzcat(const mwVarargin &in1=mwArray::DIN,
const mwArray &in2=mwArray::DIN,
.
.
.
const mwArray &in32=mwArray::DIN);

To pass 90 inputs to the horzcat function, make this call:

horzcat(mwVarargin(mwVarargin(p1,p2,...,p32), p33, ..., p63),
p64, ..., p90);

The first 32 arguments are passed to an mwVarargin constructor that is nested
as the first argument to another mwVarargin constructor. The next 31
arguments (p33 through p63) are passed as mwArray arguments to the
mwVarargin object that is the first argument to horzcat(). The remaining
arguments (p64 through p90) are passed as additional mwArray arguments to
the function.

5 Calling Library Functions

5-8

Note that the ... represent omitted arguments in the series and are not part of
the actual function prototype or function call.

Note If a function takes any required output arguments, an mwVarargout
argument, or any required or optional input arguments, these arguments
precede the first mwVarargin argument in the list of arguments.

Passing Any Number of Outputs
Some MATLAB functions return any number of outputs. In MATLAB these
functions are called varargout functions. When the variable varargout
appears as the last output argument in the definition of a MATLAB function,
that function can return any number of outputs, starting at that position in the
argument list.

When you call a varargout function in the interpreted MATLAB environment,
MATLAB takes the arguments you pass and stores them in the cell array called
varargout. A cell array can hold any size or kind of data. Because the
arguments are output arguments, they don’t need to exist yet. The MATLAB
function accesses the varying number of arguments passed to it through the
cell array.

Whenever you see an ellipsis (...) within the output argument list of a
MATLAB syntax description, the function is a varargout function. For
example, this syntax in the online MATLAB Function Reference specifies a
version of the MATLAB function size that returns a variable number of
outputs depending on the number of dimensions in the array passed to it.

[M1,M2,M3,...,MN] = size(X)

If the dimensionality of the input argument X is 2, size returns the length of
the first dimension in the first output value and the length of the second
dimension in a second output value; if the dimensionality is 4, it returns four
lengths.

For example, if the input array, X, has four dimensions, this code retrieves the
length of each dimension:

[d1,d2,d3,d4] = size(X)

How to Call C++ Library Functions

5-9

In the MATLAB C++ Math Library you invoke the same call by constructing
an mwVarargout object that contains the arguments you are passing. The first
output argument is always the return value

size(mwVarargout(d1, d2, d3, d4), X);

where X and d1, d2, d3, and d4 are mwArray objects. Note that you do not pass
the address of the mwArray objects to the mwVarargout constructor even though
they are output arguments.

Constructing an mwVarargout Object
MATLAB C++ Math Library functions that produce a variable number of
outputs have an mwVarargout parameter as their last output argument.

In order to retrieve the varargout outputs from the function, you need to
construct an mwVarargout object. You pass the variables to which the outputs
will be assigned to the mwVarargout constructor and then pass the
mwVarargout object as the last output argument to the function.

The arguments to the mwVarargout constructor differ from normal output
arguments in two ways. When constructing an mwVarargout object:

• You pass the array itself, not a pointer to the array, to the constructor.

• You can pass indexed expressions as inputs. Anything that can appear on the
left-hand side of an assignment can appear as an argument to the
mwVarargout constructor.

For example, this code demonstrates a call to the M-function size, which takes
a variable number of output arguments and a single input argument. The
prototype for size() in C++ specifies an mwVarargout object, as its first
parameter, and one or two input arguments. The call to size() in C++
corresponds to the call in M.

M code:

[x, y(2,3), z{:}] = size(m)

C++ prototype:

mwArray size(mwVarargout varargout,
const mwArray &in1,
const mwArray &in2=mwArray::DIN);

5 Calling Library Functions

5-10

C++ call:

size(mwVarargout(x, y(2,3), z.cell(colon())), m);

Note that the function size() takes no other required output arguments
besides a varargout argument. It is called a "pure" varargout function. In pure
varargout functions, the return value of the function is the same as the value
assigned to the first element of the mwVarargout object, in this case the variable
x. When calling a pure varargout function, you do not need to assign the output
of the function to the first output argument explicitly; simply pass it to the
mwVarargout constructor. For all functions in the MATLAB C++ Math Library,
if the first argument is mwVarargout, the function is pure varargout.

If other output arguments precede the mwVarargout parameter, then the
return value is not part of the mwVarargout object and must be explicitly
assigned to a return value.

Summary of Library Calling Conventions
Several rules express the formal mapping between the MATLAB and C++
calling conventions:

1 If there is only one output argument, the syntax of the MATLAB C++ Math
Library is identical to the interpreted MATLAB syntax.

For example, the MATLAB statement A = eig(C); translates to the
identical C++ statement A = eig(C);.

2 If there is more than one output argument, the first output argument
becomes the function return value. The others are passed as output
arguments and are each prefixed with an &. They precede the input
arguments in the argument list.

For example, the MATLAB function call [U, S, V] = svd(X) has three
output arguments, U, S, and V, and one input argument X. The
corresponding call in C++ is U = svd(&S, &V, X). Note that the two output
arguments in the argument list must be prefixed with an &, as the C++
library requires output arguments to be passed by reference.

How to Call C++ Library Functions

5-11

Tip You can also slide the left-hand MATLAB variables to the right side
(prefixing them with &) until only one variable remains on the left-hand side.

3 If there is a variable-length output argument list, you must construct an
mwVarargout object that can represent any number of arguments. The
constructor takes 32 arguments, the first of which can be another
mwVarargout object, allowing you to create any length output argument list.

4 If there are more than 32 input arguments, you must construct an
mwVarargin object that can itself represent 32 arguments, the first of which
can be another mwVarargin object, allowing you to create any length
argument list.

The following table summarizes the mapping between interpreted MATLAB
functions and the same functions in the MATLAB C++ Math Library.

Table 5-1: MATLAB and C++ Function Calling Conventions

MATLAB Calling Sequence C++ Calling Sequence Input/Output Count

A = eig(C); A = eig(C); one input

one output

L = tril(X, k); L = tril(X, k); two inputs

one output

[A, B] = eig(C); A = eig(&B, C); one input

two outputs

[U, S, V] = svd(X); U = svd(&S, &V, X); one input

three outputs

[U, S, V] = svd(X, 0); U = svd(&S, &V, X, 0); two inputs

three outputs

5 Calling Library Functions

5-12

Exceptions to the Calling Conventions
The load() and save() functions do not follow the standard calling
conventions for the library. For information about load() and save(), see
“Importing and Exporting MAT-File Data” in Chapter 8.

Example Program: Calling Library Functions
(ex2.cpp)
This example demonstrates how to call different versions of the same library
function and how to pass optional input and output arguments. The example
uses the svd() function.

You can find the code for this example in the
<matlab>/extern/examples/cppmath directory on UNIX systems and in the
<matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13for information about building and running the
example program.

In MATLAB, there is one svd() function that you can call with varying
numbers of input and output arguments. The MATLAB version of svd() counts
the number of arguments passed to it and performs a different calculation for
each valid combination of input and output arguments.

An ordinary C++ function cannot count its arguments. It always requires the
same number of inputs and outputs each time you call it. However, you can
declare multiple C++ functions with the same name as long as the argument
lists for the functions are different. This is called overloading a function.
Argument lists differ if they contain different numbers of arguments or if the
types of the arguments are different.

B = cat(2,A1,A2,A3,A4,A5,A6); B = cat(2,A1,A2,A3,A4,A5,A6); seven inputs

one output

[d1,d2,d3,d4] = size(X); size(
 mwVarargout(d1, d2, d3, d4),
 X);

one input

four outputs

Table 5-1: MATLAB and C++ Function Calling Conventions (Continued)

MATLAB Calling Sequence C++ Calling Sequence Input/Output Count

How to Call C++ Library Functions

5-13

There are three ways to call the svd() function in MATLAB. Therefore there
are three overloaded svd() functions in C++, each corresponding to one of the
ways you can call svd() in MATLAB. This example demonstrates how to call
each of the overloaded svd() functions.

Refer to the online MATLAB C++ Math Library Reference for an explanation of
svd(). “Accessing Online Reference Documentation” on page 1-7 describes how
to access the Help Desk.

In this example, note the following:

• Each MATLAB function that can be called with varying numbers of
arguments corresponds to a set of overloaded functions in the MATLAB C++
Math Library.

• Place all output arguments before any input arguments in the parameter
list.

• The function return value corresponds to the first output argument.

• Always pass an input argument to a function as an mwArray object.

• Always pass an output argument as a pointer to mwArray object.

• You may omit optional arguments from the parameter list. Placeholder or
default values are not necessary.

• MATLAB C++ Math Library functions never modify their input arguments
and always modify their output arguments.

• Call C++ constructors where possible, for efficiency.

5 Calling Library Functions

5-14

// ex2.cpp

#include <stdlib.h>
#include "matlab.hpp"

static double data[] = { 1, 3, 5, 7, 2, 4, 6, 8 };

int main(void)
{
 // Create the input matrix.
 mwArray X(4, 2, data);
 mwArray U, S, V;

 // Compute the singular value decomposition of the matrix.
 cout << "One input, one output: " << endl ;
 cout << "S = " << svd(X) << endl;

 // Pass in optional output arguments.
 U = svd(&S, &V, X);

 cout << "One input, three outputs: " << endl;
 cout << "U = " << U << "S = " << S << "V = " << V << endl;

 // Pass in optional input argument.
 U = svd(&S, &V, X, 0.0);

 cout << "Two inputs, three outputs: " << endl;
 cout << "U = " << U << "S = " << S << "V = " << V;

return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

1

2

3

4

5

6

How to Call C++ Library Functions

5-15

2 Declare the static C++ array that initializes the svd() input matrix in the
main() routine. The MATLAB C++ Math Library requires that the numbers
in this array be in column-major order. See “Example Program: Creating
Arrays and Array I/O (ex1.cpp)” in Chapter 3 for more information.

3 Call a C++ constructor to declare and initialize the matrix X to a four-row,
two-column matrix. In your code, use C++ constructors whenever possible,
as they are more efficient than a declaration followed by an assignment.

4 Call the simplest of the three svd() functions. This function takes one input
matrix and produces one output matrix. Because C++ allows multiple
functions with the same name to co-exist as long as their argument lists are
different (this is called overloading a function), calling the simplest form of
svd() does not require passing in extra NULL arguments as it would in the
MATLAB C Math Library.

5 Call the second svd() function. This function takes one input and produces
three outputs. Because C++, unlike MATLAB, does not allow multiple
return values, you pass the extra outputs into the svd() function as output
arguments. Output arguments are modified by the function to contain the
appropriate results.

Just as input arguments are uniformly passed as const mwArray references,
output arguments are always passed as pointers to mwArray objects. In C++,
applying the & (address-of) operator to an object produces a pointer to that
object.

6 Call the third svd() function, which takes two inputs and produces three
outputs. The second input is an optional argument. Note again the
convenience of C++ function overloading. Without overloading, this optional
input argument would have appeared as a NULL value in the argument lists
of the other calls to svd().

Output
The program produces the following output. See “Using Array Stream I/O” in
Chapter 8 for details on the array input and output format.

One input, one output:
S = 1.0e+01 *

5 Calling Library Functions

5-16

 [
 1.42691 ;
 0.06268
]

 One input, three outputs:
U = [
 0.15248 0.82265 -0.39450 -0.37996 ;
 0.34992 0.42138 0.24280 0.80066 ;
 0.54735 0.02010 0.69791 -0.46143 ;
 0.74479 -0.38117 -0.54621 0.04074
]

S = 1.0e+01 *

 [
 1.42691 0.00000 ;
 0.00000 0.06268 ;
 0.00000 0.00000 ;
 0.00000 0.00000
]

V = [
 0.64142 -0.76719 ;
 0.76719 0.64142
]

 Two inputs, three outputs:
U = [
 0.15248 0.82265 ;
 0.34992 0.42138 ;
 0.54735 0.02010 ;
 0.74479 -0.38117
]

S = 1.0e+01 *

 [
 1.42691 0.00000 ;
 0.00000 0.06268

How to Call C++ Library Functions

5-17

]

V = [
 0.64142 -0.76719 ;
 0.76719 0.64142
]

5 Calling Library Functions

5-18

How to Call Operators
Many of the operators in MATLAB have operator equivalents in C++. The
syntax for these C++ operators is identical to that of their MATLAB
counterparts, and you call them directly as operators.

In addition, every operator in MATLAB is mapped directly to a function in the
MATLAB C++ Math Library. For MATLAB operators that do not have
operator equivalents in C++, determine the name of the function that
corresponds to the operator and then call the function as explained above.

The section “Operators” in Chapter 11 lists the MATLAB operators and the
corresponding MATLAB C++ Math Library functions.

Example – Passing Functions As Arguments (ex3.cpp)

5-19

Example – Passing Functions As Arguments (ex3.cpp)
This example covers advanced material. You only need to read this section if
you’re using a MATLAB C++ Math Library function that requires another
function as an argument.

You can find the code for this example in the
<matlab>/extern/examples/cppmath directory on UNIX systems and in the
<matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13 for information about building and running the
example program.

Certain functions in the MATLAB C++ Math Library, for example, fmins()
and fzero(), require user-supplied functions as arguments. fmins() and the
functions like it are called “function-functions,” because they operate on
functions rather than arrays. This example demonstrates how to write a
function that a function-function can call.

The library supports two methods of registering your function with the
MATLAB C++ Math Library: the first, and easiest, uses the feval macros; the
second requires that you write a thunk function and define and populate a local
table that identifies your function for the library. The macro method performs
these tasks for you.

Both methods are presented in this example. The macros support registration
of the most common types of functions. You only need to use the manual,
nonmacro method in certain special cases (detailed below). Read the
step-by-step, nonmacro version if you want to understand in detail how the
MATLAB C Math Library function mlfFeval() executes the functions passed
to it.

The MATLAB C Math Library forms the foundation for the MATLAB C++
Math Library. For the most part, the MATLAB C Math Library provides its
services transparently, but there are a few places where its interface is visible.

To execute a function passed to a function-function, the C++ Math Library calls
the C Math Library function mlfFeval(). mlfFeval() calls a thunk function
that actually executes the function passed to it. That thunk function must have
a C interface along with the table that identifies your function to the library.
Refer to the example “Passing Functions as Arguments” in the MATLAB C

5 Calling Library Functions

5-20

Math Library User’s Guide for more information on how mlfFeval() and thunk
functions work.

Note You don’t need to use the feval macros if you want a function-function
or feval() to execute a MATLAB C++ Math Library function. A thunk
function and an entry in the built-in table already exist for the library
functions. In addition, if you’re using the MATLAB Compiler, it automatically
generates all the code you need.

In this example, note the following:

• fmins(), fzero(), and the other function-functions in the MATLAB C++
Math Library take a function name as an input argument. The
function-function executes that function. The function can be one you’ve
written or a library function.

• In C++, a function pointer serves the same purpose as a function name serves
in interpreted MATLAB: both enable you to call a function.

• The MATLAB C Math Library forms the foundation for the MATLAB C++
Math Library. Its function mlfFeval() executes the functions passed to the
C++ Math Library function-functions.

• A thunk function translates the interface required by one function into the
interface required by another. In the MATLAB C++ Math Library, it
translates the C mlfFeval() interface into the C++ interface of a function to
be executed.

• The DECLARE_FEVAL_TABLE macros provide an easy way to register one of
your functions with the function mlfFeval(). If you use the macros, you don’t
have to write a thunk function.

• If you don’t use the feval macros, you must provide a thunk function that
conforms to the MATLAB C Math Library interface rather than the
MATLAB C++ Math Library interface. When you write a thunk function, you
must follow several guidelines. In particular, you must be careful not to
delete or free any of the data passed into the function and to return a newly
allocated array from the function.

• In the MATLAB C Math Library interface, an array is a pointer to an
mxArray structure.

Example – Passing Functions As Arguments (ex3.cpp)

5-21

• Passing arrays represented as mxArray pointers to functions in the MATLAB
C++ Math Library or to a function you’ve written in C++ requires explicit
conversion of the mxArray pointers to mwArray objects. The default
conversion does the wrong thing; you must explicitly specify that the mxArray
data not be freed when the mwArray object goes out of scope.

• The mwArray member function FreezeData() modifies the mwArray so that it
does not free the mxArray it contains. However, the function is dangerous and
invites memory leaks and memory protection errors. Use it with great care,
exactly as outlined in this example.

Using the feval Macros
Use the feval macros to register a function that you’ve written for execution
by a function-function or feval(). The macros register any function that takes
a combination of 0 to 8 input arguments and 1 to 5 output arguments. If you
need to register a function that takes more than 8 inputs or more than 5
outputs, you cannot use the feval macros; you must write your own thunk
function and manually construct an feval function table.

Note You cannot register a function that has been overloaded. In addition,
the arguments to the function being registered must be of type mwArray or
mwArray *, not type const mwArray&.

The functions func1() and main() are the same in both versions of this
example. The feval macros replace the thunk function, a typedef, a
mlfFuncTabEnt declaration, and the feval_init class that you’ll find in the
nonmacro version.

5 Calling Library Functions

5-22

// Example 3, macro version

#include <stdlib.h>
#include "matlab.hpp"

mwArray func1(mwArray x)
{
 // one argument test function
 return(times(realsqrt(x), reallog(x)));
}

DECLARE_FEVAL_TABLE
 FEVAL_ENTRY(func1)
END_FEVAL_TABLE

int main(void)
{
 try {
 cout << fmins("func1", 0.25) << endl;
 }
 catch (mwException &ex)
 {
 cout << ex;
 }
 return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

1

2

3

4

Example – Passing Functions As Arguments (ex3.cpp)

5-23

2 Declare func1(). The name of this function is subsequently passed to
fmins(). During the execution of fmins(), control passes into the MATLAB
C Math Library, which calls func1().

func1() computes the natural logarithms and the square roots of the
elements in the input matrix and multiplies them together. The two
functions, reallog() and realsqrt() guarantee that their outputs are
noncomplex matrices, i.e., matrices that have only real (no imaginary
component) elements. Note that this computation means nothing
mathematically.

3 Use the feval macros to register func1() as a function that can be executed
by a function-function or feval(). Begin the table with the
DECLARE_FEVAL_TABLE macro, and end the table with the END_FEVAL_TABLE
macro. Pass the func1 function pointer to the FEVAL_ENTRY macro. The
macros perform all the tasks required.

The full form of the macro is:

DECLARE_FEVAL_TABLE
 FEVAL_ENTRY(function_name1)
 FEVAL_ENTRY(function_name2)
 (any number of these entries...)
END_FEVAL_TABLE

The macros are placed outside of all function definitions and appear after a
declaration of the functions being registered.

For example,

mwArray function1(mwArray *out, mwArray x, mwArray y);
mwArray function2(mwArray x);

DECLARE_FEVAL_TABLE
 FEVAL_ENTRY(function1)
 FEVAL_ENTRY(function2)
END_FEVAL_TABLE

myfunction()
{
 mwArray a = feval(&b, "function1", c, d);

5 Calling Library Functions

5-24

 mwArray f = feval("function2", g);
}

However, you do not have to register a function in the same file as the call
to the function-function or feval(). Only one set of macros can appear in
any given source file, though you can register additional functions by using
the macros in another source file.

4 Call fmins() from the main program, passing the string "func1" as the first
argument, and print the result. fmins() computes a local minimizer of
func1() near its second argument, the scalar 0.25.

feval() Without the Macros
The example is divided into three parts. The first part defines the function
func1() and shows the main program. The second part specifies the local feval
function table. The third part defines the thunk function. In the C++ source
file, the parts would be combined in this order: func1(), the thunk function, the
feval table code, and main().

// ex3.cpp

#include <stdlib.h>
#include "matlab.hpp"

mwArray func1(mwArray x)
{
 // One argument test function.
 return (times(realsqrt(x),reallog(x)));
}

int main(void)
{
 cout << fmins("func1",0.25) << endl;
 return (EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1

2

3

4

Example – Passing Functions As Arguments (ex3.cpp)

5-25

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare func1(). The name of this function is later passed to fmins().
During the execution of fmins(), control passes into the MATLAB C Math
Library, which calls func1().

3 Compute the natural logarithms and the square roots of the elements in the
input matrix and multiply them together. The two functions, reallog() and
realsqrt(), guarantee that their outputs are noncomplex matrices, i.e.,
matrices that have only real (no imaginary component) elements. Note that
this computation means nothing mathematically.

4 Call fmins() from the main program, passing the string "func1" as the first
argument, and print the result. fmins() computes a local minimizer of
func1() near its second argument, the scalar 0.25.

5 Calling Library Functions

5-26

// This table maps string function names to function pointers. The
// entries in the table are triplets:
//
// <string name> <user function> <thunk function>
//
// Every function that can be called by feval() (directly
// or indirectly) must have an entry in a table like this.

static mlfFuncTabEnt MFuncTab[] =
{
 { "func1", (mlfFuncp) func1, one_input_one_output },
 { 0, 0, 0 }
};

// The following code is a static initializer used
// to initalize the feval function table. It is intentionally
// outside the body of any function.

class feval_init {
 feval_init() { mlfFevalTableSetup(MFuncTab); }
 static feval_init feval_setup;
};

feval_init feval_init::feval_setup;

The numbered items in the list below correspond to the numbered sections of
code example:

1 Declare a static global variable, MFuncTab[] of type mlfFuncTabEnt. This
local function table stores one or more function table entries that identify
any functions (that you’ve written) to be executed by a MATLAB C Math
Library function-function. In this example, the table stores one entry that
identifies the function that fmins() executes, func1().

2 Add an entry to the function table. The entry is composed of three parts: a
string, "func1", that names the function, a pointer, (mlfFuncp)func1, to

1

2

3

5

6

7

4

Example – Passing Functions As Arguments (ex3.cpp)

5-27

the function itself, and a pointer, one_input_one_output, to the thunk
function that actually calls func1().

Notice the mlf prefix in the names of the mlfFuncTabEnt and mlfFuncp
types. These are types used by the MATLAB C Math Library and are used
to tell the C Math Library function mlfFeval() about your function. For
more information on the mlfFuncTabEnt and mlfFuncp types, see the file
matlab.h in the include directory of your MATLAB installation.

3 Terminate the table with a {0, 0, 0} entry.

4 Define a private C++ class called feval_init that will initialize the local
function table.

5 Define a constructor feval_init(). In the body of the constructor, pass your
function table, MFuncTab, to the C function mlfFevalTableSetup(). Here is
another place where the C Math Library interface is used within your C++
application.

6 Declare a class variable named feval_setup of type feval_init. The class
feval_init thus contains a static instance of itself. When you define static
member data for a class, you must subsequently declare that variable in
your code.

7 Now define the variable named feval_setup of type feval_init. The
syntax feval_init::feval_setup specifies that the variable is contained
within the class feval_init. This statement is executed when static
variables are initialized. Because mlfFevalTableSetup() is called at this
time by the constructor, you don’t need to explicitly add your entries to the
built-in function table maintained by the MATLAB C Math Library.

5 Calling Library Functions

5-28

typedef mwArray (*PFCN_1_1)(mwArray);

// This is a "thunk function."
// The thunk function serves as an interpreter between the
// MATLAB C++ Math Library's internal feval() mechanism and
// the user functions.
// There must be one thunk function for every possible
// combination of input and output arguments.

extern "C" {
static
int one_input_one_output(mlfFuncp pFunc, int nlhs,
 mxArray **lhs, int nrhs,
 mxArray **rhs)
{
 mwArray Out;

 if (nlhs > 1 || nrhs > 1)
 {
 return(0);
 }

 mwArray tmp = mwArray(rhs[0], 0);

 Out = (*((PFCN_1_1)pFunc))(nrhs > 0 ? tmp
 : mwArray::DIN);

 if (nlhs > 0)
 {
 lhs[0] = Out.FreezeData();
 }

 return(1);
}
}

The numbered items in the list below correspond to the numbered sections of
code example:

2

3

4

5

6

1

8

7

9

Example – Passing Functions As Arguments (ex3.cpp)

5-29

1 Define the type for the functions handled by a thunk function. The function
pointer type that you define here must precisely specify the return type and
argument types required by func1().

The typedef statement defines a function pointer type, PFCN_1_1, that takes
one mwArray argument and returns an mwArray. The name PFCN_1_1 makes
it easy to identify that the function has 1 output argument (the return) and
1 input argument. Use a similar naming scheme when you write other thunk
functions that require different numbers of arguments. For example, use
PFCN_2_3 to identify a function that has two output arguments and three
input arguments.

2 Declare your thunk function as extern "C" to avoid C++ name translation.

3 Declare your thunk function as static to avoid conflicts with other feval()
calls from other files. Note that if your application requires you to write
several thunk functions, and if several of your functions are associated with
each thunk function, you may want to group the thunk functions in a
separate file. In that case, do not declare the thunk functions static.

4 Define the C-style thunk function that executes func1(). A thunk function
is a translator between the interface required by the MATLAB C Math
Library and your function’s interface. You must use the MATLAB C Math
Library’s mlfFeval() calling convention for your thunk function because
mlfFeval() calls your thunk function from within the C Math Library.
Notice the arguments are of type mxArray rather than mwArray.

The function takes five arguments that describe any one input, one output
function (in this example the function is always func1()): an mlfFuncp
pointer that points to func1(), an integer (nlhs) that indicates the number
of output arguments required by func1(), an array of mxArray’s (lhs) that
stores the results from func1, an integer (nrhs) that indicates the number of
input arguments required by func1(), and an array of mxArrays (rhs) that
stores the input values. lhs stands for the left-hand side; rhs stands for the
right-hand side.

5 Verify that the expected number of input and output arguments have been
passed. func1() expects one input argument and one output argument. (The
return value counts as the one output argument.) Exit the thunk function if
too many input or output arguments have been provided.

5 Calling Library Functions

5-30

6 The constructor that builds an mwArray object from an mxArray* has an
optional second argument. If this argument is 1 (the default), the mwArray
destructor frees the mxArray when its reference count reaches zero. If this
argument is 0, as it is in this example, the mwArray destructor will never free
the mxArray.

This feature allows you to convert an mxArray to an mwArray temporarily
without having the mwArray object free the mxArray when you don’t want it
to. Use this feature with caution, however, because it can lead to memory
leaks; the program must free that mxArray eventually.

7 Call func1(), casting pFunc, which points to func1(), to the type PFCN_1_1.
Note that you must cast the pointer to func1() to the function pointer type
that you defined.

Verify that the expected input argument is provided. If at least one
argument is passed to the thunk function, construct an mwArray from the
first element in the array of input values (rhs[0]); pass that mwArray, not
the mxArray, as the input argument to func1(). Otherwise, pass the special
matrix, mwArray::DIN, that MATLAB C++ Math Library functions use to
determine the number of inputs. The return from func1() is stored
temporarily in the local variable Out, which is already a C++ mwArray.

This line also demonstrates that you can call C++ routines from a C-style
function like one_input_one_output(). Be very careful when calling C++
routines from a C routine. You must first manually convert the mxArray
arguments into mwArray objects as demonstrated in Note 6. If you do not
convert them manually, C++ will do so automatically, with unwanted
consequences. The default mxArray to mwArray conversion routine assumes
that the mxArray is freed when the last mwArray that references it goes out
of scope. This is incorrect for matrices passed to C-style functions like
one_input_one_output(). Failure to convert the matrices manually will
lead to memory-related bugs that are often hard to track down.

8 Extract the mxArray from the mwArray Out returned by func1(), and assign
it to the appropriate position in the array of output values. The return value

Example – Passing Functions As Arguments (ex3.cpp)

5-31

is always stored in the first position, lhs[0]. If there were additional output
arguments, values would be returned in lhs[1], lhs[2], and so on.

The thunk function calling convention requires that a C-style mxArray be
returned rather than a C++-style mwArray object. It is necessary to modify
the mwArray, Out, so that it does not free the mxArray it contains when the
function terminates and Out goes out of scope.

Use the mwArray member function FreezeData() to modify the mwArray. Use
it very carefully. FreezeData() violates two of the principal design
guidelines of the MATLAB C++ Math Library: it reaches into and modifies
the array upon which it is invoked, and it provides a mechanism to
circumvent the library’s automatic memory management. Its effect is to
release the mxArray* contained by the mwArray from automatic memory
management.

FreezeData() only works on mwArray objects that reference mxArray*s that
have a reference count of one. See “The Space-Time Continuum” in Chapter
7 for more details on reference counting.

9 Return success. A return value of 1 indicates success; 0 indicates failure.

Output
The program produces this output:

 [
 0.13535
]

5 Calling Library Functions

5-32

Representing Input Arguments As a Cell Array
In MATLAB you can substitute a cell array for a comma-separated list of
MATLAB variables when you pass input arguments to a function. MATLAB
treats the contents of each cell as a separate input argument. To trigger this
functionality, you specify multiple values by indexing into the cell array with,
for example, the colon index or a vector index.

For example, the MATLAB expression

T{1:5}

when passed as an input argument is equivalent to a comma-separated list of
the contents of the first five cells of T. Simply passing the cell array T produces
an error.

The MATLAB C++ Math Library also supports the expansion of the contents
of a cell array into separate input arguments for library functions. For
functions that implement MATLAB varargin functions, you use
mwArray::cell to obtain an array reference that returns multiple values.

For example, given the varargin function

void varargin_func(mwArray a, mwArray b,
const mwVarargin &varargin
const mwArray v1=mwArray::DIN, ...,
.
.
.
const mwArray &v32=mwArray::DIN);

you can make the following call:

varargin_func(A, B, C.cell(colon(1,5)));

A and B, existing mwArrays, are passed as explicit arguments. C is a cell array
that contains at least five cells. The embedded call to cell() uses the index
{1:5} to return multiple values: the first five cells of C. The MATLAB C++
Math Library passes these as individual arguments to varargin_func().

Representing Input Arguments As a Cell Array

5-33

Location of the Indexed Cell Array in the Argument List

• Pass the return from the cell array indexing operation as one of the
variable-length arguments in the input argument list. That reference
identifies multiple arrays.

• Do not pass the return from a cell array indexing operation as an explicit
argument.

For example, you cannot make this call to the example varargin function.
varargin_func(C.cell(1,5), A, B);

Given the definition of varargin_func(), the first argument position is
reserved for an explicit, single argument. The MATLAB C++ Math Library
does not handle multiple values in an explicit position.

• You can pass other array arguments or other cell array indexing expressions
before or after a cell array indexing expression, all in a varargin argument
position.

See “Indexing into Cell Arrays” in Chapter 4 to learn more about indexing into
cell arrays.

5 Calling Library Functions

5-34

6
Using the Mathematical
Operators

Overview . 6-2

Using the Operators 6-4

Defining Your Own Operators 6-6

6 Using the Mathematical Operators

6-2

Overview
MATLAB supports two types of mathematical operators: array operators that
operate on individual elements of a matrix and matrix operators that operate
on whole matrices. In MATLAB, array operators begin with a . (period).
Matrix operators do not. For example, .* is the array multiplication operator
and * is the matrix multiplication operator.

Array operators treat the elements of each operand individually. Given two
operands A and B, an array operator op computes a result C, such that
C(i,j) = A(i,j) op B(i,j). The matrices A, B, and C are all the same size.

Matrix operators perform more complex computations. Often the value of an
element C(i,j) in the result depends on the values of multiple elements in
each input matrix. No single rule describes the relationship between input and
output elements for matrix operators. For example, in a matrix multiplication
such as C = A * B, the value C(i,j) depends on all of the values in row i of
matrix A and column j of matrix B.

This MATLAB code demonstrates the difference between array and matrix
multiplication. Note that this is not C++ code.

First, initialize two matrices:

A = [1 2 ; 3 4];
B = [1 0 ; 0 1]; % Identity matrix

Now compute the array product (array multiplication):

C = A .* B
C =
 1 0
 0 4

Now compute the matrix product (matrix multiplication):

D = A * B
D =
 1 2
 3 4

After this MATLAB code is executed, the matrix C contains the array product
[1 0; 0 4]. Since C was computed by array multiplication, the elements of
C equal:

6-3

C(1,1) = A(1,1) * B(1,1)
C(1,2) = A(1,2) * B(1,2)
C(2,1) = A(2,1) * B(2,1)
C(2,2) = A(2,2) * B(2,2)

The matrix D, on the other hand, contains the linear-algebraic product of A with
the identity matrix: A itself. The equivalent C++ code is presented at the end of
this section on page 6-5.

Note Array operators work with N-dimensional arrays; matrix operators
work with two-dimensional array.

6 Using the Mathematical Operators

6-4

Using the Operators
Many of MATLAB’s mathematical operators (+, –, *, /, ^) are the same as those
available in C++. The exceptions are ', \, and the array operators .*, ./, .\,
and .^, because the syntax of C++ does not support their definition as
operators. You must use the functional equivalents provided by the MATLAB
C++ Math Library to perform these operations.

This table demonstrates how the library supports mathematical operators.
Note that the library also provides functional equivalents for the set of
operators that are supported by C++ syntax.

Table 6-1: MATLAB Operator and C++ Function Equivalence

Description Definition:
C = A <op> B

MATLAB
Operator

C++
Operator

C++ Function

Array multiplication C[i] = A[i] * B[i] .* None times()

Array right division C[i] = A[i] / B[i] ./ None rdivide()

Array left division C[i] = B[i] / A[i] .\ None ldivide()

Array exponentiation C[i] = A[i] ^ B[i] .^ None power()

Array addition C[i] = A[i] + B[i] + + plus()

Array subtraction C[i] = A[i] – B[i] – – minus()

Matrix multiplication Inner product * * mtimes()

Matrix right division C such that C*B = A / / mrdivide()

Matrix left division C such that A*C = B \ None mldivide()

Matrix exponentiation C = A*A*...*A

(B times)

^ ^ mpower()

Complex transpose N/A (unary) ' None ctranspose()

Transpose N/A (unary) .' None transpose()

Using the Operators

6-5

With the exception of the unary transpose() and ctranspose() functions, the
C++ functions in the table take two matrix arguments and return a third
matrix. To see these functions in action, consider the C++ translation of the
MATLAB code presented on page 6-2 at the beginning of this section. Function
calls replace the use of operators. (Note that * can be used instead of mtimes.)

static double data[] = { 1, 3, 2, 4 };
mwArray A(2, 2, data);
mwArray B = eye(2); // 2x2 identity matrix

mwArray C = mtimes(A, B); // Matrix multiplication
cout << C << endl;

mwArray D = times(A, B); // Array multiplication
cout << D << endl;

Running this code fragment produces:

[
 1 2
 3 4
]
[
 1 0
 0 4
]

Use the other binary operator functions in a similar manner.

6 Using the Mathematical Operators

6-6

Defining Your Own Operators
Defining your own operator in C++ is called ‘‘overloading an operator.’’ Strictly
speaking, you cannot define a new operator; you can only provide an
alternative definition for an existing operator. The set of operators that you can
overload is limited to the set recognized by C++ but not defined by the
MATLAB C++ Math Library.

For example, C++ does not recognize the character sequence ** as an operator.
If you try to define operator**() to mean exponentiation, the compiler will
issue a syntax error. However, you can define a matrix equivalent for any
recognized operator that is missing from the library. You define it in terms of
the operators that do come with the library. See Chapter 11 for a complete list
of the operators.

Defining matrix equivalents for the additional operators that C++ defines is a
simple process. The following example illustrates the proper way to define a
new operator.

Assume that you want to define operator*=(), which combines the
multiplication and assignment operations. Because the library predefines
operator*() and operator=(), building operator*=() is straightforward.

mwArray operator*=(mwArray &A, const mwArray &B)
{
 A = A * B;
 return A;
}

The above code overloads operator*=() for matrix arguments. It is important,
in this case, to return the modified matrix, so that you can concatenate the
operator with other operators, for example, C = A *= B;. Although the coding
style of this example is poor, the code is legal.

When you overload an operator in C++, you cannot change the arity (number
of operands) or precedence of the operator. For example, the C++ language
definition restricts operator+() to two arguments. You cannot define an
operator+() that takes three arguments and returns the sum of all three.
Similarly, you cannot change the precedence of operator+() to make the
addition in the expression a+b*c occur before the multiplication. Use
parentheses to change operator precedence on an expression-by-expression

Defining Your Own Operators

6-7

basis. For more information on overloading operators, consult a C++ reference
guide.

6 Using the Mathematical Operators

6-8

7
Printing, Exceptions, and
Memory Management

Defining a Print Handler 7-3
Providing Your Own Print Handler 7-3
Using the Print Handler to Print Your Own Messages . . . 7-4
Output to a GUI 7-4

Handling Exceptions 7-8
C++ Exception Handling Overview 7-8
Handling C++ Math Library Exceptions in Your Code . . . 7-8
Example Program: Handling Exceptions (ex5.cpp) 7-9
Replacing the Default Library Error Handler 7-13
Exception Handling in the MATLAB C++ Math Library . . . 7-14

Memory Management 7-17
Setting Up Your Own Memory Management Routines . . . 7-17
Performance and Efficiency 7-20
The Space-Time Continuum 7-20

7 Printing, Exceptions, and Memory Management

7-2

This chapter describes how to write print handlers, handle exceptions, and
replace default memory management.

7-3

Defining a Print Handler
The MATLAB C++ Math Library is designed to run on character-based
terminals and in graphical, windowed environments. Simply using printf() or
a similar routine is fine for character-terminal output but insufficient for
output in a graphical environment. To support programs with graphical user
interfaces, the library allows you to specify how it displays output.

The MATLAB C++ Math Library performs some output, in particular it
displays error messages and warnings, but doesn’t perform input. The
MATLAB C++ Math Library’s output requirements are very simple. The
library formats its output into a character string internally and then calls a
function, the print handler, that prints the string. If you want to change where
or how the library’s output appears, you must provide an alternate print
handler.

Providing Your Own Print Handler
By default, the library sends output to the C++ standard output stream, cout.
However, instead of sending output directly to the standard output stream, the
MATLAB C++ Math Library calls a print handler when it needs to display an
error message or warning. The print handler used by the library takes a single
argument, a const char * (the message to be displayed), and returns void.

The default print handler:

static void DefaultPrintHandler(const char *s)
{
 cout << s;
}

If you want to perform a different style of output, you can write your own print
handler and register it with the MATLAB C++ Math Library. Any print
handler that you write must match the signature of the default print handler:
a single const char * argument and a void return.

To register your function and change which print handler is used, you must call
the routine mwSetPrintHandler. mwSetPrintHandler takes a single argument,
a pointer to a function that displays the character string, and returns void.

void mwSetPrintHandler(mwOutputFunc f);

7 Printing, Exceptions, and Memory Management

7-4

Using the Print Handler to Print Your Own Messages
The print handler is not reserved for the exclusive use of the MATLAB C++
Math Library. Once you’ve written a print handler for the library to use, you
can also use it to print messages of your own.

You may either call your print handling routine directly, or call the function
mwGetPrintHandler(), which returns a pointer to the current print handling
function. The following example function demonstrates how to call
mwGetPrintHandler() and what to do with the result.

#include "matlab.hpp"

void hello()
{

mwOutputFunc f = mwGetPrintHandler();

(*f)("Hello world\n");
}

Output to a GUI
The next two sections illustrate how to provide an alternate print handler
under the X Window System and Microsoft Windows. When you write a
program that runs in a graphical windowed environment, you can display
printed messages in informational dialog boxes.

These examples present a simple alternative output mechanism and
demonstrate the interface between the MATLAB C++ Math Library and each
of the windowing systems. There are other output options as well, for example,
sending output to a window or portion of a window inside an application. The
code in these examples should serve as a solid foundation for writing more
complex output routines.

The examples assume that you know how to write a program for a particular
windowing system and, therefore, omit code that is common to such programs,
for example, the application start-up and initialization code is missing. Please
consult your windowing system’s documentation if you need more information
than the examples provide.

7-5

Note If you use an alternate print handler, you must call
mwSetPrintHandler() before calling other library routines. Otherwise the
library uses the default print handler to display messages.

X Windows System/Motif Example
The Motif Library provides a MessageDialog widget that this example uses to
display text messages. The MessageDialog widget consists of a message text
area placed above a row of three buttons: OK, Cancel, and Help.

The MessageDialog box is a modal dialog box; while it is posted, this
application will not accept input. You must press the OK button to dismiss the
MessageDialog dialog box before you can do anything else. However, since the
MessageDialog is a child of the application, and not the root window, other
applications will continue to operate normally.

/* X-Windows/Motif Example */

/* List other X include files here */
#include <Xm/Xm.h>
#include <Xm/X11.h>
#include <Xm/MessageB.h>

static Widget message_dialog = 0;

/* The alternate print handler */
void PopupMessageBox(const char *message)
{

Arg args[1];

XtSetArg(args[0], XmNmessageString, message);
XtSetValues(message_dialog, args, 1);
XtPopup(message_dialog, XtGrabExclusive);

}

main()
{

/* Start X application. Insert your own code here. */
main_window = XtAppInitialize(/* your code */);

7 Printing, Exceptions, and Memory Management

7-6

/* Create the message box widget as a child of */
/* the main application window. */
message_dialog = XmCreateMessageDialog(main_window,

"MATLAB Message", 0, 0);

/* Set the print handler */
mwSetPrintHandler(PopupMessageBox);

/* The rest of the program */
}

This example declares two functions: PopupMessageBox() and main().
PopupMessageBox is the print handler and is called every time the library needs
to display a text message. It places the message text into the MessageDialog
widget and makes the dialog box visible.

The second routine, main(), first creates and initializes the X Window system
application. That code is not shown but can be found in an X Windows reference
guide. main() then creates the MessageDialog object used by the print
handling routine. Finally, main() calls mwSetPrintHandler() to make the
library call PopupMessageBox() instead of the default print handler. If this
were a real application, the main routine would continue with calls to other
routines or code to perform computations.

Microsoft Windows Example
This example uses the Microsoft Windows MessageBox dialog box. This dialog
box contains an “information” icon, the message text, and a single OK button.
The MessageBox is a Windows modal dialog box; while it is posted, no other
application will accept input. You must press the OK button to dismiss the
MessageBox dialog box before you can do anything else.

This example declares two functions. The first, PopupMessageBox(), places the
message into the message box and then posts the box to the screen. The second,
main(), creates and starts the Windows application (that code is not shown),
and then calls mwSetPrintHandler() to set the print handling routine to
PopupMessageBox().

/* Microsoft Windows example */

static HWND window;

7-7

static LPCSTR title = "Message from MATLAB";

/* The alternate print handler */
void PopupMessageBox(const char *message)
{

MessageBox(window, (LPCTSTR)message, title,
MB_ICONINFORMATION);

}

main()
{

/* Register window class and provide window procedure. */
/* Fill in your own code here. */

/* Create application main window. */
window = CreateWindowEx(/* Whatever */);

/* Set print handler. */
mwSetPrintHandler(PopupMessageBox);

/* The rest of the program ... */
}

This example does no real processing. If it were a real program, the main
routine would contain calls to other routines or perform computations of its
own.

7 Printing, Exceptions, and Memory Management

7-8

Handling Exceptions
The MATLAB C++ Math Library delivers error messages via exceptions. This
section:

• Provides a brief overview of C++ exception-handling

• Describes how to handle C++ Math Library exceptions in your application

• Describes how you can customize exception handling by replace the default
exception handling routines with routines of your own design.

• Describes how the MATLAB C++ Math Library implements exceptions, and
how you can use this mechanism to throw and catch exceptions in your own
code.

Refer to Appendix C for a list of MATLAB C++ error messages.

C++ Exception Handling Overview
Many earlier error-handling schemes reported errors via a return value from a
function. That mechanism was inconvenient and unreliable for two reasons.
First, it did not allow function composition, where one function call is nested in
the argument list of another. For example, f(g(x)) composes f() and g().
Second, the scheme placed the burden for checking error codes on the
programmer.

Many other schemes, including the one used by the standard C library, use a
global variable in place of returned error codes. This mechanism solves one
problem, function composition, but still requires that the programmer check for
errors.

The C++ exception-handling mechanism suffers from neither of these
problems. Exception-handling does not require that each function return an
error code, which means that functions can be composed. In addition,
exceptions cannot be ignored by a programmer because an uncaught exception
terminates the program. If a programmer forgets to handle an exception,
abrupt program termination is a potent reminder.

Handling C++ Math Library Exceptions in Your Code
Your programs must catch exceptions thrown by the MATLAB C++ Math
Library. Uncaught exceptions cause abnormal program termination.

Handling Exceptions

7-9

To handle these exceptions, you need to catch each exception and display the
message associated with it. C++ provides the mechanism for catching
exceptions: the try and catch keywords.

Here’s a basic example that demonstrates these techniques.

// try-block
try
{
 eig(A);
}

//catch-block
catch(mwException &ex)
{
 mwDisplayException(ex);
}

The try keyword introduces a try block. Any exception thrown while executing
the code in the try block transfers control to the first catch block that applies
to the type of the exception being caught. Each catch block catches one type of
exception. You use multiple catch blocks to catch exceptions of different types.

This catch block catches any exception objects derived from the class
mwException. mwException is the superclass for all exceptions thrown by the
MATLAB C++ Math Library. If you catch and display exceptions of this type,
you see all the error messages associated with the exceptions thrown by the
library. For a complete list of the exceptions defined by the MATLAB C++ Math
Library, see Appendix B.

Example Program: Handling Exceptions (ex5.cpp)
This example demonstrates the MATLAB C++ Math Library’s error handling
facilities. The program deliberately triggers a library exception by specifying a
negative number as an array index. You can find the code for this example in
the <matlab>/extern/examples/cppmath directory on UNIX systems and in
the <matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13 for information about building and running the
example program.

In the example, note the following:

7 Printing, Exceptions, and Memory Management

7-10

• You should always have a try and catch block in your main routine.

• Exceptions are caught by object type. mwException is the top-level exception
class.

• A C++ program may have multiple catch blocks, each of which catches
different types of exceptions.

• Once an exception is thrown, it propagates up the call stack until it reaches
the first catch block that catches exceptions of its type.

• All the exceptions in the MATLAB C++ Math Library contain an associated
error message.

Note This example uses a simple exception handling mechanism and does
not use nested try blocks or multiple catch blocks. Though these C++ features
are compatible with the MATLAB C++ Math Library, they are beyond the
scope of this book. Refer to your C++ reference manual for information on
nested try blocks and multiple catch blocks.

Handling Exceptions

7-11

// ex5.cpp

#include <stdlib.h>
#include "matlab.hpp"

static double data[] = { 1, 2, 3, 4, 5, 6 };

mwArray compute(const mwArray &in)
{

// Cause an error: use a negative index.
 return in(-5) * 17; // <1>
}

int main(void)
{

// Handle exceptions for all code in the try-block.
 try { // <2>
 mwArray mat0(2, 3, data);
 mwArray mat1;

 mat1 = compute(mat0); // <3>
 cout << mat1 << endl;

}
 // Catch and print any exceptions that occur.
 catch (mwException &ex) { // <4>

cout << ex << endl;
 return(EXIT_FAILURE);

}
 return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Deliberately cause an error. The compute() function attempts an illegal
operation: a negative number was used as a matrix index. This operation
causes the MATLAB C++ Math Library to throw an exception. An exception
propagates up the call-chain, or stack, until it reaches a catch block that
handles it. Even though the compute() function does not contain a catch
block, the exception is properly handled by the catch block in main().

1

2

3

4

7 Printing, Exceptions, and Memory Management

7-12

2 Begin a try block. The try keyword introduces the block. A try block is like
a safety net. try blocks are always followed by one or more catch blocks. The
catch block that follows a try block processes any exceptions thrown during
execution of the try block. In addition to catching exceptions that are
generated by the code in the try block, the catch block catches exceptions
thrown by the functions called from within the try block and by the functions
called from within those functions, and so on.

An exception is a C++ object. Every C++ object has a type. When an
exception is thrown, the exception stops at the nearest (in terms of the call
chain, or stack) catch block that handles exceptions of its type. In this case,
because there is only one catch block in the program, there is only one place
for the exceptions to stop.

3 Call the compute() function. If the function does not throw an exception, the
value of mat1 is printed. Note the absence of code to test for an error from
compute(). The lack of error-checking code makes the rest of the code easier
to follow. This is another of the advantages of exception handling: catch
blocks separate error-handling code from ordinary code, making the rest of
the function easier to read and maintain.

4 Begin a catch block. The catch keyword introduces the block. Catch blocks
are always associated with try blocks. Catch blocks “catch’’ or stop a
propagating exception according to the type of the exception.

This catch block catches all exceptions of type mwException or one of its
subclasses. mwException is the base exception class for the MATLAB C++
Math Library. Exceptions not caught by this catch block, i.e., any exceptions
not of type mwException, cause the abrupt termination of the program.
Depending on the operating system, an error message may or may not be
printed.

Output
The program produces this output:

WARNING: Subscript indices must be integer values.
RuntimeError
Exception! File: handler.cpp, Line: 169
 Index into matrix is negative or zero. See release notes on
 changes to logical indices.

Handling Exceptions

7-13

In general, printing an mwException using a C++ output stream produces two
output lines. The first describes the type of exception (generic, in this case) and
identifies the file and line number where the exception was thrown. The file
name and line number often refer to MATLAB C++ Math Library code rather
than to your code. They indicate the origin of the exception, rather than where
it was caught or where the error occurred in your code.

The second line describes the exception in more detail. In this case, the
message tells you that an illegal indexing operation occurred. The subscript,
-5, was applied to a matrix for which the valid subscripts fall between one and
six, inclusive.

Replacing the Default Library Error Handler
The default error handling behavior of the MATLAB C++ Math Library
routines is implemented by the default library error handler routine. You can
customize error handling by replacing the default library error handler routine
with one of your own design.

Note If your compiler supports exceptions, the error handler is only called
for warning-level errors. For all other errors, a C++ exception is thrown.

To replace the default error handler you must:

• Write an error handler

• Register your error handler so that library routines call it when they
encounter an error

Writing an Error Handler
When you write an error handler, you must conform to the library prototype for
error handling routines:

void MyErrorHandler(const char *msg, bool isError)
{

if(isError) // Will always be false if exceptions supported
{

// Process Error
}
else

7 Printing, Exceptions, and Memory Management

7-14

{
// Process Warning

}
}

In this prototype, note the following:

• An error handling routine must not return a value (return void).

• An error handling routine accepts two arguments, a const string and a
Boolean value. The string is the text of the error message. When the value of
this Boolean value is TRUE, it indicates an error message. If this value is
FALSE, it indicates a warning message.

Registering Your Error Handler
After writing an error handler, you must register it with the MATLAB C Math
Library so that the library routines can call it when they encounter an error
condition at runtime. You register an error handler using the
mwSetErrorMsgHandler() routine.

mwSetErrorMsgHandler(MyErrorHandler);

Exception Handling in the MATLAB C++ Math
Library

Note You only need to read this section if your C++ compiler does not
support exception handling. Check your compiler documentation to see if it
includes this support.

Because not all C++ compilers fully support exception handling, the MATLAB
C++ Math Library, provides an alternative exception handling mechanism.
The mwException class defines a virtual function called do_raise(). Instead of
using the throw keyword to throw an exception, the library code calls
do_raise() instead. When built with a compiler that fully supports exceptions,
the do_raise() function throws the exception using the throw keyword.
Otherwise, do_raise() prints the exception and calls exit(–1).

The disadvantage to this approach is that in an environment without support
for exceptions, all exceptions are automatically fatal. However, compiler

Handling Exceptions

7-15

support for exceptions is growing more widespread rapidly, so this situation
should be temporary.

Using the MLM_THROW Macros to Throw Exceptions
In order to make this dual support transparent, all exceptions are thrown with
do_raise() rather than throw. Six macros make this dual mechanism easy for
you to use in your own code.

The macros are named MLM_THROW<X>, where <X> is an integer from 0 to 5. The
integer suffix indicates the number of additional arguments that the macro
takes. Each macro takes at least two arguments (not counted in the integer
suffix): the type of exception to throw and a text string message that describes
the problem. The type of exception corresponds to the name of one of the
exception classes documented below. Additional arguments are text strings,
integers, or doubles that substitute for format specifiers in the first string
argument. The number of format specifiers correspond to the number of
additional arguments.

The macros process the message and any extra arguments with sprintf().
MLM_THROW3(), for example, takes five arguments: the type of exception, the
text string message, and three additional arguments. This mechanism lets you
write descriptive error messages.

The last member of the set of macros is MLM_THROW5(). If you need to pass more
than five additional arguments to MLM_THROW<X>, you must write additional
macros. Look in the file mlmexcpt.h for the definitions of the macros and
pattern your new macros after them. You’ll find the header in the <matlab>/
extern/include/cpp directory, on Unix systems, or the
<matlab>\extern\include\cpp directory, on PCs, of your MATLAB C++ Math
Library installation.

The following example taken from the MATLAB C++ Math Library’s indexing
code demonstrates the use of the MLM_THROW2 macro. The indexing code verifies
that an index that accesses array data is valid. If a specified index is less than
the minimum, or base, index, the library throws an mwDomainError exception.

if (i < index_base)
 MLM_THROW2(mwDomainError, \
 "An index (%ld) was less than %ld, the minimum legal index."\
 i, index_base)

Two things to note about this code:

7 Printing, Exceptions, and Memory Management

7-16

• The keyword throw does not appear. The macro itself throws the exception.

• The MLM_THROW2() statement is similar to an ordinary printf() call.
MLM_THROW2() passes its second, third, and fourth arguments to sprintf(),
which formats them just as printf() would.

Note The backslashes at the ends of lines are required because
MLM_THROW2() is a macro rather than a function call. Backslashes would not
be necessary if the entire call to MLM_THROW2() fit on a single line.

Including an mwArray in an Exception Message
The subclasses of mwException contain text-based messages describing the
error that triggers the exception. In many cases, faulty data causes the
problem, in which case it may be useful to include part of the array data in the
error message.

The constructors of the exception classes take a string as an argument. Using
the standard C++ class strstream, you can produce a string representation of
all or part of an mwArray.

mwArray A = rand(4);
strstream string;
string << "This matrix: " << A << "caused the problem." << endl
 << ends;
MLM_THROW0(mwRangeError, string.str());

This code formats an error message in a strstream, which dynamically grows
to accommodate the data stored in it. Calling str() on the strstream freezes
it so that the strstream can no longer grow. str() then returns the string
stored in the strstream.

Memory Management

7-17

Memory Management
The MATLAB C++ Math Library manages memory efficiently by allocating
space for new arrays and then freeing the space when the memory is no longer
in use. The library, like many C++ components, makes extensive use of
temporary variables, many of which are dynamically allocated. The resulting
number of allocations and deallocations is too large for the operating system’s
default memory management to handle with acceptable performance.

To handle this large number of allocations and frees, the library implements
its own memory management system that replaces the operating system’s
default memory management scheme. The MATLAB C++ Math Library avoids
an excessive number of calls to malloc() and free() by maintaining a memory
pool of its own. This pool grows to accommodate the memory needs of your
program.

Setting Up Your Own Memory Management
Routines
Because this default memory management may not be appropriate for all
applications, we provide the function mwSetLibraryAllocFcns() that you can
use to register your own memory management routines:

void mwSetLibraryAllocFcns(mwMemCallocFunc callocProc,
 mwMemFreeFunc freeProc,
 mwMemReallocFunc reallocProc,
 mwMemAllocFunc mallocProc);

The types defined for the arguments to mwSetLibraryAllocFcns() are:

typedef void *(*mwMemCallocFunc)(size_t, size_t);
typedef void (*mwMemFreeFunc)(void *);
typedef void *(*mwMemReallocFunc)(void *, size_t);
typedef void *(*mwMemAllocFunc)(size_t);

Note The mwSetLibraryAllocFcns() routine must be called before any
mwArray objects are declared, because declaring an mwArray object causes
memory to be allocated.

7 Printing, Exceptions, and Memory Management

7-18

To set up your own memory management routines, you need to write four
routines: two memory allocation routines, one memory reallocation routine,
and one deallocation routine. You then call mwSetLibraryAllocFcns() to
register those routines with the library.

Note You cannot omit any of the four routines. You must supply them all.

For example, this call registers the standard C++ memory management
routines with the MATLAB C++ Math Library. (Note, however, that using the
standard C++ memory management routines will decrease the performance of
the MATLAB C++ Math Library.)

mwSetLibraryAllocFcns(calloc, free, realloc, malloc);

Note Do not call the MATLAB C Math Library function
mlfSetLibraryAllocFcns() from your application.

Calloc Allocation Routine
Any memory calloc routine that you write must conform to the type:

typedef void *(*mwMemCallocFunc)(size_t, size_t);

The calloc function allocates a block of memory based on the number of
contiguous elements that you want allocated (its first argument) and an
integer representing the size of each element (its second argument). The
routine initializes the allocated memory to zero.

static void *SampleUserCalloc(size_t count, size_t size)
{
 // function body
}

Deallocation Routine
If you write a memory allocation routine, you must write a corresponding
routine that frees memory. Any memory free routine that you write must
conform to this type:

Memory Management

7-19

typedef void (*mwMemFreeFunc)(void *);

The free function takes a pointer to the beginning of the memory block to be
freed and returns void.

static void SampleUserFree(void *ptr)
{
 // function body
}

The overloaded delete operator in mwArray calls this function, as does
mxFree().

Reallocation Routine
Any memory reallocation routine that you write must conform to this type:

typedef void *(*mwMemReallocFunc)(void *, size_t);

The realloc function takes a pointer to the beginning of the memory block to
reallocate and an integer size of each element. It returns a pointer to void.

static void *SampleUserRealloc(void *ptr, size_t size)
{
 // function body
}

Malloc Allocation Routine
Any memory allocation routine that you write must conform to this type:

typedef void *(*mwMemAllocFunc)(size_t);

The malloc function takes an integer size that represents the number of bytes
to allocate and returns a pointer to void. Unlike calloc, malloc does not
initialize the memory it returns.

static void *SampleUserMalloc(size_t size)
{
 // function body
}

The overloaded new operator in mwArray calls this function, as do the
mx-prefixed allocation routines, for example, mxMalloc().

7 Printing, Exceptions, and Memory Management

7-20

Performance and Efficiency
You do not need to understand the information in this section to use the
MATLAB C++ Math Library effectively. It is included to satisfy the curious and
provide a glimpse into the inner workings of the library. Reading this section
may enable you to eke those last few microseconds out of a tight loop or
decrease your program’s memory requirements, but be warned that the
information presented here is subject to change without notice.

In general, performance and efficiency are tightly linked to implementation.
Should the implementation of the MATLAB C++ Math Library change (as it is
likely to), the most efficient way to use the library will likely change as well.
This is a warning. If you take advantage of the descriptions below to increase
the speed of your code, be aware that the next release of the library may do
things differently, and your highly tuned code may run more slowly than you
expect.

The Space-Time Continuum
Faster, smaller, cheaper: choose any two. It is well-known that programs can
be made more space efficient at the cost of decreasing their time efficiency, and
vice versa. The code in the C++ library makes trade-offs, as described below, in
an attempt to execute as rapidly as possible, without using excessive amounts
of memory.

Time
The MATLAB C++ Math Library is implemented on top of the MATLAB C
Math Library, which in turn is a layer above the raw MATLAB code. Despite
this layering, the C++ library code performs well. The intermediate layers
consume less than 1% of a typical program’s CPU time.

During the development of the C++ library, one of the greatest increases in
speed resulted from the implementation of a block-caching memory manager.
This is a classic example of trading space for time. The space cost of
maintaining an internal list of memory blocks eliminates the time cost of a
system call to malloc(). This time savings can be quite significant. On the PC,
for example, this system resulted in a seven-fold increase in speed.

Space
There are two major motivations for a space-efficient implementation. The first
motivation is the obvious one: the more arrays that you create or the larger

Memory Management

7-21

arrays that you create, the more interesting problems you can solve. The
second motivation is less obvious but equally important: allocating blocks of
memory is slow and, thus, the fewer allocated, the better the program’s
performance.

C++ is notorious for copying objects and automatically creating and destroying
many temporary objects. This behavior is particularly common in arithmetic
expressions and in passing arguments to functions. Since these temporary
objects cannot be avoided, it is very important that they be inexpensive, both
in terms of time and space.

The current implementation uses a reference-counting scheme to minimize the
size of a copy. Using this scheme, each copy requires at most an additional eight
bytes, regardless of the size of the copied array. Aside from allocating the space,
no additional computation is necessary to make the copy. This representation
is quite efficient. Since MATLAB functions and operations have no side effects,
and the assignment operator practices copy-on-write, reference counting is
safe.

7 Printing, Exceptions, and Memory Management

7-22

8

Array Input and Output

Overview . 8-2

Using Array Stream I/O 8-3
Overview . 8-3
Example – Array Stream I/O (ex1.cpp) 8-4
Stream I/O Format Definitions 8-7
Using Stream I/O to Files 8-12
Using Streams for Interprocess Communication 8-13

Using File I/O Functions 8-14
Specifying Library File I/O Functions 8-14
Example – Using File I/O Functions (ex6.cpp) 8-15

Importing and Exporting MAT-File Data 8-20
Exporting Array Data to a MAT-File 8-20
Importing Array Data from a MAT-File 8-21
Example – Using load() and save() (ex7.cpp) 8-22

8 Array Input and Output

8-2

Overview
This chapter describes how to:

• Use C++ input and output streams to read and write from input and output
from files.

• Use fscanf() and fprintf() to read and write from input and output from
files.

• Read data from and write data to MAT-files

The C++ I/O stream operators are more convenient than functions like
fprintf(), because they are more consistent, flexible, and extensible. Because
each object in a C++ program is responsible for printing itself to a stream and
reading itself from a stream, objects have complete control over their own
printed format. New objects can be added without changing the code in the
basic streams mechanism.

In addition, the MATLAB C++ Math Library also supports the load() and
save() routines which enable you to import and export data in MAT-file
format. The library stream I/O implementations do not support .

Using Array Stream I/O

8-3

Using Array Stream I/O
This section:

• Provides an overview of C++ stream I/O

• Details how to form a stream I/O format specification

• Describes how to use stream I/O with files

• Describes how to use stream I/O to perform interprocess communication

This section includes a complete example program.

Overview
A C++ stream is a sequence of data objects. Often a stream consists of a
sequence of characters. C++ streams encompass all the I/O devices attached to
a computer (keyboard, screen, disk, etc.).

There are two basic types of streams: input streams and output streams.
Streams can be attached to one of many types of data sources, or sinks, such as
files, strings, and the screen, so that input can be read from and written to both
disk files and the user’s terminal. Refer to your C++ reference for a complete
explanation of streams and C++’s input and output facilities.

C++ defines three standard streams, cin, cout, and cerr. cin is bound to
standard input, cout to standard output, and cerr to standard error. The
MATLAB C++ Math Library provides standard C++-style stream input (>>)
and output (<<) operators for mwArray objects. For example, to send an array A
to the standard output, you write:

cout << A << endl;

To read an array in from standard input, you write:

cin >> A;

To send an array A to standard error, you write:

cerr << A << endl;

8 Array Input and Output

8-4

Note The MATLAB C++ Math Library supports stream input and output of
multidimensional numeric arrays. However, the library only supports stream
output of cell arrays, sparse matrices, and structures. These arrays may be
printed using the << operator but they are not printed in a format which can
be read back in using the >> operator.

Example – Array Stream I/O (ex1.cpp)
This example illustrates the use of stream I/O to read in and print out a
MATLAB array. You can find the code for this example in the
<matlab>/extern/examples/cppmath directory on UNIX systems and in the
<matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13for information about building and running the
example program.

In the example, note that the array input format is the same as the array
output format. Data written out by a program can be easily read back in by a
program. For more information about this format, see the “Stream I/O Format
Definitions” on page 8-7.

Using Array Stream I/O

8-5

// ex1.cpp

#include <stdlib.h>
#include "matlab.hpp"

static double data[] = { 1, 2, 3, 4, 5, 6 };

int main(void)
{
 // Create two matrices.
 mwArray mat0(2, 3, data);
 mwArray mat1(3, 2, data);

 // Print the matrices.
 cout << mat0 << endl;
 cout << mat1 << endl;

 // Read a matrix from standard in, then print the matrix to
 // standard out.
 cout << "Please enter a matrix: " << endl;
 cin >> mat1;
 cout << mat1 << endl; // ** See Note 4 **

 return (EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Print the matrices using the C++ standard output stream, cout. By default,
objects printed with cout appear on the screen, though you can redirect the
output to a file.

3 Prompt the user to type in a matrix. Read the matrix into mat1 using the
C++ standard input stream, cin. The matrix does not need to be the same

1

2

3

4

3

8 Array Input and Output

8-6

size as the matrix already stored in mat1. The input operator >> creates a
new matrix and assigns that matrix to mat1. UNIX and PC systems read
from the terminal by default; you can redirect them to read from an input
file.

4 Print the newly read matrix.

Output
The program prints out the two matrices, mat0 and mat1, and then prompts the
user to input an array.

 [
 1 3 5 ;
 2 4 6
]

 [
 1 4 ;
 2 5 ;
 3 6
]

Please enter a matrix:

To enter a matrix, first type in a left bracket ([) character, and then enter a
series of numbers. You can insert semicolons at any point to create a
two-dimensional matrix. End your matrix by typing a right bracket (])
character. Each row must contain the same number of columns. Spaces, tabs,
and carriage returns are ignored. For complete information about input and
output formats, see the section “Stream I/O Format Definitions” on page 8-7.

For example, if you type in [1 2; 3 4], the program prints it.

 [
1 2;
3 4

]

Note that the output format is the same as the input format, enabling the
output from one program to be used as the input to another. Because each

Using Array Stream I/O

8-7

matrix is delimited by [and], input files or streams can contain more than one
matrix.

Stream I/O Format Definitions
The MATLAB C++ Math Library input and output formats strongly resemble
their interpreted MATLAB counterparts. The array output format conforms to
the rules for array input, which means that arrays written to a stream using
<< can be read in from a stream using >>.

Note The >> and << operator implementations do not read and write
MAT-files. Use the functions load() and save() to read and write MAT-files.
See the section “Importing and Exporting MAT-File Data” on page 8-20 for
more information.

In the MATLAB C++ Math Library, special input characters describe the shape
of the array. The [and] characters (brackets) enclose an array definition. The
{ and } characters (braces) enclose a cell array definition. Within the brackets
or braces, the contents of the array appear in row-major order. A semicolon (;)
separates rows.

The following table lists the syntax elements in the format definition.

Note The >> operator implementation cannot read cell arrays, sparse
arrays, and structures.

Table 8-1: Elements of mwArray Input/Output Syntax

Syntax
Element

Definition Example

[] Encloses array definition [1 2]

{} Encloses a cell array definition {[1 2] 'Eric'}

e Indicates scientific notation 1e7

8 Array Input and Output

8-8

. Indicates floating-point number 1.879

– Indicates negative number or exponent –1.3e–8

+ Separates complex and imaginary
parts

1+2i

i Indicates complex number 1+2i

' Encloses a string 'abcd'

.fieldname Identifies a field in a structure

; Separates rows [1 2 ; 3 4]

* Separates optional scaling factor from
array

1e–10 * [1 2]

whitespace Separates array elements [1 2]

Table 8-1: Elements of mwArray Input/Output Syntax (Continued)

Syntax
Element

Definition Example

Using Array Stream I/O

8-9

Legal Array Elements

• Integers

• Floating-point numbers

• Complex numbers

• Strings

You can also specify a scaling factor that modifies the values in an mwArray
containing integers, floating-point numbers, or complex numbers. A scaling
factor applies equally to all elements in the array and is used to enter very
small or very large values.

Length of Input Array
The only restriction on the length of the input array is the amount of memory
available; the input mechanism imposes no restrictions of its own.

How Whitespace Is Interpreted

• The input operator ignores additional space and tab characters between
array elements.

• The input operator ignores whitespace between array definitions.

Characteristics of Input Files
Input files must be in ASCII rather than binary format. An input file may
contain multiple array definitions. Whitespace between array definitions is
ignored.

Differences between MATLAB and the C++ Math Library
There are differences between the input accepted by MATLAB and the
MATLAB C++ Math Library. MATLAB input files permit the use of MATLAB
mathematical expressions in array definitions. The MATLAB C++ Math
Library does not support the use of functions or operators in input streams.

For example, the MATLAB C++ Math Library does not support this:

[(1 + 2) 7; 4 5]

MATLAB does.

8 Array Input and Output

8-10

Specifying an Array for Input

1 Begin the array with a left bracket [.

2 List the elements in the first row of the array in row-major order.

3 Separate the first row from the second row with a semicolon (;).

4 Repeat steps 2 and 3 for each row in your array.

5 Close the array with a right bracket]. However, do not end the last row with
a semicolon.

Table 8-2: Input Syntax for an mwArray Containing Integers

Input Array Array Type

[1 2 ; 3 4] 1 2
3 4

2-by-2 square array

[1 2;
 3 4;
 5 6]

1 2
3 4
5 6

3-by-2 rectangular array

Table 8-3: Input Syntax for an mwArray Containing Floating Point Numbers

Input Array Array Type

[1.4 2.5 3.2] 1.4 2.5 3.2 1-by-3 vector

[
 3.14e2 2.73e4;
 1.73e3 1.41e2
]

 314 27300
1730 141

2-by-2 square array. Note use
of scientific notation in input.

Using Array Stream I/O

8-11

Table 8-4: Input Syntax for an mwArray Containing Complex Numbers

Input Array Array Type

[
 1+3i 2+7i ;
 9–5i 8+4i
]

 1+3i 2+7i
 9–5i 8+4i

2-by-2 complex square array

Table 8-5: Input Syntax for an mwArray Containing Strings

Input Array Array Type

'abcd' abcd 1-by-4 character array
Equivalent to
['abcd']

[
 'abcd';
 'efgh';
]

abcd
efgh

2-by-4 character array

'it''s' it's 1-by-4 character array that
includes an escaped '
character. This array is
written out as 'it''s'.

Table 8-6: Input Syntax that Includes a Scaling Factor

Input Array Array Type

1.0e–7 *
[
 0.1 0.2 ;
 0.3 0.4
]

0.00000001 0.00000002
0.00000003 0.00000004

2-by-2 square array. Note use
of scaling factor in input.

8 Array Input and Output

8-12

Using a Data File As Input
Let an input data file, data, contain the following array definition:

[1 2 3 ; 4 5 6]

Assume that a program called “io” reads an array from standard input and
then writes it to standard output.

Passing the file data to the program io

io < data

produces this output:

[
 1 2 3 ;
 4 5 6
]

Using Stream I/O to Files
The preceding example demonstrates stream input from and output to the
terminal. To read or write arrays from and to files, use the C++ class ifstream
to create file input streams and ofstream to create file output streams.

For example, the code fragment shown below writes array A to a file and then
reads the data from the file into array B.

Note that in order to run the code fragment, you need to insert the following at
the top of the program:

Table 8-7: Illegal Input Syntax

Input Array Array Type

[1 ; 2 3] Illegal. All rows must be same
length.

Invalid array

[(1 + 2) 7; 4 5] Illegal. Using mathematical
expressions in input files is
not supported.

Invalid array

Using Array Stream I/O

8-13

#include <fstream.h>

The code fragment is as follows:

mwArray A = rand(5), B;
ofstream out_file("junk.txt", ios::out);
out_file << A << ends;
out_file.close();

ifstream in_file("junk.txt", ios::in);
in_file >> B;

A and B are now equal.

Using Streams for Interprocess Communication
You can use streams to facilitate sending an mwArray from one process to
another. It is relatively simple to set up a socket-based mechanism that can
send and receive strings between processes. Using the standard C++
strstream class, it is quite easy to write an mwArray into a string in one
process, send the string to another process, and then read the mwArray from the
string. Note that there is a form of the strstream constructor that binds a
strstream to an already existing string. Use this form in the second process to
read the mwArray.

Alternatively, you might use the shared memory routines on your system to
share a string between two processes. Then, with a strstream in each process
bound to the shared string, and a semaphore to control access to the shared
memory, your two processes can send mwArray objects back and forth through
the shared memory.

Last, and most ambitiously, you might define subclasses of istream and
ostream to produce stream classes that manage the details of interprocess
communication. With such classes defined, you could then send mwArray
objects between processes simply by reading and writing from the streams.

8 Array Input and Output

8-14

Using File I/O Functions
The MATLAB C++ Math Library supports the following C and C++-style file
I/O functions:

• fprintf()

• fgetl()

• fgets()

• fopen()

• fclose()

• fscanf()

The library’s file I/O functions are similar to the ANSI standard C functions of
the same name; they do, however, have several significant restrictions and
extensions.

For example, the fprintf() function in the MATLAB C++ Math Library has
two required input arguments and an unlimited number of optional input
arguments. The first argument is the valid ID of an open file. The second is a
format string that controls how the output data is formatted. In the library,
both these arguments must be arrays.

The MATLAB C++ Math Library’s version of fprintf() also processes the
format string differently than the standard C++ fprintf(). Rather than
requiring a format specifier for each input, it reuses the format string as
necessary. The vectorized versions of fprintf() and fscanf() in the library
take arrays as arguments, and repeatedly recycle their format strings through
the arrays to produce the output or read the input. See the online MATLAB
C++ Math Library Reference for complete details on each routine. “Accessing
Online Reference Documentation” on page 1-7 describes how to access the Help
Desk.

Specifying Library File I/O Functions
Because the MATLAB C++ Math Library file I/O functions have the same
name as their C++ counterparts and because the types of their arguments are
so similar, you must be careful to make sure you’re calling the correct one.

This is particularly important with fprintf(). The type of the first argument
to fprintf() is all important: if it is an array, the system calls the MATLAB

Using File I/O Functions

8-15

C++ Math Library function; if it is an integer, the system calls the standard
C++ function. Consider this example:

mwArray file("foo.txt"), data=rand(4);
int fd = fopen(file);
fprintf(fd, "%f", data);

The system calls the standard C++ fprintf() function because the first
argument passed to fprintf() is an integer. But this is almost certainly not
what the author intended; the standard C++ fprintf() uses the format string
to determine how many arguments it has. In this case, it will think there is a
single argument and the program will crash because the standard fprintf()
function does not understand mwArray objects.

The MATLAB C++ Math Library version of sprintf() requires that you pass
an mwArray as its second argument. The other arguments may be passed as
character strings.

Example – Using File I/O Functions (ex6.cpp)
The following example demonstrates how to use the fopen(), fclose(),
fprintf(), fgetl(), and fscanf() routines. You can find the code for this
example in the <matlab>/extern/examples/cppmath directory on UNIX
systems and in the <matlab>\extern\examples\cppmath directory on PCs,
where <matlab> represents the top-level directory of your installation. See
“Building C++ Applications” on page 1-13for information about building and
running the example program.

In the example, note the following:

• The fopen() routine returns the file ID as an array and accepts arrays for
filename and mode arguments.

• The versions of fprintf() and sprintf() in the MATLAB C++ Math
Library can take up to 32 arguments.

• fgetl() and fgets() work on ASCII files only.

• By default, fopen() opens files in read-only mode.

8 Array Input and Output

8-16

// ex6.cpp

#include <stdlib.h>
#include "matlab.hpp"

int main(void)
{
 mwArray a("Alas, poor Yorick. I knew him, Horatio.");
 mwArray b("Blow, wind, and crack your cheeks!");
 mwArray c("Cry havoc, and let slip the dogs of war!");
 mwArray d("Out, out, damned spot!");
 mwArray fid, r, a1, b1, c1, d1, mode("w"), sz, x, y;
 mwArray file("ex6.txt");

fid = fopen(file, mode);
 fprintf(fid, "%s\n", a, b, c, d);
 fclose(fid);

 fid = fopen(file);
 a1 = fgetl(fid);
 b1 = fgetl(fid);
 c1 = fgetl(fid);
 d1 = fgetl(fid);
 cout << a1 << endl << b1 << endl << c1 << endl << d1 << endl;
 fclose(fid);

fid = fopen(file, mode);
 fprintf(fid, "%f ", magic(4), rand(4));
 fclose(fid);

 fid = fopen(file);
 sz = horzcat(4,4);
 x = fscanf(fid, "%f ", sz);
 cout << x << endl;
 y = fscanf(fid, "%f ", sz);
 cout << y << endl;
 fclose(fid);

return(EXIT_SUCCESS);
}

1

2

3

4

6

5

7

8

Using File I/O Functions

8-17

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare local variables, including four string arrays. Notice that you can
make a string array by passing a string to the mwArray constructor.

3 Open and create a file named ex6.txt. Unlike C++’s standard fopen(), the
fopen() function in the MATLAB C++ Math Library takes one or two
arguments, both mwArray objects. The first argument is the name of the file
to open. The optional second argument is the mode in which to open the file:
read ("r") or write ("w"). Omitting the second argument implies read mode.
fopen() returns an integer file id as an mwArray object.

Note that you must pass arguments to fopen() as mwArray objects;
otherwise, you will get the standard C version of fopen().

4 Write the string arrays into the file. The fprintf() function in the C++
Math Library has two required input arguments and up to 30 optional input
arguments. The first argument is the valid ID of an open file. The second is
a format string that controls how the output data is formatted. The optional
arguments follow the second argument.

The MATLAB C++ Math Library’s fprintf() processes the format string
differently than the standard C++ fprintf(). Rather than requiring a
format specifier for each input, it reuses the format string as necessary.
Notice that the format string here is "%s". Because there are fewer format
specifiers than inputs, fprintf() applies this format to each input, a, b, c,
and d.

5 Close the file. The standard C++ and MATLAB C++ Math Library fclose()
functions behave similarly.

6 Reopen ex6.txt, and read in the four string arrays. fgetl() reads an entire
line from a file, treating the line as a string. fgetl() reads from the current

8 Array Input and Output

8-18

position up to, but not including, the carriage return and, on the PC, the line
feed that terminates the line.

A call to fgetl() skips over the end of line character(s) and never includes
it in the string that it returns. Call fgets() if you need a string that contains
the end-of-line character(s).

fgetl() and fgets() are designed to work on ASCII files only. Do not call
them on binary files.

7 Print two numeric matrices, magic(4) and rand(4), into the test file.
Because the format string is "%f", fprintf() prints each matrix as a row of
floating-point numbers, applying the format string to each individual
element of the matrices. fprintf() prints the matrix data in ASCII format.

8 Read the numeric matrices back from the test file. fscanf()’s first argument
is the file id to read from; the second is a format string, and the third an
optional size. As with fprintf(), the format string is recycled through the
data as necessary. The third argument specifies the size and shape of the
input data. In this case, the third argument is a 1-by-2 matrix containing the
data [4, 4]. Given this size, fscanf() reshapes the input data into a 4-by-4
matrix.

Output
The program produces this output:

'Alas, poor Yorick. I knew him, Horatio.'
'Blow, wind, and crack your cheeks!'
'Cry havoc, and let slip the dogs of war!'
'Out, out, damned spot!'
 [
 16 2 3 13 ;
 5 11 10 8 ;
 9 7 6 12 ;
 4 14 15 1
]

 [
 0.21896 0.93469 0.03457 0.00770 ;

Using File I/O Functions

8-19

 0.04704 0.38350 0.05346 0.38342 ;
 0.67887 0.51942 0.52970 0.06684 ;
 0.67930 0.83096 0.67115 0.41749
]

8 Array Input and Output

8-20

Importing and Exporting MAT-File Data
The MATLAB C++ Math Library provides two functions, load() and save(),
that let you import mwArray variables from a MAT-file and export mwArray
variables to a MAT-file. Because MATLAB also reads and writes MAT-files,
you can use load() and save() to share data with MATLAB applications or
with other applications developed with the MATLAB C++ or C Math Library.

A MAT-file is a binary, machine-dependent file. However, it can be transported
between machines because of a machine signature in its file header. The
MATLAB C++ Math Library checks the signature when it loads variables from
a MAT-file and, if a signature indicates that a file is foreign (file was saved on
a different architecture than the one on which it is being loaded), performs the
necessary conversion.

Note The MATLAB C++ Math Library functions save() and load()
implementations do not support all the variations of the MATLAB load and
save syntax. In addition, the load() and save() implementations do not
conform to the standard MATLAB C++ Math Library calling convention: they
accept arguments that are not of type mwArray or mwArray *. The load()
routine also allows output and input arguments to be interspersed.

Exporting Array Data to a MAT-File
Using save(), you can save the data within mwArray variables to disk. The
prototype for save() is:

void save(const mwArray &file, const char* mode,
 const char* name1, const mwArray &var1,
 const char* name2=NULL, const mwArray &var2=mwArray::DIN,
 .
 .
 .
 const char* name16=NULL, const mwArray &var16=mwArray::DIN);

file contains the name of the MAT-file; mode points to a string that indicates
whether you want to overwrite or update the data in the file. You must pass at
least one pair of arguments indicating the name you want to assign to the data
you’re saving and the address of the mwArray variable that you want to save:

Importing and Exporting MAT-File Data

8-21

• You must name each mwArray variable that you save to disk. A name can
contain up to 32 characters.

• You can save up to 16 variables in a single call to save().

• There is no call that globally saves all the variables in your program or in a
particular function.

• The name of a MAT-file must end with the extension .mat. The library
appends the extension .mat to the filename if you do not specify it.

• You can either overwrite or append to existing data in a file. Pass "w" to
overwrite, "u" to update (append), "w4" to overwrite using V4 format. A
second version of the save() function allows you to omit the mode argument;
the default is to overwrite the data.

• The file created is a binary MAT-file, not an ASCII file.

Importing Array Data from a MAT-File
Using load(), you can read in mwArray data from a binary MAT-file. The
prototype for load() is:

void load(const mwArray &file,
 const char* name1, mwArray *var1,
 const char* name2=NULL, mwArray *var2=NULL,
 .
 .
 .
 const char* name16=NULL, mwArray *var16=NULL);

file contains the name of the MAT-file. You must pass at least one pair of
arguments indicating the name of a variable that you want to load and a
pointer to an mwArray variable that will receive the data:

• You must indicate the name of each mwArray object that you want to load.

• You can load up to 16 mwArray objects in one call to load().

• There is no call that globally loads all variables from a MAT-file.

• You do not have to allocate space for the incoming mwArray. load() allocates
the space required based on the size of the variable being read.

• You must specify a full path for the file that contains the data. If you do not
specify the .mat extension, the library automatically appends it to the
filename.

8 Array Input and Output

8-22

• You must load data from a binary MAT-file, not an ASCII MAT-file.

Note Be sure to transmit MAT-files in binary file mode when you exchange
data between machines.

For more information on MAT-files, consult the MATLAB Application Program
Interface Guide.

Example – Using load() and save() (ex7.cpp)
This example demonstrates how to use the functions load() and save() to
write your data to a disk file and read it back again. You can find the code for
this example in the <matlab>/extern/examples/cppmath directory on UNIX
systems and in the <matlab>\extern\examples\cppmath directory on PCs,
where <matlab> represents the top-level directory of your installation. See
“Building C++ Applications” on page 1-13for information about building and
running the example program.

In the example, note the following:

• You must name the variables when you save them to a MAT-file.

• You must specify the name of the variable you want to read from a MAT-file.

• load() and save() do not conform to the standard MATLAB C++ Math
Library calling convention:

- Not all arguments are of type mwArray or mwArray *.

- Output and input arguments to load() are interspersed.

• MAT-files must have the three-letter extension mat. If you do not specify the
.mat extension, load() and save() automatically add it.

Importing and Exporting MAT-File Data

8-23

// ex7.cpp

#include <stdlib.h>
#include "matlab.hpp"

int main(void)
{

try {
mwArray x, y, z, a, b, c;

x = rand(4,4);
y = magic(7);
z = eig(x);

// Save (and name) the variables.
save("ex5.mat", "x", x, "y", y, "z", z);

// Load the named variables.
 load("ex5.mat", "x", &a, "y", &b, "z", &c);

// Check to be sure the variables are equal.
 if (tobool(a == x) && tobool(b == y) && tobool(c == z))
 {
 cout << "Success: all variables equal." << endl;
 }
 else
 {
 cout << "Failure: loaded values not equal to
 saved values." << endl;
 }
 }
 catch (mwException &ex) {
 cout << ex << endl;
 }
 return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

1

2

4

5

6

3

8 Array Input and Output

8-24

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare and initialize variables. x, y, and z are written to the MAT-file using
save(). a, b, and c store the data read back from the MAT-file by load().

3 Assign data to the variables that will be saved to a file. x stores a 4-by-4
array that contains randomly-generated numbers. y stores a 7-by-7 magic
square. z contains the eigenvalues of x.

4 Save three variables to the file ex5.mat. In one call to save(), you can save
up to 16 variables to the file identified by the first argument. Subsequent
arguments come in pairs: the first argument in the pair (a string) labels the
variable in the file; the contents of the second argument, an mwArray, is
written to the file.

An additional signature for save() allows you to specify a mode for writing
to the file: "w" for overwrite, "u" for update (append), and "w4" for overwrite
in version 4 format. Without the mode argument, as in this example, save()
overwrites the data.

Note that you must provide a name for each variable you save. When you
retrieve data from a file, you must provide the name of the variable you want
to load. You can choose any name for the variable; it does not have to
correspond to the name of the variable within the program.

5 Load the named variables from the file "ex5.mat". Note that the function
load() does not follow the standard C++ Math Library calling convention
where output arguments precede input arguments. The output arguments,
a, b, and c, are interspersed with the input arguments.

Pass arguments in this order: the filename and then the name/variable pairs
themselves. You can read in up to 16 mwArray objects at a time. An important
difference between the syntax of load() and save() is the type of the
variable portion of each pair. Because you’re loading data into a variable,
load() needs the address of the variable: &a, &b, &c. a, b, and c are output
arguments whereas x, y, and z in the save() call are input arguments.

Importing and Exporting MAT-File Data

8-25

Notice how the name of the output argument does not have to match the
name for the variable stored in the file.

6 Compare the data loaded from the file to the original data that was written
to the file. a, b, and c contain the loaded data; x, y, and z contain the original
data. The calls to tobool() are necessary because C++ requires that the
conditional expression of an if statement be a scalar Boolean. tobool()
reduces the rank of its argument to a scalar, and then returns a Boolean
value.

Output
When run, the program produces this output:

Success: all variables equal.

8 Array Input and Output

8-26

9
Translating from
MATLAB to C++

Differences Between C++ and MATLAB 9-2

Syntax . 9-3

Variable Declaration 9-4

Function Calling Conventions 9-5

Control Structure 9-6

Logical Values 9-7

Name Conflicts with Standard C Library Functions . . 9-8
Casting an Argument to Avoid a Name Conflict 9-8
Renaming Functions to Avoid a Name Conflict 9-9

Example Program: Rewriting roots.m in C++ (ex8.cpp) . 9-11
The M-File roots() Function 9-11
The C++ roots() Function 9-13

9 Translating from MATLAB to C++

9-2

Differences Between C++ and MATLAB
Most MATLAB expressions translate into C++ with no effort — very often the
MATLAB and C++ are identical. There are some differences in syntax, of
course, but it is important to realize that the C++ interface is substantially the
same as the M-file interface.

MATLAB and C++ syntax are identical in the following four areas:

• Simple function calls that have one output and one or more inputs

• Arithmetic expressions consisting entirely of matrix operations (+, *, /, –)

• Array indexing expressions that don’t use the colon operator, cell array
indexing, or structure indexing

• Assignment statements, including assignment with a standard indexing
expression on the left-hand side

The differences between C++ and MATLAB are discussed in detail below. More
space is devoted to differences than similarities, not because there are more
differences, but because the differences are more likely to cause confusion.

Programming in C++ differs from programming in MATLAB in five important
areas:

• “Syntax”

• “Variable Declaration”

• “Function Calling Conventions”

• “Control Structure”

• “Logical Values”

• “Name Conflicts with Standard C Library Functions”

• “Example Program: Rewriting roots.m in C++ (ex8.cpp)”

Syntax

9-3

Syntax
The syntax of C++ places several restrictions on the MATLAB C++ Math
Library. In general, these restrictions do not mean that functionality is missing
from the library, but rather that you access the functionality differently than
you would in MATLAB.

C++ restricts the syntax of the library in these ways:

• You cannot construct arrays with MATLAB’s [] array construction syntax.
Instead, you call a constructor of the mwArray class, an array creation
function, or the vertcat() and horzcat() functions.

• The : (colon) operator is unavailable in all of its forms. The functional
equivalents colon() and ramp() replace it.

• The mathematical operators .*, .\, ./, .^ and \ are not valid C++ operators.
In the MATLAB C++ Math Library, function calls access the same
functionality.

• The ' (quote) and .' (dot quote) operators are unavailable. The transpose()
and ctranspose() functions replace them.

• The {} cell array indexing operator is unavailable. The mwArray::cell()
performs indexing into cell arrays.

• The . operator for structure indexing is unavailable. The mwArray::field()
performs indexing into structures.

Each of these differences is explained in more detail later in this chapter.

9 Translating from MATLAB to C++

9-4

Variable Declaration
In addition to requiring different syntax, C++ insists that you declare all
variables explicitly before using them. The declarations do not have to appear
at the top of a function as they do in C, but may be interspersed throughout
your code.

Declare array variables as type mwArray. Note that in general mwArray objects
have value semantics in the MATLAB C++ Math Library. They are passed by
value to functions; they are not modified by functions; they are returned by
value.

To modify the value of an mwArray object within a function, pass the mwArray
object to that function by reference, either as a pointer (mwArray *) or a
reference (mwArray &).

Note If you are a user of the MATLAB Application Program Interface, don’t
confuse the type mwArray with the mxArray type used in the Application
Program Interface Library. Do not declare array variables as type mxArray*
unless you really want a pointer to an mxArray.

Function Calling Conventions

9-5

Function Calling Conventions
MATLAB and C++ have different function calling conventions. In MATLAB, a
function declaration establishes a function’s name. The declaration says
nothing about the number and type of the inputs and outputs to the function.
In C++, a function declaration does specify the number and type of the input
arguments and the type of the return value.

In addition, in C++ a function can return at most one value whereas MATLAB
functions can return more than one value. Functions in the MATLAB C++
Math Library emulate their MATLAB counterparts that have multiple return
values by returning one value as the return from the function and storing the
rest of the values in output arguments supplied by the caller.

For complete details on the library’s calling conventions, see “How to Call C++
Library Functions” in Chapter 5.

9 Translating from MATLAB to C++

9-6

Control Structure
Both C++ and MATLAB support if-statements, for-loops, and while-loops.
The primary difference between the C++ and MATLAB versions of these
constructs is syntactical. For instance, in MATLAB the end keyword
terminates a for-loop; in C++ braces surround the body of the loop.

There are two subtle functional differences, however, between the C++ and
MATLAB for-loop constructs, both concerning the index for the loop. In C++
you can modify the for-loop index and the bounds for the index in the middle
of the loop. In MATLAB the interpreter ignores any modifications to the loop
index or its bounds.

The second subtle difference between the two for-loops is the final value of the
index variable. When a MATLAB loop terminates, the index variable is equal
to the loop’s upper bound. When a C++ loop terminates, the index variable is
typically one greater than the loop’s upper bound. However, this is not true of
C++ code generated by the MATLAB Compiler.

Refer to your C++ reference manual for more information on how for-loops
work in C++.

Logical Values

9-7

Logical Values
In MATLAB, a logical value is either a logical scalar or an array of logical
values. You create a logical array by calling the logical() function or by using
a relational operator to compare two arrays. In C++, logical values are always
scalars. A 1-by-1 mwArray object can be cast to a scalar. When an array object
appears where a logical value is expected, C++ automatically attempts to cast
the array to a scalar. This casting operation fails (raises an exception) if the
array is not 1-by-1.

When a relational operation between arrays appears where a scalar Boolean
value is required, you must use the MATLAB C++ Math Library function
tobool() to reduce the result of the operation to a scalar Boolean. tobool()
reduces any real or complex array to a Boolean true or false result. If you pass
tobool() an empty array, it returns false.

For example, to test if every element in an array A is nonzero, write:

if (tobool(A != 0))
{

// test succeeded, do something
}

if and while statements in C++ require you to use these functions. Because
the relational operators (<, >, <=, >=, == and !=) each return an array of logical
values in both MATLAB and C++, it is necessary, when using the result of one
of these operators in an if or while statement, to wrap it with a call to
tobool().

There is one exception to this rule: if an array is a scalar, tobool() is
unnecessary, since the compiler will attempt to convert the array, by default,
to a double. However, if the array is not a scalar, this conversion fails at
runtime and throws an exception.

9 Translating from MATLAB to C++

9-8

Name Conflicts with Standard C Library Functions
Some functions in the standard C math library, libm, that is supplied with
every C and C++ compiler have the same names as functions in the MATLAB
C++ Math Library. The exact number of functions in conflict varies by
platform. The MATLAB C++ Math Library uses two methods to resolve these
name conflicts: argument casting and function renaming.

The MATLAB C++ Math Library renames some functions so that the library
function is unique. For other functions, you must cast the argument passed to
the function to the type expected by the MATLAB function.

Casting an Argument to Avoid a Name Conflict
The most common naming conflicts between the two libraries occur with the
trigonometric functions (sin(), cos(), tan(), etc.), the logarithmic and
exponential functions (log(), log10() and exp()), and several miscellaneous
functions like sqrt() and abs(). These duplicate functions cause a problem
when invoked with either a C++ int or double scalar argument. They do not
cause a problem when they’re invoked with an mwArray argument.

For example, when the C++ compiler sees a call such as sqrt(–1), it generates
a call to the sqrt() defined in the standard C math library rather than the
sqrt() defined by the MATLAB C++ Math Library. The C runtime library
conforms to the IEEE standard: the square root of a negative number is NaN.
However, the range of the MATLAB C++ Math Library’s sqrt() routine
extends into the complex plane, so that it returns the complex number i when
called with –1.

Because C++ does not allow a function name to be overloaded on the basis of
return type alone, it is not possible to add functions to the MATLAB C++ Math
Library that take scalars and return mwArray’s and thus distinguish between a
function in the standard C math library and one in the MATLAB C++ Math
Library. Renaming all the MATLAB functions like sqrt() and abs() would
only cause confusion. Therefore, to avoid this problem, we recommend that you
never invoke these functions with a scalar argument.

For example, if you need to determine the square root of a negative quantity,
first create an array and assign the negative number to it. Then call sqrt() on
the array:

mwArray a = –5;

Name Conflicts with Standard C Library Functions

9-9

sqrt(a);

You can also use a cast:

sqrt((mwArray)–5);

or an explicit constructor call:

sqrt(mwArray(–5));

The last two techniques are the most succinct.

Renaming Functions to Avoid a Name Conflict
Casting arguments cannot resolve all the naming conflicts between the two
libraries. For example, the MATLAB C++ Math Library functions char and
double conflict with C++ data types. The library’s clock() function doesn’t
take any arguments and thus can’t be overloaded. Whenever a MATLAB
function name conflicts with a C++ keyword, type, or built-in function, the
MATLAB C++ Math Library appends _func to its name.

This table lists the functions in the library that have been renamed.

Table 9-1: Renamed Functions in the MATLAB C++ Math Library

MATLAB Name C++ Math Library Name

and and_func

bitand bitand_func

bitor bitor_func

char char_func

clock clock_func

double double_func

not not_func

or or_func

pascal pascal_func (PC only)

quad quad_func

9 Translating from MATLAB to C++

9-10

std std_func

struct struct_func

union union_func

xor xor_func

Table 9-1: Renamed Functions in the MATLAB C++ Math Library (Continued)

MATLAB Name C++ Math Library Name

Example Program: Rewriting roots.m in C++ (ex8.cpp)

9-11

Example Program: Rewriting roots.m in C++ (ex8.cpp)
The roots() function finds the roots of a polynomial. The M-file roots.m
contains the source of the roots() function. This example shows how to
translate roots.m into C++. The translation keeps the C++ function as similar
as possible to the M-function, primarily to demonstrate how easy it is to write
MATLAB-like code in C++. This means that the C++ code is not as efficient as
it could be, but the example does show that the C++ code is as simple to write
as a MATLAB M-file.

The M-File roots() Function
The C++ example_roots() function is a translation of the M-file roots()
function. For purposes of comparison, roots.m is reproduced below. Not
counting the comments or the main routine, the C++ code is only four lines
longer than the M-code. Two of the extra lines are used for declaring variables
and the other two for including header files.

MATLAB M-file code for roots():

9 Translating from MATLAB to C++

9-12

function r = roots(c)
%ROOTSFind polynomial roots.
% ROOTS(C) computes the roots of the polynomial whose
% coefficients are the elements of the vector C. If C has N+1
% components, the polynomial is C(1)*X^N + ... + C(N)*X +
% C(N+1).
%
% See also POLY.
% J.N. Little 3-17-86
% Copyright (c) 1984-97 by The MathWorks, Inc.
% ROOTS finds the eigenvalues of the associated companion matrix.

n = size(c);
if ~sum(n <= 1)
 error('Must be a vector.')
end
n = max(n);
c = c(:).'; % Make sure it's a row vector

% Strip leading zeros and throw away. Strip trailing zeros,
% but remember them as roots at zero.
inz = find(abs(c));
nnz = max(size(inz));
if nnz ~= 0
 c = c(inz(1):inz(nnz));
 r = zeros(n-inz(nnz),1);
else
 r = [];
end

% Polynomial roots via a companion matrix
n = max(size(c));
a = diag(ones(1,n-2),-1);
if n > 1
 a(1,:) = -c(2:n) ./ c(1);
end
r = [r;eig(a)];

Example Program: Rewriting roots.m in C++ (ex8.cpp)

9-13

The C++ roots() Function
The example is divided into two parts. The first part shows the main program,
which sets up the problem and invokes the example version of roots(): the
example_roots() function. The second part contains the example_roots()
function. In the C++ source file, the order of the parts is reversed. The parts are
reordered here for clarity.

You can find the code for this example in the
<matlab>/extern/examples/cppmath directory on UNIX systems and in the
<matlab>\extern\examples\cppmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C++
Applications” on page 1-13 for information about building and running the
example program.

In the example, note the following:

• Programs written using the MATLAB C++ Math Library look very much like
MATLAB M-files. The syntax of the two is very similar.

• The MATLAB C++ Math Library supports most of MATLAB’s operators.
Those that are not supported as operators can be accessed via function calls.

• The functions colon() and ramp() in the MATLAB C++ Math Library
replace the MATLAB colon operator.

• A function that modifies its input arguments, or uses them as a temporary
variables, must not declare those arguments const.

• The default mwIndex constructor produces an mwIndex object that acts, when
used as a subscript, like a colon in MATLAB.

• The C++ if-statement, unlike the MATLAB if statement, requires that any
matrices tested be reduced in rank to scalars by calls to any() or all(). See
the online MATLAB C++ Math Library Reference for further explanation of
the functions. “Accessing Online Reference Documentation” on page 1-7
describes how to access the Help Desk.

• Calling the error() function throws an mwRuntimeException exception.
mwRuntimeException is a subclass of mwException.

• vertcat() vertically concatenates two or more matrices. horzcat() behaves
like vertcat() except performs horizontal concatenation.

• Use the C++ operator ! to invert the truth value of a logical scalar mwArray;
use the MATLAB C++ Math Library operator ~ to invert the truth value of a
logical array. Do not apply ! to arrays.

9 Translating from MATLAB to C++

9-14

// Call example_roots() and the library’s roots().

int main(void)
{
 // Static array of doubles used to initialize the matrices.
 static double input[] = { 1, -6, -72, -27 };

 // Declare three matrices, one with initial values.
 mwArray x(1, 4, input), result, verify;

 // Call our version of roots().
 result = example_roots(x);

 // Call the MATLAB C++ Math Library roots.
 verify = roots(x);

 // Print the input and output matrices from example_roots().
 cout << "x = " << endl << x << endl;
 cout << "example_roots(x) = " << endl << result << endl;

 // Check to see if the answer is equal to the real roots().
 if (tobool(result == verify))
 cout << "Success!" << endl;

 return(EXIT_SUCCESS);
}

The numbered items in the list below correspond to the numbered sections of
code example:

The main program is straightforward, so the explanations below are brief. If
you have difficulty understanding this section of the example, refer to
“Example Program: Writing Simple Functions (ex4.cpp)” in Chapter 2.

1 Declare the static variable used for array initialization. The elements of the
C++ array are specified in the column-major order required by the library.

2 Declare and initialize three matrices. x, a row vector (one row, four
columns), is the input matrix. result and verify are initially null matrices.

1

2

3

4

5

6

Example Program: Rewriting roots.m in C++ (ex8.cpp)

9-15

3 Call the example_roots() function and place the return value in the matrix
result.

4 Call the MATLAB C++ Math Library’s version of roots() and store the
return value in the matrix verify. verify will be used to confirm that the
rewriting of roots produces the correct result.

5 Print the input to example_roots(). Print the output from
example_roots().

6 Verify the result. The matrix verify contains the correct result. The
mwArray class provides an overloaded operator==(), which makes
comparing two matrices for equality easy.

9 Translating from MATLAB to C++

9-16

The second part of the example is the example_roots() function itself. This
function is part of the same file as the main program shown above.

#include <stdlib.h>
#include "matlab.hpp"

// EXAMPLE_ROOTS(C) computes the roots of the polynomial whose
// coefficients are the elements of the vector C. If C has N+1
// components, the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).
mwArray example_roots(mwArray c)
{
 mwArray n, inz, nnz, r, a;
 mwIndex icolon;

 // Make sure number of dimensions is not greater than 1.
 n = size(c);
 if (all(n > 1.0))
 error("Must be a vector");

 n = max(n); // <5>
 c = transpose(c(icolon)); // Make sure it's a row vector.
 inz = find(abs(c)); // Find all nonzero elements.
 nnz = max(size(inz)); // Count nonzero elements.

 // Test all elements against zero.
 if (!(nnz == 0.0))
 {
 c = c(ramp(inz(1), inz(nnz))); //Strip leading/trailing 0's
 r = zeros(n - inz(nnz), 1); //Remember trailing 0's
 }

 // Polynomial roots via a companion matrix
 n = max(size(c)); // Size of the largest dimension of c
 a = diag(ones(1, n - 2.0), -1.0); // Create a row vector of 1's.
 if (n > 1.0)
 a(1,icolon) = -c(ramp(2, n)) / c(1);
 r = vertcat(r, eig(a));

 return r;
}

2

3

4

5

6

7

8

9

10

1

Example Program: Rewriting roots.m in C++ (ex8.cpp)

9-17

The numbered items in the list below correspond to the numbered sections of
code example:

1 Include header files. matlab.hpp declares the MATLAB C++ Math Library’s
data types and functions. matlab.hpp includes iostream.h, which declares
the input and output streams cin and cout. stdlib.h contains the
definition of EXIT_SUCCESS.

2 Declare the C++ function example_roots(). We can’t use the name roots()
because the MATLAB C++ Math Library defines a roots() function with
exactly the same number and type of input and output arguments.
example_roots() has one input and one output, both of which are matrices.
The input argument is not declared const because example_roots() stores
temporary results in c.

3 Declare the matrix and index variables. All variables used in the program
must be declared before being used. Since icolon is declared using the
default mwIndex constructor, this variable acts like MATLAB’s : operator
when used in array indexing expressions. Declaring a variable like this is
more efficient than repeatedly calling the colon() function. See
“Programming Efficient Indices” in Chapter 4 for more information.

4 Check for valid inputs. Determine the size of the input matrix and store the
result (a 1-by-2 matrix, i.e., a vector) in the variable n. At least one of the
dimensions of the input matrix must be equal to one, that is, the matrix
must be a vector. Report an error to the user and terminate if the matrix is
malformed. Calling the error() function causes a runtime exception to be
thrown.

5 Determine the size of the largest dimension of the input matrix. n is now a
1-by-1 matrix: a scalar. Use the colon operator (here represented by the
variable icolon) to extract the input matrix into a column vector. Transpose
this vector to get a row vector. The root-finding algorithm below requires
that the matrix be a row vector. You could improve the efficiency here by
testing the dimensions of the input matrix and transforming them only
when necessary.

6 Find all the nonzero elements of the input matrix. Store the result in a
vector. Then count the number of nonzero elements. Since inz is a vector,
size() returns a vector [1 N], where N is the length of the vector. N is the
count of elements in inz.

9 Translating from MATLAB to C++

9-18

7 Strip leading zeros and delete them. Strip trailing zeros, but remember
them as roots at zero. It is possible that the input matrix was full of zeros.
In this case, find() will have returned a null matrix and nnz will be equal
to 0. Note that wrapping the logical expression with all() is not necessary
in this case, since nnz is known to be a scalar.

If the input matrix did not contain all zeros, inz contains the nonzero
elements. Replace the input matrix with a vector 1,2,...,N where N is the
number of nonzero elements originally in the input matrix. The result from
the call to ramp() goes from the first nonzero index to the last.

Set r to a column vector of zeros, with one row for each trailing zero element
of the input matrix. The arguments to the zeros() function are row count
and column count.

8 Determine the size of the largest dimension of the input matrix, which may
have changed, since the zero elements have been removed from the matrix.
Use this size to form a diagonal matrix, with 1’s on the -1 diagonal.

9 If c is not empty, replace the first row of matrix a with the vector resulting
from dividing the negative of the 2,...,N elements of c (enumerated by the
call to ramp()) by c(1). This type of assignment, where an indexing
expression appears on the left-hand side, is the only way to modify the
contents of a matrix.

10 Vertically concatenate the matrices r and eig(a). The number of columns in
both matrices must be the same. The rows of eig(a) are placed below the
rows (in this case, the single row) of r. Reassign the result to r. Return the
matrix r. Unlike MATLAB, C++ requires an explicit return statement.

Output
The program produces this output:

x =
 [
 1 -6 -72 -27
]

example_roots(x) =

Example Program: Rewriting roots.m in C++ (ex8.cpp)

9-19

 1.0e+01 *

 [
 1.21229 ;
 -0.57345 ;
 -0.03884
]

Success!

9 Translating from MATLAB to C++

9-20

10

mwArray Class Interface

Introduction . 10-2

Constructors . 10-4

Indexing and Subscripts 10-7
Array Indexing 10-7
Cell Content Indexing 10-8
Structure Field Indexing 10-9

User-Defined Conversions 10-10

Memory Management 10-11

Operators . 10-12

Array Size . 10-14

Extracting Data from an mwArray 10-16
GetData() . 10-16
SetData() . 10-16
ExtractScalar() and ExtractData() 10-17
ToString() . 10-18

10 mwArray Class Interface

10-2

Introduction
The mwArray class public interface (those functions you can call directly) is
relatively small, consisting of constructors and a destructor, overloaded new
and delete operators, one user-defined conversion, indexing operators and
functions, the assignment operator, input and output operators, and array size
query routines. Since the mwArray public interface is relatively small, it is not
likely to require extensive modification in future versions of the library.

The mwArray’s public interface does not contain any mathematical operators or
functions. This does not mean, of course, that these operators and functions are
not available. To the contrary, the MATLAB C++ Math Library contains more
than 400 mathematical routines. These routines use the mwArray class
interface; however, they are not member functions.

Both the users of a library and its developers benefit from a relatively small,
static interface for the mwArray class. The smaller interface is easier to
understand than a larger one simply because it contains fewer routines.
Similarly, the uniform interface for the mathematical functions, in which the
rules are the same for all functions, is easier to learn. By virtue of being
excluded from the interface of the mwArray class, the mathematical routines
gain a uniformity of interface.

For example, consider the functions transpose() and eig(). An argument
could be made that transpose() should be a member function of mwArray, for
then it would be invoked by the syntax A.transpose(), which is quite natural
to both mathematicians and C++ programmers. However, the case for eig() as
a member function is much weaker. eig() can be called with several different
types of arguments. In at least one of the combinations,
[V, D] = eig(A, B), it is not clear which, if any, of the arguments is the
‘‘object’’ on which eig() is invoked. Furthermore, because of the way in which
multiple return arguments are implemented in the MATLAB C++ Math
Library, picking an arbitrary input argument to act as the ‘‘object’’ produces a
confusing interleaving of input and output arguments.

This problem arises with many functions in the MATLAB C++ Math Library,
making them inappropriate mwArraymember functions. Rather than divide the
mathematical routines into two groups – member functions and nonmember
functions – we decided that a uniform interface to the mathematical functions
was more important than dogmatically adhering to the object.function()

10-3

syntax of C++. Therefore, none of the MATLAB mathematical routines are
member functions of mwArray.

10 mwArray Class Interface

10-4

Constructors
The mwArray interface provides many useful constructors. You can construct an
mwArray object from the following types of data: a numerical scalar, an array of
scalars, a string, an mxArray *, or another mwArray object. This table lists the
most commonly used constructors.

Table 10-1: mwArray Constructors

Constructor Creates Example

mwArray() Uninitialized
array

mwArray A;

mwArray(const char *) String array mwArray A("MATLAB Rules");

mwArray(int32, int32,
double*, double*)

Complex array double real[] = { 1, 2, 3, 4 };
double imag[] = { 5, 6, 7, 8 };
mwArray A(2,2,real,imag);

mwArray(const mwArray&) Copy of input
array

mwArray A = rand(4);
mwArray B(A);

mwArray(const mxArray *) Copy of mxArray* mxArray *m = mlfScalar(1);
mwArray mat(m);

mwArray(double, double,
double)

Ramp mwArray A(1.2, 0.1, 3.5);

mwArray(int32, int32, int32) Integer ramp mwArray A(1, 2, 9);

mwArray(const mwSubArray&) Array from
subarray (used in
indexing)

mwArray A = rand(4);
mwArray B(A(3,3));

mwArray(double) Scalar double
array

mwArray A(17.5);

mwArray(int) Scalar integer
array

mwArray A(51);

Constructors

10-5

Each constructor is described below:

• mwArray()

Create an uninitialized array. An uninitialized array produces warnings
when passed to MATLAB C++ Math Library functions. If an array is created
using this default constructor, a value must be assigned to it before passing
it to a MATLAB C++ Math Library function.

To create an empty double matrix that corresponds to [] in MATLAB, use
the function empty().

• mwArray(const char *str)

Create an array from a string. The constructor copies the string.

• mwArray(int32 rows, int32 cols, double *real, double *imag = 0):
Create an mwArray from either one or two arrays of double-precision
floating-point numbers. If two arrays are specified, the constructor creates a
complex array; both input arrays must be the same size. The data in the
input arrays must be in column-major order, the reverse of C++’s usual
row-major order. See Chapter 3, “Working with MATLAB Arrays”, for more
information on the difference between row- and column-major data order.
This constructor copies the input arrays.

Note that the last argument, imag, is assigned a value of zero in the
constructor. imag is an optional argument. When you call this constructor,
you do not need to specify the optional argument. Refer to a C++ reference
guide for a more complete explanation of default arguments.

• mwArray(const mwArray &mtrx)

Copy an mwArray. This constructor is the familiar C++ copy constructor,
which copies the input array. For efficiency, this routine does not actually
copy the data until the data is modified. The data is referenced through a
pointer until a modification occurs.

• mwArray(const mxArray *mtrx)

Make an mwArray from an mxArray *, such as might be returned by any of
the routines in the MATLAB C Math Library or the Application Program
Interface Library. This routine does not copy its input array, yet the
destructor frees it; therefore the input array must be allocated on the heap.
In most cases, for example, with matrices returned from the Application
Program Interface Library, this is the desired behavior.

10 mwArray Class Interface

10-6

• mwArray(double start, double step, double stop)

Create a ramp. This constructor operates just like the MATLAB colon
operator. For example, the call mwArray(1, 0.5, 3) creates the vector
[1, 1.5, 2, 2.5, 3].

• mwArray(int32 start, int32 step, int32 stop)

Create an integer ramp.
• mwArray(const mwSubArray & a)

Create an mwArray from an mwSubArray. When an indexing operation is
applied to an array, the result is not another array, but an mwSubArray
object. An mwSubArray object remembers the indexing operation. Evaluation
of the operation is deferred until the result is assigned or used in another
expression. This constructor evaluates the indexing operation encoded by the
mwSubArray object and creates the appropriate array.

• mwArray(double)

Create a 1-by-1 mwArray from a double-precision floating-point number.
• mwArray(int)

Create an mwArray from an integer.

See Chapter 3, “Working with MATLAB Arrays” for more examples of how to
use constructors.

Indexing and Subscripts

10-7

Indexing and Subscripts
The mwArray interface supports multidimensional indexing, including cell
array and structure indexing:

• The operator () supports multidimensional indexing into arrays, including
access to cells or structures that make up an array.

• The member function cell() supports indexing into the contents of a cell.

• The member function field() supports indexing into the contents of a
structure field.

See Chapter 4, “Indexing into Arrays” for examples of how these routines are
used.

Array Indexing
Array indexing is implemented through the interaction of three classes:
mwArray, mwSubArray, and mwIndex. When applied to an mwArray, operator()
returns an mwSubArray. The mwSubArray ‘‘remembers’’ the indexing operation
and defers evaluation until the result is either assigned or referred to.

You can pass an integer, double, mwArray, the contents of a cell or structure
field, or an indexing expression as an argument to operator().

The mwArray class interface contains a series of operator() member functions
that support n-dimensional indexing. Several of the functions are listed here.

This pair of operator() member functions supports one-dimensional indexing
and indexing into arrays with more than 32 dimensions. The second non-const
signature supports calls that are targets of the assignment operator and modify
the contents of an array.

mwArray operator()(const mwVarargin &a) const;
mwSubArray operator()(const mwVarargin &a);

This pair of operator()member functions supports two-dimensional indexing
The second non-const signature supports calls that are valid targets for the
assignment operator.

mwArray operator()(const mwArray &a1, const mwArray &a2) const;
mwSubArray operator()(const mwArray &a1,

const mwArray &a2);

10 mwArray Class Interface

10-8

This pair of operator() member functions supports the maximum number of
arguments. To index into more than 32 dimensions, you must construct an
mwVarargin object.

mwArray operator()(const mwArray &a1,
 const mwArray &a2,
const mwArray &a3,
.
.
.
const mwArray &a32) const;

mwSubArray operator()(const mwArray &a1,
const mwArray &a2,
const mwArray &a3,
.
.
.
const mwArray &a32);

Cell Content Indexing
These two versions of the cell() member function let you index into the
contents of a cell. For example, A.cell(1,2) refers to the contents of the cell in
the second column of the first row in an array A.

The cell() member functions follow the library convention for varargin
functions. You can pass up to 32 arguments to the functions. To index into more
than 32 dimensions, you must construct an mwVarargin object and pass it as
the first argument. That object allows you to reference an additional 32
arguments, the first of which can again be an mwVarargin object.

The second non-const signature supports calls that are targets of the
assignment operator and modify the contents of a cell.

mwArray cell(const mwVarargin &RI1,
const mwArray &OI2=mwArray::DIN,
const mwArray &OI3=mwArray::DIN,
.
.
.
const mwArray &OI32=mwArray::DIN) const;

Indexing and Subscripts

10-9

mwSubArray cell(const mwVarargin &RI1,
const mwArray &OI2=mwArray::DIN,
const mwArray &OI3=mwArray::DIN,
.
.
.
const mwArray &OI32=mwArray::DIN);

Structure Field Indexing
The two versions of the field() member function let you reference the field of
a structure. For example, A.field("name") accesses the contents of the field
called name within the structure A.

The second non-const signature supports calls that are targets of the
assignment operator and modify the contents of a field.

mwArray field(const char *fieldname) const;
mwSubArray field(const char *fieldname);

10 mwArray Class Interface

10-10

User-Defined Conversions
There is only one user-defined conversion: from an mwArray to a
double-precision floating-point number. This conversion function only works if
the mwArray is scalar (1-by-1) and noncomplex:

operator double() const;

Memory Management

10-11

Memory Management
Overloading the operators new and delete provides the necessary hooks for
user-defined memory management. The MATLAB C++ Math Library has its
own memory management scheme (See “Memory Management” in Chapter 7
for details).

If this scheme is inappropriate for your application, you can modify it.
However, you should not do so by overloading new and delete, because the
mwArray class already contains overloaded versions of these operators:

• void *operator new(size_t size)

• void operator delete(void *ptr, size_t size)

10 mwArray Class Interface

10-12

Operators
In addition to the indexing operators, there are three additional operators in
the mwArray interface. The first two operators, << and >>, are used for stream
input and output. Technically, these stream operators are not member
functions; they are friend functions:

• friend inline ostream& operator<<(ostream &os, const mwArray&)

Calling this operator inserts an mwArray object into the given stream. If the
stream is cout, the contents of the mwArray object appear on the terminal
screen or elsewhere if standard output has been redirected on the command
line. This function simply invokes Write() as described below.

• friend inline istream& operator>>(istream &is, mwArray&)

This is the stream extraction operator, capable of extracting, or reading, an
mwArray from a stream. The stream can be any C++ stream object, for
example, standard input, a file, or a string. This function simply invokes
Read() as described below. “Using Array Stream I/O” in Chapter 8 describes
the syntax of the input format.

Note that the >> and << operator functions do not read and write MAT-files.

The stream operators call Read() and Write(), mwArray public member
functions.

Note Write() writes arrays in exactly the format that Read() reads them.
An array written by Write() can be read by Read(). These functions read and
write full double arrays only. Read() does not read sparse arrays, cell arrays,
or structures. Use MAT-files to save and restore these arrays.

• void Read(istream&)

Reads an mwArray from an input stream. An array definition consists of an
optional scale factor and asterisk, *, followed by a bracket [, one or more
semicolon-separated rows of double-precision floating-point numbers, and a
closing bracket]. “Using Array Stream I/O” in Chapter 8 describes the input
format in more detail.

Operators

10-13

• void Write(ostream&, int32 precision =5, int32 line_width =75)
const

Formats mwArray objects using the given precision (number of digits) and
line width, and then writes the objects into the given stream. operator<<()
uses the default values shown above, which are appropriate for
80-character-wide terminals.

The third operator is =, the assignment operator. C++ requires that the
assignment operator be a member function. Like the copy constructor (see
“Constructors” on page 10-4), the assignment operator does not actually make
a copy of the input array, but rather references (keeps a pointer to) the input
array’s data; this is an optimization made purely for efficiency, and has no
effect on the semantics of assignment. If you write A = B and then modify B,
the values in A will remain unchanged:

• mwArray &operator=(const mwArray&);

10 mwArray Class Interface

10-14

Array Size
In MATLAB, the size() function returns the size of an array as an array. The
MATLAB C++ Math Library provides a corresponding version of size() that
also returns an array. Because this C++ version allocates an array to hold just
two integers, it is not efficient. The mwArray Size member functions below
return the size of an array more efficiently.

An array (a matrix is a special case) has two sizes: the number of its dimensions
(for matrices, always two) and the actual size of each dimension. You can use
these Size() functions to determine both the number of dimensions and the
size of each dimension:

• int32 Size() const

Return the number of dimensions.
• int32 Size(int32 dim) const

Return the size (number of elements) of the indicated dimension.
• int32 Size(int32* dims, int maxdims=2) const

Determine the sizes of all the dimensions of the array and return them via
the given integer array, dims. maxdims is the maximum number of
dimensions the function should return. The input integer array dims must
contain enough space to store at least maxdims integers. If maxdims is less
then the number of dimensions of the mxArray, the last dimension returned
is the product of the remaining dimensions. This function’s return value is
the number of dimensions of the array.

For example, this code demonstrates the difference in efficiency between one of
the mwArray Size member functions and the nonmember function.

int32 dims[2];
mwArray mat = rand(4,4);
mwArray sz;

// Use one of the Size member functions.
// Requires 8 bytes to return two integers, 4 and 4. No memory is
// dynamically allocated.
mat.Size(dims);

// Use the library's size function.
// Requires dynamic memory allocation of at least 85 bytes for

Array Size

10-15

// the same two integers: 10 times more space, plus the
// inefficiency of data access (via pointers).
sz = size(mat);

10 mwArray Class Interface

10-16

Extracting Data from an mwArray
The MATLAB C++ Math Library supports several functions that let you access
the data inside an mwArray object. All of these functions are mwArray member
functions. For example, if you’re interacting with any of the other MATLAB
external interfaces – the MATLAB C Math Library, MEX files, or the MATLAB
Engine – you may occasionally need to access the data inside an mwArray object.

GetData()
The most basic of the functions is GetData(), which returns a pointer to the
array data structure. This pointer is of type mxArray*. The array structure is
an opaque data type, one in which the field names are unknown to the user.
Access functions allow you to read and write the fields of the structure.

For example, to retrieve a pointer to the C++ array of double precision floating
point numbers stored in an mxArray *, call mxGetPr() (to retrieve the real part
of the array) or mxGetPi() (to retrieve the complex part). You can combine
these calls with calls to GetData():

mwArray A = magic(17);
double *real_data = mxGetPr(A.GetData());

Note Be careful with the pointers that GetData(), mxGetPr(), and
mxGetPi() return. You must never free them or assign to them because the
functions return pointers to the real data stored in the mwArray. Freeing them
will cause a memory error later on.

For more details on the mxArray type, see the MATLAB Application Program
Interface Guide or the header file <matlab>/extern/include/matrix.h.
“Accessing Online Reference Documentation” on page 1-7 describes how to
access the Help Desk.

SetData()
Paired with GetData() is SetData(), which allows you to change the array
data pointed to by an mwArray object. Use SetData() with care; it allows you to
fool the mwArray reference counting system, which will lead either to memory

Extracting Data from an mwArray

10-17

leaks or program crashes. For example, never set the data of one mwArray to the
data returned by GetData() on another mwArray:

mwArray A = rand(4), B = magic(10);
B.SetData(A.GetData()); // NEVER, NEVER do this.

Note Unless you really know what you are doing, you should never call
SetData(). Use the assignment operator or the mwArray constructors instead
to set the data in an array.

ExtractScalar() and ExtractData()
ExtractScalar() and ExtractData() provide much safer, though somewhat
slower, access to the raw data in an mwArray object. Two versions of
ExtractScalar() pull a single scalar from a real or complex array. Three
versions of ExtractData() copy the array data into the C++ arrays that you
supply.

In the example below, A is an 11-by-11 magic square with a correspondingly
sized random complex component. The numerical arguments to
ExtractScalar() indicate which scalar to extract; cdata is passed by reference
so that it can be modified.

mwArray A = magic(11) + (rand(11) * i());

double rdata, cdata;
rdata = A.ExtractScalar(9); // Real part only
rdata = A.ExtractScalar(cdata, 17); // Real and complex part

int32 *integers = new int32[11 * 11];
A.ExtractData(integers); // Cast doubles to integers

double *real_data = new double [11 * 11];
double *complex_data = new double [11 * 11];
A.ExtractData(real_data); // Real part only
A.ExtractData(real_data, complex_data); // Real and complex part

ExtractScalar() treats M-by-N arrays as 1-by-(M*N) vectors.
A.ExtractScalar(9) is the first element in the ninth row, or alternatively, the

10 mwArray Class Interface

10-18

9th element in the first column; A.ExtractScalar(cdata, 17) is the second
element in the sixth row, or alternatively the sixth element in the second
column. The two ExtractScalar() functions count down the columns,
wrapping from the bottom of the Nth column to the top of the (N+1)th column.

ToString()
To extract a string from an mwArray, you can use the mwArray member function
ToString(). For example,

mwArray A = "MATLAB";
mwString s = A.ToString();
char *c = strdup((char *)s);

The mwString class contains a dynamically allocated string and handles its
memory management, including freeing the string when the mwString object
goes out of scope. The mwString class has a cast operator that converts it to a
char *.

You can safely use ToString() to construct char * function arguments, for
example, strcat(str, A.ToString()). If you need to refer to the string in a
context beyond the scope of the mwString object, use strdup() to make a copy
of the string for yourself. Don’t forget to free the copy when you’re done with it.

Note Casting an mwString to a char * does not make a copy of the string.
This pointer will be freed when the mwString itself goes out of scope. Do not
free it yourself.

11

Library Routines

Introduction . 11-2

Operators . 11-3
Arithmetic Operators 11-3
Relational Operators 11-4
Miscellaneous Operators 11-5

MATLAB Functions 11-7
General Purpose Commands 11-8
Operators and Special Functions 11-8
Elementary Matrices and Matrix Manipulation 11-13
Elementary Math Functions 11-16
Specialized Math Functions 11-19
Numerical Linear Algebra 11-21
Data Analysis and Fourier Transform Functions 11-24
Polynomial and Interpolation Functions 11-26
Function Functions and ODE Solvers 11-28
Character String Functions 11-29
File I/O Functions 11-31
Data Types . 11-33
Time and Dates 11-34
Multidimensional Array Functions 11-35
Cell Array Functions 11-35
Structure Functions 11-36
Sparse Matrix Functions 11-36

Utility Functions 11-39

Array Access Functions 11-44

11

11 Library Routines

11-2

Introduction
This section is a reference guide for the operators that you use with arrays and
the more than 400 functions contained in the MATLAB C++ Math Library.

The chapter consists of four sections:

• Operators

• MATLAB Functions

• Utility Functions

• Array Access Functions

The tables that categorize the functions include a short description of each
function. Refer to the online MATLAB C++ Math Library Reference for a
complete definition of the function syntax and arguments.

Operators

11-3

Operators
The majority of operators in the MATLAB C++ Math Library fall into two
groups: the arithmetic operators that perform arithmetic on their operands
and the relational operators that perform logical operations on their operands.
Both types of operators return an array of results.

Arithmetic operators operate either in an element-wise fashion, like +
(addition), or in an operator-dependent manner, like * (matrix multiplication).
Relational operators, on the other hand, always perform an
element-by-element comparison of their operands. Each element in the
returned array is the result of applying the operation to the corresponding
elements of the operand array. For example, if A, B, and C are matrices, and
C = A < B, then C[i] = (A[i] < B[i]).

All operators, including a third group of miscellaneous operators, expect
mwArray objects as operands. If you use scalars, you call the standard C++
operators. 4 + 5, for example, does not use the matrix addition operator.

Arithmetic Operators
These binary operators perform arithmetic on their operands. The two
operands for an element-wise arithmetic operator must be the same size.
Operators that are not element-wise are not so uniform; they may have other
operator-specific restrictions on operand size.

Table 11-1: C++ Arithmetic Operators

C++
Operator

Definition Equivalent C++ Function

+ Element-wise addition plus()

– Element-wise
subtraction

minus(), unaryminus()

* Matrix multiplication mtimes()

/ Matrix right division mrdivide()

^ Matrix exponentiation mpower()

11 Library Routines

11-4

Because the MATLAB syntax differs from the C++ syntax, several MATLAB
operators are available in C++ as functions rather than as operators.

Relational Operators
The relational operators compare two arrays and return an identically sized
array of 1’s and 0’s with the logical flag set. They perform an element-wise
comparison of their inputs. The operators work as follows: given an expression
C = (A op B), where op is one of the operators below, then C[i] == 1 if
(A[i] op B[i]) is true and C[i] == 0 otherwise.

For example, if A is the matrix [1 2 ; 3 4] and B is the matrix
[0 2 ; 1 6], then A > B is [1 0 ; 1 0]. The result contains 1’s where
the greater-than relationship between the corresponding elements of A and B is
true, and the result contains 0’s where it is false. The result of a relational
operation is a logical array.

Table 11-2: C++ Functional Equivalents to MATLAB Operators

MATLAB
Operator
only

Definition Equivalent C++ Function

\ Matrix left-division mldivide()

.\ Element-wise left-division ldivide()

./ Element-wise right-division rdivide()

.* Element-wise multiplication times()

.^ Element-wise exponentiation power()

' Complex-conjugate
transpose

ctranspose()

.' Noncomplex transpose transpose()

Operators

11-5

“Using Logical Subscripts” in Chapter 4 provides information on logical
indexing.

Miscellaneous Operators
These operators are divided into three groups: indexing, logical, and stream.
The stream operators are the only operators that do not return an array. In
accordance with general practice in C++, the stream operators return their
stream operand.

Table 11-3: C++ Relational Operators

C++ Operator Definition Equivalent C++ Function

> Greater than gt()

< Less than lt()

>= Greater than or
equal

ge()

<= Less than or equal le()

== Strictly equal eq()

!= Not equal neq(), ne()

Table 11-4: C++ Miscellaneous Operators

C++ Operator Definition Equivalent C++
Function

(x) One-dimensional indexing Not applicable

(x, y) Two-dimensional indexing Not applicable

| Logical OR or_func()

& Logical AND and_func()

~ Logical NOT not_func()

11 Library Routines

11-6

>> Stream extraction (input) Not applicable

<< Stream insertion (output) Not applicable

Table 11-4: C++ Miscellaneous Operators (Continued)

C++ Operator Definition Equivalent C++
Function

MATLAB Functions

11-7

MATLAB Functions
The MATLAB C++ Math Library contains more than 400 functions, broadly
divided into two groups: MATLAB functions, or functions that have
equivalents in interpreted MATLAB; and utility functions, or functions that
are necessary because of the absence of the interpreted MATLAB environment.
The great majority of the functions fall into the first category, MATLAB
functions. This section describes the MATLAB functions.

Each MATLAB function in the MATLAB C++ Math Library is identical to its
counterpart in interpreted MATLAB. A brief description accompanies each
function listed in the tables below. For additional information on the inputs
and behavior of these functions, see the online MATLAB C++ Math Library
Reference. “Accessing Online Reference Documentation” on page 1-7 describes
how to access the Help Desk. Also refer to the section “How to Call C++ Library
Functions” in Chapter 5 for more details on how to call these functions.

There are two categories of MATLAB functions:

• C++ versions of the MATLAB Built-In and MATLAB M-File functions.

Each of the C++ built-in and M-file functions is named after its MATLAB
equivalent. For example, the C++ version of the MATLAB eigenvalue
function is named eig().

• C++ functional versions of MATLAB operators.

For example, the C++ version of the MATLAB matrix multiplication
operator, *, is a function named mtimes().

11 Library Routines

11-8

General Purpose Commands

Operators and Special Functions

Managing Variables

Function Purpose

format Set output format.

load Retrieve variables from disk.

save Save variables on disk.

Arithmetic Operator Functions

Function Purpose

kron Kronecker tensor product.

minus Array subtraction (–).

mldivide Matrix left division (\).

mpower Matrix power (^).

mrdivide Matrix right division (/).

mtimes Matrix multiplication (*).

plus Array addition (+).

power Array power (.^).

rdivide Array right division (./).

times Array multiplication (.*).

unaryminus Unary minus (–).

MATLAB Functions

11-9

Relational Operator Functions

Function Purpose

eq Equality (==).

ge Greater than or equal to (>=).

gt Greater than (>).

le Less than or equal to (<=).

lt Less than (<).

neq Inequality (~=).

Logical Operator Functions

Function Purpose

all True if all elements of vector are nonzero.

and_func Logical AND (&).

any True if any element of vector is nonzero.

not_func Logical NOT (~).

or_func Logical OR (|).

xor_func Logical exclusive-or operation.

Set Operators

Function Purpose

intersect Set intersection of two vectors.

ismember True for set member.

setdiff Set difference.

setxor Set exclusive OR.

11 Library Routines

11-10

union_func Set union.

unique Set unique.

Special Operator Functions

Function Purpose

colon Colon operator (:).

ctranspose Complex Conjugate Transpose (').

end Indexes to the end of an array.

horzcat Horizontal concatenation.

transpose Noncomplex conjugate transpose (.').

vertcat Vertical concatenation.

Logical Functions

Function Purpose

find Find indices of nonzero elements.

finite Make elements finite.

ischar True for character arrays.

isempty True for empty array.

isfinite True for finite elements of an array.

isieee True for IEEE floating-point arithmetic.

isequal True for input arrays of the same type, size, and contents.

isinf True for infinite elements.

isletter True for string elements that are letters of the alphabet.

Set Operators (Continued)

Function Purpose

MATLAB Functions

11-11

islogical True for logical arrays.

isnan True for Not-a-Number.

isreal True for noncomplex matrices.

isspace True for whitespace characters in string matrices.

isstr True for text strings.

isstudent True for student editions of MATLAB.

isunix True on UNIX machines.

isvms True on computers running DEC’s VMS.

logical Convert numeric values to logical.

tobool Convert an array to a Boolean value by reducing the rank
of the array to a scalar.

Bitwise Functions

Function Purpose

bitand_func Bitwise AND.

bitcmp Complement bits.

bitget Get bit.

bitmax Maximum floating-point integer.

bitor_func Bitwise OR.

bitset Set bit.

bitshift Bitwise shift.

bitxor Bitwise XOR.

Logical Functions (Continued)

Function Purpose

11 Library Routines

11-12

MATLAB as a Programming Language

Function Purpose

feval Function evaluation.

lasterr Last error message.

mfilename Return the NULL array. M-file execution does not apply to
stand-alone applications.

nargchk Validate number of input arguments.

xyzchk Check arguments to 3-D data routines.

 Message Display

Function Purpose

error Display message and abort function.

warning Display warning message.

MATLAB Functions

11-13

Elementary Matrices and Matrix Manipulation

Elementary Matrices

Function Purpose

eye Identity matrix.

linspace Linearly spaced vector.

logspace Logarithmically spaced vector.

meshgrid X and Y arrays for 3-D plots.

ones Matrix of 1’s.

rand Uniformly distributed random numbers.

randn Normally distributed random numbers.

zeros Matrix of 0’s.

Basic Array Information

Function Purpose

disp Display text or matrix

isempty True for empty matrix.

isequal True for input arrays of the same type, size, and contents.

islogical True for logical arrays.

isnumeric True for numeric arrays.

length Length of vector.

logical Convert numeric values to logical values.

ndims Number of dimensions (always 2).

size Size of matrix.

11 Library Routines

11-14

Matrix Manipulation

Function Purpose

cat Concatenate arrays.

diag Create or extract diagonals.

fliplr Flip matrix in the left/right direction.

flipud Flip matrix in the up/down direction.

ipermute Inverse of permute.

permute Permute array dimensions.

repmat Replicate and tile an array.

reshape Change size.

rot90 Rotate matrix 90 degrees.

shiftdim Shift dimensions.

tril Extract lower triangular part.

triu Extract upper triangular part.

Special Constants

Function Purpose

computer Computer type.

eps Floating-point relative accuracy.

flops Floating point operation count. (Not reliable in
stand-alone applications.)

inf Infinity.

nan Not-a-Number.

pi 3.1415926535897....

MATLAB Functions

11-15

realmax Largest floating-point number.

realmin Smallest floating-point number.

Specialized Matrices

Function Purpose

compan Companion matrix.

hadamard Hadamard matrix.

hankel Hankel matrix.

hilb Hilbert matrix.

invhilb Inverse Hilbert matrix.

magic Magic square.

pascal,
pascal_func

Pascal matrix.

rosser Classic symmetric eigenvalue test problem.

toeplitz Toeplitz matrix.

vander Vandermonde matrix.

wilkinson Wilkinson’s eigenvalue test matrix.

Special Constants (Continued)

Function Purpose

11 Library Routines

11-16

Elementary Math Functions

Trigonometric Functions

Function Purpose

acos Inverse cosine.

acosh Inverse hyperbolic cosine.

acot Inverse cotangent.

acoth Inverse hyperbolic cotangent.

acsc Inverse cosecant.

acsch Inverse hyperbolic cosecant.

asec Inverse secant.

asech Inverse hyperbolic secant.

asin Inverse sine.

asinh Inverse hyperbolic sine.

atan Inverse tangent.

atan2 Four quadrant inverse tangent.

atanh Inverse hyperbolic tangent.

cos Cosine.

cosh Hyperbolic cosine.

cot Cotangent.

coth Hyperbolic cotangent.

csc Cosecant.

csch Hyperbolic cosecant.

sec Secant.

sech Hyperbolic secant.

MATLAB Functions

11-17

sin Sine.

sinh Hyperbolic sine.

tan Tangent.

tanh Hyperbolic tangent.

 Exponential Functions

Function Purpose

exp Exponential.

log Natural logarithm.

log10 Common (base 10) logarithm.

log2 Base 2 logarithm and dissect floating-point numbers.

nextpow2 Next higher power of 2.

pow2 Base 2 power and scale floating-point numbers.

reallog Guarantee output from log is a noncomplex matrix.

reallog10 Guarantee output from log10 is a noncomplex matrix.

realpow Guarantee output from power is a noncomplex matrix.

realsqrt Guarantee output from sqrt is a noncomplex matrix.

sqrt Square root.

 Complex Functions

Function Purpose

abs Absolute value.

angle Phase angle.

Trigonometric Functions (Continued)

Function Purpose

11 Library Routines

11-18

conj Complex conjugate.

cplxpair Sort numbers into complex conjugate pairs.

imag Complex imaginary part.

isreal True for noncomplex arrays.

real Real part of complex array.

unwrap Remove phase angle jumps across 360° boundaries.

 Rounding and Remainder Functions

Function Purpose

ceil Round toward plus infinity.

fix Round toward zero.

floor Round toward minus infinity.

mod Modulus (signed remainder after division).

rem Remainder after division.

round Round toward nearest integer.

sign Signum function.

 Complex Functions (Continued)

Function Purpose

MATLAB Functions

11-19

Specialized Math Functions

Specialized Math Functions

Function Purpose

beta Beta function.

betainc Incomplete beta function.

betaln Logarithm of beta function.

cross Vector cross product.

ellipj Jacobi elliptic functions.

ellipke Complete elliptic integral.

erf Error function.

erfc Complementary error function.

erfcx Scaled complementary error function.

erfinv Inverse error function.

expint Exponential integral function.

gamma Gamma function.

gammainc Incomplete gamma function.

gammaln Logarithm of gamma function.

legendre Legendre functions.

 Number Theoretic Functions

Function Purpose

factor Prime factors.

gcd Greatest common divisor.

isprime True for prime numbers.

11 Library Routines

11-20

lcm Least common multiple.

nchoosek All combinations of n elements taken k at a time.

perms All possible permutations.

primes Generate list of prime numbers.

rat Rational approximation.

rats Rational output.

Coordinate System Transforms

Function Purpose

cart2pol Transform Cartesian coordinates to polar.

cart2sph Transform Cartesian coordinates to spherical.

pol2cart Transform polar coordinates to Cartesian.

sph2cart Transform spherical coordinates to Cartesian.

 Number Theoretic Functions (Continued)

Function Purpose

MATLAB Functions

11-21

Numerical Linear Algebra

Matrix Analysis

Function Purpose

det Determinant.

norm Matrix or vector norm.

normest Estimate the matrix 2-norm.

null Orthonormal basis for the null space.

orth Orthonormal basis for the range.

rank Number of linearly independent rows or columns.

rcond LINPACK reciprocal condition estimator.

rref Reduced row echelon form.

subspace Angle between two subspaces.

trace Sum of diagonal elements.

Linear Equations

Function Purpose

chol Cholesky factorization.

cond Condition number with respect to inversion.

condest 1-norm condition number estimate.

inv Matrix inverse.

lscov Least squares in the presence of known covariance.

lu Factors from Gaussian elimination.

nnls Nonnegative least-squares.

11 Library Routines

11-22

pinv Pseudoinverse.

qr Orthogonal-triangular decomposition.

Eigenvalues and Singular Values

Function Purpose

condeig Condition number with respect to eigenvalues.

eig Eigenvalues and eigenvectors.

hess Hessenberg form.

poly Characteristic polynomial.

polyeig Polynomial eigenvalue problem.

qz Generalized eigenvalues.

schur Schur decomposition.

svd Singular value decomposition.

Matrix Functions

Function Purpose

expm Matrix exponential.

funm Evaluate general matrix function.

logm Matrix logarithm.

sqrtm Matrix square root.

Linear Equations (Continued)

Function Purpose

MATLAB Functions

11-23

Factorization Utilities

Function Purpose

balance Diagonal scaling to improve eigenvalue accuracy.

cdf2rdf Complex diagonal form to real block diagonal form.

planerot Generate a Givens plane rotation.

qrdelete Delete a column from a QR factorization.

qrinsert Insert a column into a QR factorization.

rsf2csf Real block diagonal form to complex diagonal form.

11 Library Routines

11-24

Data Analysis and Fourier Transform Functions

Basic Operations

Function Purpose

cumprod Cumulative product of elements.

cumsum Cumulative sum of elements.

cumtrapz Cumulative trapezoidal numerical integration.

max Largest component.

mean Average or mean value.

median Median value.

min Smallest component.

prod Product of elements.

sort Sort in ascending order.

sortrows Sort rows in ascending order.

std Standard deviation.

sum Sum of elements.

trapz Numerical integration using trapezoidal method.

Finite Differences

Function Purpose

del2 Five-point discrete Laplacian.

diff Difference function and approximate derivative.

gradient Approximate gradient.

MATLAB Functions

11-25

Correlation

Function Purpose

corrcoef Correlation coefficients.

cov Covariance matrix.

subspace Angle between two subspaces.

Filtering and Convolution

Function Purpose

conv Convolution and polynomial multiplication.

conv2 Two-dimensional convolution.

deconv Deconvolution and polynomial division.

filter One-dimensional digital filter.

filter2 Two-dimensional digital filter.

Fourier Transforms

Function Purpose

fft Discrete Fourier transform.

fft2 Two-dimensional discrete Fourier transform.

fftn Multidimensional fast Fourier transform.

fftshift Move zeroth lag to center of spectrum.

ifft Inverse discrete Fourier transform.

ifft2 Two-dimensional inverse discrete Fourier transform.

ifftn Inverse multidimensional fast Fourier transform.

11 Library Routines

11-26

Polynomial and Interpolation Functions

Sound and Audio

Function Purpose

freqspace Frequency spacing for frequency response.

lin2mu Convert linear signal to mu-law encoding.

mu2lin Convert mu-law encoding to linear signal.

Data Interpolation

Function Purpose

griddata Data gridding.

icubic Cubic interpolation of 1-D function.

interp1 One-dimensional interpolation (1-D table lookup).

interp1q Quick one-dimensional linear interpolation.

interp2 Two-dimensional interpolation (2-D table lookup).

interpft One-dimensional interpolation using FFT method.

Spline Interpolation

Function Purpose

ppval Evaluate piecewise polynomial.

spline Piecewise polynomial cubic spline interpolant.

MATLAB Functions

11-27

Geometric Analysis

Function Purpose

inpolygon Detect points inside a polygonal region.

polyarea Area of polygon.

rectint Rectangle intersection area.

Polynomials

Function Purpose

conv Multiply polynomials.

deconv Divide polynomials.

mkpp Make piece-wise polynomial.

poly Construct polynomial with specified roots.

polyder Differentiate polynomial.

polyfit Fit polynomial to data.

polyval Evaluate polynomial.

polyvalm Evaluate polynomial with matrix argument.

residue Partial-fraction expansion (residues).

resi2 Residue of a repeated pole.

roots Find polynomial roots.

unmkpp Supply information about piecewise polynomial.

11 Library Routines

11-28

Function Functions and ODE Solvers

Optimization and Root Finding

Function Purpose

fmin Minimize function of one variable.

fmins Minimize function of several variables.

foptions Set minimization options.

fzero Find zero of function of one variable.

optimget Get optimization options structure parameter values.

optimset Create or edit optimization options parameter structure.

Numerical Integration (quadrature)

Function Purpose

dblquad Numerically evaluate double integral.

mquad Numerically evaluate integral, low-order method.

quad8 Numerically evaluate integral, high-order method.

Ordinary Differential Equation Solvers

Function Purpose

ode23 Solve differential equations, low-order method.

ode45 Solve differential equations, high-order method.

ode113 Solve non-stiff differential equations, variable order
method.

ode15s Solve stiff differential equations, variable-order method.

ode23s Solve stiff differential equations, low-order method.

MATLAB Functions

11-29

Character String Functions

ODE Option Handling

Function Purpose

odeget Extract properties from options structure created with
odeset.

odeset Create or alter options structure for input to ODE
solvers.

General

Function Purpose

blanks String of blanks.

char_func Create character array (string).

deblank Remove trailing blanks from a string.

double_func Convert to numeric.

str2mat Form text matrix from individual strings.

String Tests

Function Purpose

ischar True for character arrays.

isletter True for elements of the string that are letters of the
alphabet.

isspace True for whitespace characters in string arrays.

11 Library Routines

11-30

 String Operations

Function Purpose

findstr Find a substring within a string.

lower Convert string to lower case.

strcat String concatenation.

strcmp Compare strings.

strcmpi Compare strings ignoring case.

strjust Justify a character array.

strmatch Find possible matches for a string.

strncmp Compare the first n characters of two strings.

strncmpi Compare first n characters of strings ignoring case.

strrep Replace substrings within a string.

strtok Extract tokens from a string.

strvcat Vertical concatenation of strings.

upper Convert string to upper case.

Base Number Conversion

Function Purpose

base2dec Base to decimal number conversion.

bin2dec Binary to decimal number conversion.

dec2base Decimal number to base conversion.

dec2bin Decimal to binary number conversion.

dec2hex Decimal to hexadecimal number conversion.

MATLAB Functions

11-31

File I/O Functions

hex2dec IEEE hexadecimal to decimal number conversion.

hex2num Hexadecimal to double number conversion.

String to Number Conversion

Function Purpose

int2str Convert integer to string.

mat2str Convert matrix to string.

num2str Convert number to string.

sprintf Convert number to string under format control.

sscanf Convert string to number under format control.

str2double Convert string to double-precision value.

str2num Convert string to number.

File Opening and Closing

Function Purpose

fclose Close file.

fopen Open file.

File Positioning

Function Purpose

feof Test for end-of-file.

ferror Inquire file I/O error status.

Base Number Conversion (Continued)

Function Purpose

11 Library Routines

11-32

frewind Rewind file pointer to beginning of file.

fseek Set file position indicator.

ftell Get file position indicator.

Formatted I/O

Function Purpose

fgetl Read line from file, discard newline character.

fgets Read line from file, keep newline character.

fprintf Write formatted data to file.

fscanf Read formatted data from file.

Binary File I/O

Function Purpose

fread Read binary data from file.

fwrite Write binary data to file.

 String Conversion

Function Purpose

sprintf Write formatted data to a string.

sscanf Read string under format control.

File Positioning (Continued)

Function Purpose

MATLAB Functions

11-33

Data Types

File Import/Export Functions

Function Purpose

load Retrieve variables from disk.

save Save variables on disk.

 Data Types

Function Purpose

char_func Create character array (string)

double_func Convert to double precision.

 Object Functions

Function Purpose

classname Return a string representing the object’s class.

isa True if object is a given class.

11 Library Routines

11-34

Time and Dates

Current Date and Time

Function Purpose

clock_func Wall clock.

date Current date string.

now Current date and time.

Basic Functions

Function Purpose

datenum Serial date number.

datestr Date string format.

datevec Date components.

Date Functions

Function Purpose

calendar Calendar.

eomday End of month.

weekday Day of the week.

Timing Functions

Function Purpose

etime Elapsed time function.

tic,toc Stopwatch timer functions.

MATLAB Functions

11-35

Multidimensional Array Functions

Cell Array Functions

Function Purpose

cat Concatenate arrays.

ind2sub Subscripts from linear index.

ipermute Inverse permute array dimensions.

ndims Number of array dimensions.

permute Permute array dimensions.

shiftdim Shift dimensions.

sub2ind Linear index from multiple subscripts.

Function Purpose

cell Create cell array.

cell2struct Convert cell array into structure array.

celldisp Display cell array contents.

cellfun Apply a cell function to a cell array.

cellhcat Horizontally concatenate cell arrays.

cellstr Create cell array of strings from character array.

deal Deal inputs to outputs.

iscell True for cell array.

iscellstr True for a cell array of strings.

num2cell Convert numeric array into cell array.

11 Library Routines

11-36

Structure Functions

Sparse Matrix Functions

Function Purpose

fieldnames Get structure field names.

getfield Get structure field contents.

isfield True if field is in structure array.

isstruct True for structures.

rmfield Remove structure field.

setfield Set structure field contents.

struct Create or convert to structure array.

struct2cell Convert structure array into cell array.

Elementary Sparse Matrices

Function Purpose

spdiags Sparse matrix formed from diagonals.

speye Sparse identity matrix.

sprand Sparse uniformly distributed random matrix.

sprandn Sparse normally distributed random matrix.

sprandsym Sparse random symmetric matrix.

Full to Sparse Conversion

Function Purpose

find Find indices of nonzero elements.

full Convert sparse matrix to full matrix.

MATLAB Functions

11-37

sparse Create sparse matrix.

spconvert Import from sparse matrix external format.

Working with Nonzero Entries of Sparse Matrices

Function Purpose

issparse True for sparse matrix.

nnz Number of nonzero matrix elements.

nonzeros Nonzero matrix elements.

nzmax Amount of storage allocated for nonzero matrix elements.

spalloc Allocate space for sparse matrix.

spfun Apply function to nonzero matrix elements.

spones Replace nonzero sparse matrix elements with 1’s.

Reordering Algorithms

Function Purpose

colmmd Column minimum degree permutation.

colperm Column permutation.

dmperm Dulmage-Mendelsohn permutation.

randperm Random permutation.

symmmd Symmetric minimum degree permutation.

symrcm Symmetric reverse Cuthill-McKee permutation.

Full to Sparse Conversion (Continued)

Function Purpose

11 Library Routines

11-38

Linear Algebra

Function Purpose

cholinc Incomplete Cholesky factorization.

condest 1-norm condition number estimate.

eigs A few eigenvalues.

luinc Incomplete LU factorization.

normest Estimate the matrix 2-norm.

svds A few singular values.

Linear Equations (Iterative Methods)

Function Purpose

bicg BiConjugate Gradients Method.

bicgstab BiConjugate Gradients Stabilized Method.

cgs Conjugate Gradients Squared Method.

gmres Generalized Minimum Residual Method.

pcg Preconditioned Conjugate Gradients Method.

qmr Quasi-Minimal Residual Method.

Miscellaneous

Function Purpose

spaugment Form least squares augmented system.

spparms Set parameters for sparse matrix routines.

symbfact Symbolic factorization analysis.

Utility Functions

11-39

Utility Functions
In addition to its mathematical functions, the interpreted MATLAB
environment provides services such as memory management and array input
and output. The MATLAB C++ Math Library cannot draw on the MATLAB
environment for these essential services, so it provides its own services that
initialize and control the library environment and that help you perform
indexing.

These functions require several new types that describe pointers to functions.
You will find these types used in the tables of functions below; these types are
not part of MATLAB.

// Used for print handling functions
typedef void (*mwOutputFunc)(const char *);

// Used for error handling functions
typedef void (*mwErrorFunc)(const char*, mwBool);

// Used for exception handling
typedef void (*mwExceptionMsgFunc)(const mwException &);

// Used for memory allocation functions
typedef void *(*mwMemAllocFunc)(size_t);
typedef void (*smwMemFreeFunc)(void *);
typedef void *(*mwMemReallocFunc)(void *, size_t);
typedef void *(*mwMemCallocFunc)(size_t, size_t);

11 Library Routines

11-40

For more information on the error and exception handling functions, refer to
the section “Handling Exceptions” in Chapter 7; for more information on print
handling, see “Defining a Print Handler” in Chapter 7.

 Print Handling

Function Purpose

mwOutputFunc
mwGetPrintHandler(void);

Return a pointer to the function
specified in the most recent call to
mwSetPrintHandler() or to the default
print handler, if you haven’t specified a
print handler.

void
mwSetPrintHandler(mwOutputFunc f);

Set the print handling routine. The
print handler is responsible for
handling all ‘‘normal’’ (non-error)
output.

 Error and Exception Handling

Function Purpose

void
mwDisplayException(const mwException &ex);

Using the error handler, displays the
given exception.

mwErrorFunc
mwGetErrorMsgHandler(void);

Return a pointer to the function
specified in the most recent call to
mwSetErrorMsgHandler() or to the
default error handler, if you haven’t
specified an error handler.

mwExceptionMsgFunc
mwGetExceptionMsgHandler(void);

Return a pointer to the function
specified in the most recent call to
mwSetExceptionMsgHandler() or to
the default exception message handler,
if you haven’t specified an exception
message handler.

Utility Functions

11-41

MATLAB uses the : (colon) operator to generate sequences of numbers: both
vectors and matrix indices. Because the colon operator is unavailable in C++,
the MATLAB C++ Math Library provides two families of functions, ramp() and
colon(), to support the same functionality. The ramp() functions are best
suited for generating vectors, the colon() functions for array indices.

void
mwSetErrorMsgHandler(mwErrorFunc f);

Set the error handling routine. The
error handler is responsible for
handling all error message output.

void
mwSetExceptionMsgHandler(mwExceptionMsgFunc f)

The default exception handling
function simply prints the exception
using the error handling routine. If
this behavior is inappropriate for your
application, this function allows you to
set an alternate exception handling
function.

 Error and Exception Handling (Continued)

Function Purpose

 Memory Allocation

Function Purpose

void
mwSetLibraryAllocFcns(

mwMemCallocFunc callocProc,
mwMemFreeFunc freeProc,
mwMemReallocFunc reallocProc,
mwMemAllocFunc mallocproc,
mwMemCompactFunc=0);

Set the MATLAB C++ Math Library’s
memory management functions. Gives
you complete control over memory
management.

11 Library Routines

11-42

Chapter 4, “Indexing into Arrays,” contains more details on the use of
generated sequences in array indexing operations.

 Generating Sequences

Function Purpose

mwArray
ramp(mwArray start,

mwArray end);

Generate a vector of (end-start)+1 elements. The elements in
the vector are start, start+1, start+2, ... , start+n, end. Each
element in the vector is one greater than the preceding element,
with the possible exception of the last element (see below).

mwArray
ramp(mwArray start,

mwArray step,
mwArray end);

Generate a vector of ((end-start)/step)+1 elements. The
elements in the vector are start, start+step, start+(2*step),
start+(3*step), ...,start+(n*step), end. Each element in the
vector is step greater than the preceding element, with the
possible exception of the last element. Iteration stops when
start+(n*step) is larger than end, yet the last value in the
vector is always end; this can decrease the distance between the
last two elements to less than step. Specifying a negative step
generates a decreasing sequence; specifying a sequence that will
not terminate raises an exception.

 Indexing

Function Purpose

mwIndex
colon();

Generate a ‘‘sequence’’ of indices. colon() stands for ‘‘every
value.’’ For example, A(colon()) means every value in the
matrix. A(1,colon()) means every column in the first row.

mwIndex
colon(mwArray start,

mwArray end);

This function is identical to the analogous ramp() function,
except that it is more efficient when used as a matrix index.

Utility Functions

11-43

mwIndex
colon(mwArray start,

mwArray step,
mwArray stop);

This function is identical to the analogous ramp() function,
except that it is more efficient when used as an array index.

mwArray
end(mwArray &mat,

mwArray &x,
mwArray &y);

Generate the last index for an array dimension. Acts like end in
the MATLAB expression A(3,6:end). x is the dimension to
compute end for. Use 1 to indicate the row dimension; use 2 to
indicate the column dimension. y is the number of indices in the
subscript.

 Indexing (Continued)

Function Purpose

11 Library Routines

11-44

Array Access Functions
The Array Access and Creation Library contains the array creation and access
routines for the mxArray data type. In general, the arguments to these
functions are mxArray* pointers instead of mwArray variables. For example,
mxCreateDoubleMatrix() creates an mxArray; mxDestroyArray() destroys
one.

Refer to the online MATLAB Application Program Interface Reference for a
detailed definition of each function. The MATLAB Application Program
Interface Guide also documents these functions.

Note You can recognize an Array Access and Creation Library routine by its
prefix mx.

 Array Access Routines

Function Purpose

mxCalloc, mxFree Allocate and free dynamic memory using MATLAB’s
memory manager.

mxClearLogical Clear the logical flag.

mxCreateCellArray Create an unpopulated N-dimensional cell mxArray.

mxCreateCellMatrix Create an unpopulated 2-D cell mxArray.

mxCreateCharArray Create an unpopulated N-dimensional string mxArray.

mxCreateCharMatrixFromStrings Create a populated 2-D string mxArray.

mxCreateDoubleMatrix Create an unpopulated 2-D, double-precision,
floating-point mxArray.

mxCreateNumericArray Create an unpopulated N-dimensional numeric mxArray.

mxCreateSparse Create a 2-D unpopulated sparse mxArray.

Array Access Functions

11-45

mxCreateString Create a 1-by-n string mxArray initialized to the specified
string.

mxCreateStructArray Create an unpopulated N-dimensional structure mxArray.

mxCreateStructMatrix Create an unpopulated 2-D structure mxArray.

mxDestroyArray Free dynamic memory allocated by an mxCreate routine.

mxDuplicateArray Make a deep copy of an array.

mxGetCell Get a cell's contents.

mxGetClassID Get (as an enumerated constant) an mxArray's class.

mxGetClassName Get (as a string) an mxArray's class.

mxGetData Get pointer to data.

mxGetDimensions Get a pointer to the dimensions array.

mxGetElementSize Get the number of bytes required to store each data
element.

mxGetEps Get value of eps.

mxGetField Get a field value, given a field name and an index in a
structure array.

mxGetFieldByNumber Get a field value, given a field number and an index in a
structure array.

mxGetFieldNameByNumber Get a field name, given a field number in a structure
array.

mxGetFieldNumber Get a field number, given a field name in a structure
array.

mxGetImagData Get pointer to imaginary data of an mxArray.

mxGetInf Get the value of infinity.

 Array Access Routines (Continued)

Function Purpose

11 Library Routines

11-46

mxGetIr Get the ir array of a sparse matrix.

mxGetJc Get the jc array of a sparse matrix.

mxGetM, mxGetN Get the number of rows (M) and columns (N) of an array.

mxGetName, mxSetName Get and set the name of an mxArray.

mxGetNaN Get the value of Not-a-Number.

mxGetNumberOfDimensions Get the number of dimensions.

mxGetNumberOfElements Get number of elements in an array.

mxGetNumberOfFields Get the number of fields in a structure mxArray.

mxGetNzmax Get the number of elements in the ir, pr, and (if it exists)
pi arrays.

mxGetPi, mxGetPr Get the real and imaginary parts of an mxArray.

mxGetScalar Get the real component from the first data element of an
mxArray.

mxGetString Copy the data from a string mxArray into a C-style string.

mxIsChar True for a character array.

mxIsClass True if mxArray is a member of the specified class.

mxIsComplex True if data is complex.

mxIsDouble True if mxArray represents its data as double-precision,
floating-point numbers.

mxIsEmpty True if mxArray is empty.

mxIsFinite True if value is finite.

mxIsInf True if value is infinite.

mxIsLogical True if mxArray is Boolean.

 Array Access Routines (Continued)

Function Purpose

Array Access Functions

11-47

mxIsNaN True if value is Not-a-Number.

mxIsNumeric True if mxArray is numeric or a string.

mxIsSingle True if mxArray represents its data as single-precision,
floating-point numbers.

mxIsSparse Inquire if an mxArray is sparse. Always false for the
MATLAB C Math Library.

mxIsStruct True if a structure mxArray.

mxMalloc Allocate dynamic memory using MATLAB's memory
manager.

mxRealloc Reallocate memory.

mxSetCell Set the value of one cell.

mxSetData Set pointer to data.

mxSetDimensions Modify the number of dimensions and/or the size of each
dimension.

mxSetField Set a field value of a structure array, given a field name
and an index.

mxSetFieldByNumber Set a field value in a structure array, given a field number
and an index.

mxSetImagData Set imaginary data pointer for an mxArray.

mxSetIr Set the ir array of a sparse mxArray.

mxSetJc Set the jc array of a sparse mxArray.

mxSetLogical Set the logical flag.

mxSetM, mxSetN Set the number of rows (M) and columns (N) of an array.

 Array Access Routines (Continued)

Function Purpose

11 Library Routines

11-48

mxSetNzmax Set the storage space for nonzero elements.

mxSetPi, mxSetPr Set the real and imaginary parts of an mxArray.

 Array Access Routines (Continued)

Function Purpose

A

Directory Organization

Introduction . A-2

Directory Organization on UNIX A-3
<matlab>/bin . A-4
<matlab>/extern/lib/$ARCH A-4
<matlab>/extern/include A-5
<matlab>/extern/include/cpp A-5
<matlab>/extern/examples/cppmath A-6

Directory Organization on Microsoft Windows A-7
<matlab>\bin . A-8
<matlab>\extern\lib A-8
<matlab>\extern\include A-9
<matlab>\extern\include\cpp A-10
<matlab>\extern\examples\cppmath A-10

A Directory Organization

A-2

Introduction
This section describes the directory organization of the MATLAB C++ Math
Library on UNIX and Microsoft Windows systems.

Refer to this section to find out what files the MATLAB C++ Math Library
installs on your computer, what the purpose of each file is, and where each file
is stored. For instructions on how to install the software, see “Installing the
C++ Math Library” in Chapter 1.

The MATLAB C++ Math Library is part of a family of tools offered by The
MathWorks. All MathWorks products are stored under a single directory, the
MATLAB root directory. Separate directories for the major product categories
are located under the MATLAB root.

The MATLAB C++ Math Library is installed in the extern directory, where
products external to MATLAB are installed, and in the bin directory. If you
have other MathWorks products, there are other directories directly below the
MATLAB root.

Directory Organization on UNIX

A-3

Directory Organization on UNIX
This figure illustrates the directory structure for the MATLAB C++ Math
Library files. <matlab> represents the top-level directory where MATLAB is
installed on your system. $ARCH specifies a particular UNIX platform.

extern

lib

<matlab>

$ARCH

include

examples

cmath

cpp

cppmath

bin

A Directory Organization

A-4

<matlab>/bin
The <matlab>/bin directory contains the mbuild script and the scripts it uses
to build your code..

<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains the MATLAB C++ Math
libraries, where $ARCH specifies a particular UNIX platform. For example, on a
Sun SPARCstation running Solaris, sol2 is the name of the $ARCH directory.

mbuild Shell script that controls the building and linking of
your code.

mbuildopts.sh Options file that controls the switches and options for
your C compiler. It is architecture specific. When you
execute mbuild –setup, this file is copied to your home
directory.

libmat.ext MAT-file access routines to support mlfLoad and
mlfSave.

libmatlb.ext MATLAB Built-In Math Library. Contains
stand-alone versions of MATLAB built-in math
functions and operators. Required for building
stand-alone applications.

libmatpp.ext MATLAB C++ Math Library. Contains the C++
interface to the Built-In and M-File library routines.
Required for building stand-alone C++ applications.

libmi.ext Internal MAT-file access routines.

libmmfile.ext MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files. Needed for
building stand-alone applications that require
MATLAB M-file math functions.

Directory Organization on UNIX

A-5

In the listing above, .ext is .a on IBM RS/6000; .so on Solaris, Alpha, Linux,
and SGI; and .sl on HP 700.

<matlab>/extern/include
The <matlab>/extern/include directory contains the C header files for
developing stand-alone applications. Because the MATLAB C++ Math Library
contains the MATLAB C Math Library, the header file matlab.h file is
required.

<matlab>/extern/include/cpp
The <matlab>/extern/include/cpp directory contains the C++ header files for
developing stand-alone C++ applications.

libmx.ext MATLAB Array Access and Creation Library.
Contains array access routines.

libut.ext MATLAB Utilities Library. Contains the utility
routines used by various components.

libmatlb.h Header file containing the prototypes for the
MATLAB Built-In Math Library functions.

libmmfile.h Header file containing the prototypes for the
MATLAB M-File Math Library functions.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray
type and function prototypes for array access routines.

matlab.hpp Header file for the MATLAB C++ Math Library.

version.h Architecture specific C++ compiler definitions.

mathwork.h Declaration of scalar types.

A Directory Organization

A-6

<matlab>/extern/examples/cppmath
The <matlab>/extern/examples/cppmath directory holds the sample C++
programs presented in this book.

ex1.cpp The source code for “Example Program: Creating
Arrays and Array I/O (ex1.cpp)” on page 3-15.

ex2.cpp The source code for “Example Program: Calling
Library Functions (ex2.cpp)” on page 5-12.

ex3.cpp The source code for “Example – Passing Functions As
Arguments (ex3.cpp)” on page 5-19.

ex4.cpp The source code for “Example Program: Writing
Simple Functions (ex4.cpp)” on page 2-19.

ex5.cpp The source code for “Example Program: Handling
Exceptions (ex5.cpp)” on page 7-9.

ex6.cpp The source code for “Example – Using File I/O
Functions (ex6.cpp)” on page 8-15.

ex7.cpp The source code for “Example – Using load() and
save() (ex7.cpp)” on page 8-22.

ex8.cpp The source code for “Example Program: Rewriting
roots.m in C++ (ex8.cpp)” on page 9-11.

release.txt Release notes for the current release of the MATLAB
C++ Math Library.

Directory Organization on Microsoft Windows

A-7

Directory Organization on Microsoft Windows
This figure illustrates the folders that contain the MATLAB C++ Math Library
files. <matlab> represents the top-level folder where MATLAB is installed on
your system.

extern

<matlab>

include

examples

cmath

cpp

cppmath

bin

lib

A Directory Organization

A-8

<matlab>\bin
The <matlab>\bin directory contains the Dynamic Link Libraries (DLLs)
required by stand-alone applications, and the batch file mbuild, which controls
the build and link process for you. <matlab>\bin must be on your path for your
applications to run. All DLLs are in WIN32 format.

<matlab>\extern\lib
The <matlab>\extern\lib directory contains compiler-specific libraries.
Because different linkers use different file formats, we provide versions of the

libmat.dll MAT-file access routines to support mlfLoad() and
mlfSave().

libmatlb.dll MATLAB Built-In Math Library. Contains
stand-alone versions of MATLAB built-in math
functions and operators. Required for building
stand-alone applications.

libmi.dll Internal MAT-file access routines.

libmmfile.dll MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files. Needed for
building stand-alone applications that require
MATLAB M-file math functions.

libmx.dll MATLAB Array Access and Creation Library.
Contains array access routines.

libut.dll MATLAB Utilities Library. Contains the utility
routines used by various components.

mbuild.bat Batch file that helps you build and link stand-alone
executables.

compopts.bat Default options file for use with mbuild.bat. Created
by mbuild –setup.

Options files for
mbuild.bat

Options and settings for the C++ compiler to create
stand-alone applications, e.g., msvccompp.bat for use
with Microsoft Visual C/C++.

Directory Organization on Microsoft Windows

A-9

MATLAB C++ Math Library for each compiler we support: Borland, Microsoft
Visual C++, and Watcom.

Each library contains the C++ interface to the MATLAB C Built-In and M-File
Math libraries. The MATLAB C++ Math Library is required for building
stand-alone C++ applications. These libraries are static libraries.

<matlab>\extern\include
The <matlab>\extern\include directory contains the C header files for
developing stand-alone C++ applications. Because the MATLAB C++ Math
Library contains the MATLAB C Math Library, the header files matlab.h and
matrix.h are required by the C++ library.

The listed .def files are used by the Microsoft Visual C++ and Borland
compilers. The lib*.def files are used by MSVC++ and the _lib*.def files are
used by Borland.

libmatpb50.lib
libmatpb52.lib
libmatpb53.lib

MATLAB C++ Math Library for the Borland C++
compiler, v5.0, v5.2, and v5.3.

libmatpm.lib MATLAB C++ Math Library for the Microsoft Visual
C++ compiler.

libmatpw106.lib
libmatpw11.lib

MATLAB C++ Math Library for the Watcom C++
compiler, v10.6 and v11.

libmatlb.h Header file containing the prototypes for the MATLAB
Built-In Math Library functions.

libmmfile.h Header file containing the prototypes for the MATLAB
M-File Math Library functions.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray
type and function prototypes for array access routines.

libmat.def
_libmat.def

Contains names of functions exported from the
MAT-file DLL.

A Directory Organization

A-10

<matlab>\extern\include\cpp
The <matlab>\extern\include\cpp directory contains the C++ header files for
developing stand-alone C++ applications.

<matlab>\extern\examples\cppmath
The <matlab>\extern\examples\cppmath directory contains the sample C++
examples that are presented in this book.

libmatlb.def
_libmatlb.def

Contains names of functions exported from the
MATLAB Built-In Math Library DLL.

libmmfile.def
_libmmfile.def

Contains names of functions exported from the
MATLAB M-File Math Library DLL.

libmx.def
_libmx.def

Contains names of functions exported from libmx.dll.

matlab.hpp Header file for the MATLAB C++ Math Library.

version.h Architecture specific C++ compiler definitions.

mathwork.h Declaration of scalar types.

ex1.cpp The source code for “Example Program: Creating
Arrays and Array I/O (ex1.cpp)” on page 3-15.

ex2.cpp The source code for “Example Program: Calling
Library Functions (ex2.cpp)” on page 5-12.

ex3.cpp The source code for “Example – Passing Functions As
Arguments (ex3.cpp)” on page 5-19.

ex4.cpp The source code for “Example Program: Writing
Simple Functions (ex4.cpp)” on page 2-19.

ex5.cpp The source code for “Example Program: Handling
Exceptions (ex5.cpp)” on page 7-9.

Directory Organization on Microsoft Windows

A-11

ex6.cpp The source code for “Example – Using File I/O
Functions (ex6.cpp)” on page 8-15.

ex7.cpp The source code for “Example – Using load() and
save() (ex7.cpp)” on page 8-22.

ex8.cpp The source code for “Example Program: Rewriting
roots.m in C++ (ex8.cpp)” on page 9-11.

release.txt Release notes for the current release of the MATLAB
C++ Math Library.

A Directory Organization

A-12

B

Exception Classes

Overview . B-2

Exception Class Descriptions B-3

B Exception Classes

B-2

Overview
The MATLAB C++ Math Library defines a hierarchy of 10 exception classes
with mwException as the base class. The root class, mwException, has two
children: mwLogicError and mwRuntimeError. Most of the exception classes are
children of mwRuntimeError. The following figure illustrates this hierarchy.

You can make use of these exception classes in your own code. You may even
derive further exception classes from the ones presented here. For examples of
how to derive a class from mwException or one of its subclasses, see the file
stdexcpt.h in the extern/include/cpp directory of your installation.

mwException

mwLogicError mwRuntimeError

mwSubClassResponsibility

mwChainError

mwRangeError

mwOverflowErrormwIllegalOperation

mwBadAlloc

mwDomainError

Exception Class Descriptions

B-3

Exception Class Descriptions
Each exception class is described briefly below.

mwException

The base class for the exception classes, mwException, has two direct
descendants: mwLogicError and mwRuntimeError. Most catch-blocks
catch mwException objects rather than instances of one of its subclasses.

mwLogicError

A subclass of mwException. Logic errors occur as the result of bugs, either
in your code or in the library itself. Generally, they are fatal, which
means no corrective action can be taken by the program. The code itself
needs to be modified.

mwSubclassResponsibility

A subclass of mwLogicError. Exceptions of this type are thrown when a
subclass does not completely reimplement the virtual interface of its
parent class. Under normal circumstances, you should never see an
exception of this type. Refer to a C++ reference guide for a more thorough
treatment of virtual interfaces and inheritance.

mwRuntimeError

A subclass of mwException. Most commonly encountered errors fall into
this category. Run-time errors are often nonfatal and indicate nothing
more serious than invalid input or resource conflicts. Some, however, can
be fatal.

mwChainError

A subclass of mwRuntimeError. An mwChainError is used to wrap up and
rethrow exceptions that were caught but not completely handled by a
catch-block.

B Exception Classes

B-4

mwRangeError

A subclass of mwRuntimeError. An unrepresentable or unexpected value
has resulted from a computation. This error may point to a problem in
either the input or the code for the computation.

mwDomainError

A subclass of mwRuntimeError. A function has encountered unexpected or
corrupt input. Of all the error classes listed here, domain errors are the
easiest from which to recover.

mwOverflowError

A subclass of mwRuntimeError. Some form of arithmetic overflow has
occurred.

mwIllegalOperation

A subclass of mwRuntimeError. The programmer has attempted to
perform an operation that is not supported. Often, this error occurs when
an operation is not yet implemented. The only recourse for errors of this
type is to avoid the offending operation.

mwBadAlloc

A subclass of mwRuntimeError. The operating system has denied the
program’s request for more dynamic memory, generally resulting in a "A
memory allocation request failed" message.

C

Error Messages

Overview . C-2
Error Types . C-2
Reporting Errors C-2

Alphabetized Error Messages C-3

C Error Messages

C-2

Overview
This section provides an alphabetical list of the error messages issued by the
MATLAB C++ Math Library. Accompanying each error message is a short
description explaining why the error occurred and, where applicable, what can
be done to correct it.

Error Types
You may encounter errors other than those listed below. In all likelihood those
errors come from the mathematical code that forms the foundation for the
MATLAB C++ Math Library. For the most part, the messages are
self-explanatory.

Many of the errors listed are internal errors. Internal errors occur when the
library fails a built-in consistency check. Internal errors can be caused by a bug
in the library or in your program. For instance, your program may have written
randomly into memory and destroyed some library data. If you have access to
a memory usage verification program like Purify or BoundsChecker, try
running it on your program. If you are reasonably sure that the error is not
caused by a bug in your program, please report internal errors to The
MathWorks.

Reporting Errors
When reporting an error to The MathWorks, please be as specific as possible.
Include a small example that replicates the problem along with any
instructions needed to compile and run the example. You may report bugs
through any of our normal support channels. Electronic mail is the most
efficient way to contact us; our support address is: support@mathworks.com.

Alphabetized Error Messages

C-3

Alphabetized Error Messages
Cannot extract shared data. Use copy() first.

The function mwArray::FreezeData() issues this error when it is called
on an array with a reference count higher than one. See “Example –
Passing Functions As Arguments (ex3.cpp)” in Chapter 5 for more details
on using FreezeData().

Deleting Matrix with nonzero reference count = <number>.

A matrix that is still in use is being deleted. This is an internal error
indicating the matrix reference counting code has become confused.

Don't set library allocation functions to NULL.

The library memory allocation and deallocation functions must never be
NULL. This error indicates a user’s attempt to set one of the library’s
allocation functions to NULL, for example, mwSetFreeHandler(NULL).

Don't set library error handler to NULL.

By default, the error handler throws an exception. You can change this
behavior, but you must always have an error handling function. If you try
to set the error handler to NULL, for example, mwSetErrorHandler(NULL),
you’ll get this message.

Don't set library error message handler to NULL.

The library error message handling function must never be NULL. This
error indicates a user’s attempt to set it to NULL, for example,
mwSetErrorMsgHandler(NULL).

Don't set library exception message handler to NULL.

The library exception message handling function must never be NULL.
This error indicates a user’s attempt to set it to NULL, for example,
mwSetExceptionMsgHandler(NULL).

C Error Messages

C-4

Don't set library print handler to NULL.

The library print handling function must never be NULL. This error
indicates a user attempt to set it to NULL, for example,
mwSetPrintHandler(NULL).

Extraction from NULL matrix.

This internal error occurs when the program attempts to extract a
double-precision floating-point number from a 1-by-1 matrix that
contains no data.

Inconsistent precision: expecting <number>, found <number>.

This is an internal error issued by the matrix printing routine when it
discovers that an element of a matrix is too large (too many digits) to
print in the space allocated for it.

Input to <name> must be 1-by-2; was <number>-by-<number>.

The matrix creation functions, ones(), eye(), zeros(), magic(), rand(),
and randn(), accept one or two doubles or a matrix of two doubles as
input arguments. This error occurs when the input matrix is not 1-by-2,
for example, ones(zeros(4)). The inner call, to zeros(), succeeds and
returns a 4-by-4 matrix. The second call, to ones() with a 4-by-4 matrix,
produces this error.

Line width must be positive: <number> isn't.

You can set the width of the lines (the maximum number of characters
that will fit on a line) on your display screen; the wider the screen, the
more matrix elements will be displayed on each line. However, if you
specify a negative or zero width, you will see this error.

Matrix input format error: All rows must be the same length
(<number>).

All the rows in a matrix must contain the same number of columns. This
error occurs when the matrix input routine, operator>>(), detects a
‘‘ragged’’ matrix; i.e., one in which all the rows do not contain the same
number of columns. For example, [1 2 ; 3 ; 4 5]. The second row
contains only one column, while rows one and three contain two columns.

Alphabetized Error Messages

C-5

Matrix input format error: Can't find scale factor.

A scale factor, for example, 1e–10 * [1 2; 3 4], may precede a matrix
in the input stream. This error occurs when the first nonblank character
read by the matrix input routine is neither a bracket [nor the beginning
of a valid double-precision floating-point number. A scale factor of 0.0
also causes this error.

Matrix input format error: Complex numbers must end with an 'i'.
Found '<character>' instead.

3+5i, 0-2i, and even 9.35i are all valid complex numbers. The terminating
‘i’ character indicates the numbers are complex. This error occurs when
the input routine thinks it is reading a complex number and is surprised
to find that the number being read does not end with an ‘i’. Missing
whitespace between columns, for example [1–2; 3 4], causes this error.
Whitespace inserted between the 1 and the –, [1 –2; 3 4], makes this
into a valid matrix.

Matrix input format error: Expecting a digit, found '<character>'.

When the characters + and – occur in the input stream, they must be
followed by a digit between 0 and 9. This error occurs when the input
routine encounters a + or – and the next (nonwhitespace) character is not
a digit between 0 and 9.

Matrix input format error: Missing '*' from scale factor.

A matrix scale factor consists of a nonzero double-precision floating-point
number followed by an asterisk denoting multiplication. If the asterisk is
not present, this error occurs.

Matrix input format error: Missing '['.

The matrix input format stipulates that all matrices begin with a bracket
[. This error occurs when the matrix input routine, operator>>(), can’t
find the initial bracket [character.

C Error Messages

C-6

Matrix input format error: Missing ']'.

The matrix input format stipulates that all matrices (except string
matrices) end with a bracket]. This error occurs when the matrix input
routine, operator>>(), can’t find the terminating bracket] character.

Matrix input format error: String matrix terminated with
<character> rather than '.

To be recognized as a string matrix, a matrix must begin and end with a
single quote character. This error occurs when the trailing single quote
character is missing.

Matrix input format error: Unrecognized character: '<character>'.

Only the digits 0-9, the symbols + and –, the period ., the semicolon ;, the
letter e (for scientific notation), the letter i (to indicate a complex
number), and whitespace characters (space, tab, and carriage return) are
permitted between the opening bracket [and closing bracket] of a
matrix definition. This error indicates that a character outside that set
appeared in the input stream. Correct this problem by removing the
out-of-range character.

A memory allocation request failed.

The program is out of memory. There is very little you can do about this.
Try to rewrite your code to use less memory. Exit any nonessential
programs. Increase the size of your swap partition. Add more memory to
your machine.

Need array pointer to determine size of ':'.

This is an internal error that indicates the mwArray object is corrupt.

Not yet implemented: <some text>.

The feature you are trying to use, indicated by <some text> in the
message, has not yet been implemented.

Alphabetized Error Messages

C-7

Null matrix data.

The mwArray copy constructor checks the data pointer of the matrix it is
copying. If the data pointer is NULL, this internal error occurs.

Null matrix on left-hand side.

Assignment with NULL matrices is a special case. If you see this error
message, it means the library failed to detect this case correctly.

Null reference matrix in index operation.

Matrix index operations generally involve an intermediate mwSubArray
object. The mwSubArray contains a pointer to the matrix on which the
index operation was performed. This pointer should never be NULL. This
error occurs when the pointer is NULL.

Null Reference() pointer!

The reference field of an mwArray object is NULL when it should not be.
This is an internal error.

Only 1-by-1 matrices can be cast to doubles. Matrix is
<number>-by-<number>.

This error occurs when you treat a matrix with a size other than 1-by-1
as a scalar; for example, by assigning it to a double. The error message
displays the dimensions of the matrix. Correct this error by using an
indexing operation to extract the number you want from the matrix or, if
this error occurs in a logical expression (for example, an if-statement),
by placing a call to tobool() around the conditional expression.

Only noncomplex matrices can be cast to doubles.

You cannot cast a matrix with a complex component to a double, even if
the matrix is 1-by-1. If you were able to, the complex component of the
matrix would be lost in translation. If you really need access to the
complex component of a matrix A, the code mxGetPi(A.GetData()) will
return a pointer to the two-dimensional array of complex matrix data.
However, by using this construct, you are circumventing the safeguards
built into the library. If you write to this array, the mwArray object(s) that

C Error Messages

C-8

contain(s) it may no longer be able to function properly. Reading from the
array is relatively safe.

Output pointer (first arg.) NULL.

There is a special, efficient, version of the size() routine that returns the
size of the matrix as two integers rather than as a matrix. The first
argument to this version of size() is a pointer to an integer; size()
stores the number of columns there. If that pointer is NULL, this error
occurs.

Premature end of file.

The matrix input routine, operator>>(), came to the end of the file
before reading a complete matrix. Check to be sure the file exists and that
the data in it is correct. Remember: operator>>() can only read ASCII
files.

<function> with complex result.

Four functions, reallog(), reallog10(), realpow(), and realsqrt(),
verify that their return value is noncomplex. If the return value is
complex, this error occurs. This is caused by incorrect input, for example,
realsqrt(–1).

I-1

Index

Symbols
– 6-4
& 5-5
() (parentheses operator) 2-5
* 6-4
+ 6-4
.* 6-4
./ 6-4
.\ 6-4
.^ 6-4
.’ 6-4
/ 6-4
: (colon operator) 2-5

generating sequences 11-41
in C++ 9-3

<< 8-3
>> 8-3
[] (bracket operator) 2-5

in C++ 9-3
\ 6-4
^ 6-4
’ 6-4

A
abs()

conflict with standard function 9-8
and_func() 9-9
arguments

default 5-5
functions as 5-19
input 5-5, 5-12

passing convention 5-15
input list as a cell array 5-32
left-hand side 5-5
mwVarargin object 5-6
mwVarargout object 5-8

optional 5-3, 5-12
order 5-5
output 5-12

passing convention 5-15
preallocating 5-5

pasing any number of inputs 5-6
pasing any number of outputs 5-8
summary of calling conventions 5-10
to load() 8-24
to save() 8-24
varargin 5-6
varargout 5-8

arithmetic operator functions 11-8
arity

of operators 6-6
Array Access and Creation Library 11-44
array creation routines 3-7
array I/O

example 8-17
MAT-file example 8-24
overview 2-6
using fprintf() 8-17
using load() 8-21
using save() 8-20

array information functions 11-13
array operators 2-5
arrays

access routines 11-44
array I/O

standard streams 8-3
basic information functions 11-13
common programming tasks 3-39
concatenation 2-5
const reference to 2-21
converting C++ to mwArray 3-39
converting numeric to character 3-26

Index

I-2

converting sparse to full format 3-23
converting to sparse matrix 3-20
creating 3-29
creation functions 3-7
deleting elements from 4-29
determining number of nonzero elements
3-23
extracting data 10-16
indexing 2-9
indices 4-4
initializing with data 3-13
logical 2-4, 2-9

creating 9-7
manipulation functions 11-14
multidimensional character arrays 3-26
null 2-21
numeric arrays 3-4
of characters 3-24
of strings 2-4

example 8-17
passing as argument 2-21
printing 3-17
sparse matrices 3-19
specifying as output arguments 5-15
value semantics 2-8

ASCII data
and fgetl() 8-18
and fgets() 8-18

assignment
and indexing 4-24, 4-27
creating cell arrays 3-32

assignment statements
and constructors 5-15
copy-on-write 7-21
creating arrays 3-12

B
base number conversion 11-30
binary data

and fgetl() 8-18
and fgets() 8-18

binary file I/O 11-32
bitand_func() 9-9
bitor_func() 9-9
bitwise functions 11-11
blank character

used as padding 3-26
building applications

on Microsoft Windows 1-23
on UNIX 1-15
other methods 1-35
troubleshooting mbuild 1-33

C
C++

compared to MATLAB 9-2
compiler

installation 1-11
required features 1-11

control structure 9-6
exception handling 1-4
function calling conventions 5-2, 9-5
indexing 4-47
keyword

catch 7-9
catch 7-9, 7-12
const 2-21
for 9-6
throw 7-16
try 7-9

logical values 9-7

Index

I-3

operators
arithmetic 11-3
relational 11-4
vs. MATLAB 9-7

overloading 5-15
stream-based I/O 2-15, 8-2
subscripts 4-47
syntax

example 9-11
vs. MATLAB 9-3

variable declaration 9-4
call by reference 5-10, 9-4
call by value 2-8, 9-4
calling conventions 7-13

exceptions 5-12
mapping rules 5-10
summary 5-10
table of 5-11

calling library functions 5-3
calling operators 5-18
casts 3-39
cat 3-31
catch 7-9
catch block 2-7
catch-block 7-9, 7-12

and mwException 7-9
cell array functions 11-35
cell array indexing

nested cell arrays 4-34
referencing a cell 4-33
referencing the contents of a cell 4-33
types of 4-32
with cell() member function 4-32

cell arrays
concatentation 3-30
converting numeric arrays 3-29
converting to structures 3-36

creating 3-28
creating by assignment 3-32
displaying 3-33

cellhcat()
using 3-30

cerr
overview 2-15
using 8-3

char_func() 9-9
character arrays

creating 3-24, 3-25
from numeric arrays 3-26
multidimensional 3-26

character string functions
base number conversion 11-30
general 11-29
string operations 11-30
string tests 11-29
string to number conversion 11-31

cin
matrix input 3-17
overview 2-15
using 8-3

clock() 9-9
clock_func() 9-9
closing files 11-31
colon

generating sequences 11-41
in C++ 9-3

colon()
generating sequences 11-42
overview 2-9
shorthand for 4-50
use instead of : 9-3
used as an indexing operator 4-13
with a logical index 4-20, 4-22

column vector

Index

I-4

indexing as 4-5
column-major order 2-8, 2-21, 3-14

and initializing mwArray 3-13
and static C++ data 3-16

compiler
C++

installation 1-11
required features 1-11

changing default on PC 1-25
changing default on UNIX 1-16
choosing on UNIX 1-16

complex functions 11-17
compopts.bat 1-23, 1-24
concatenating

arrays 3-9
concatenation 2-5

horizontal 9-3
of subscripts 4-45
vertical 9-3, 9-18

const 2-21
constants, special 11-14
constructing an mwVarargin object 5-7
constructing an mwVarargout object 5-9
constructors 3-39, 9-3

and data arrays 3-14
mwArray 3-6
table of 10-4

control structure, MATLAB vs. C++ 9-6
conventions

array access routine names 11-44
conversion

efficiency 3-41
from mwArray 3-40

to mxArray pointer 3-40
to scalar 3-40

MATLAB to C++ 9-2
string to number 11-31

to mwArray 3-39
from a scalar 3-39
from a string 3-39
from array 3-39
from mwSubArray 3-39
from mxArray pointer 3-39

user-defined 10-10
conversion, base number 11-30
coordinate system transforms 11-20
copy-on-write assignment 7-21
correlation 11-25
cos()

conflict with standard function 9-8
cout

array output 3-17, 8-5
overview 2-15
using 8-3

creating
arrays

example program 3-15
string 8-17

mwArray 10-4
mwIndex objects 4-49
new exception class B-2

ctranspose() 6-4, 6-5
use instead of ’ 9-3

D
data

reading with load() 8-24
writing with save() 8-24

data analysis and Fourier transform functions
basic operations 11-24
correlation 11-25
filtering and convolution 11-25
finite differences 11-24

Index

I-5

Fourier transforms 11-25
sound and audio 11-26

data conversions 3-39, 10-16
See also conversion

data interpolation 11-26
data type functions 11-33

object functions 11-33
date and time functions

basic 11-34
current date and time 11-34
date 11-34
timing 11-34

dates
basic functions 11-34

dates, current 11-34
declarations

of variables 9-4
DECLARE_FEVAL_TABLE 5-23
DefaultPrintHandler()

C++ code 7-3
deletion

and indexing 4-29
differences between C++ and MATLAB 9-2
dim argument for cat 3-11, 3-31
directory organization

Microsoft Windows A-7
UNIX A-3

disp() 2-6
distributing applications

packaging 1-36
do_raise() 7-14
double_func() 9-9

E
efficiency 4-27

constructors vs. assignment 5-15

indexing 4-50
of conversions 3-41
size member functions 10-14
space-time tradeoff 7-20

eigenvalues 11-22
empty array 2-21
empty() 4-36, 4-37, 4-42
end 2-7
end of line

and fgetl() 8-18
and fgets() 8-18

end() 4-10
END_FEVAL_TABLE 5-23
environment variable

library path 1-19
error functions 11-40
error handler routine

registering 7-14
replacing default 7-13

error messages
list of C-2
printing to GUI 7-3

error() 9-17
errors

and exceptions 2-16
errors handling 7-8
examples

calling library routines 5-12
creating arrays 3-15
error handling 7-9
file I/O with fprintf() 8-14
how to compile and link 1-13
load() and save() 8-22
passing functions as arguments 5-19
print handling

Microsoft Windows 7-6
X Window system 7-5

Index

I-6

rewriting roots() in C++ 9-11
strstream, using 7-16
writing simple functions 2-19

exception handling 7-9
exception handling functions 11-40
exceptions

and function composition 7-8
available classes B-3
deriving new B-2
if compiler doesn’t support 7-14
output format 7-13
printing 7-13
required C++ feature 1-11
throwing with MLM_THROW macros 7-15
used for handling errors 7-8
using mwArray in message 7-16

exp()
conflict with standard function 9-8

exponential functions 11-17
expression

logical 11-4
expressions

arithmetic 3-9, 6-2
function call 5-2
syntax 9-3

ExtractData() 10-17
ExtractScalar() 10-17

F
factorization utilities 11-23
fclose() 8-17
feval function table

mlfFevalTableSetup() 5-27
mlfFuncTabEnt type 5-26
setting up 5-27

feval macros

DECLARE_FEVAL_TABLE 5-23
END_FEVAL_TABLE 5-23
FEVAL_ENTRY 5-23
requirements for function 5-21
what they replace 5-21

FEVAL_ENTRY 5-23
fgetl() 8-17

and binary data 8-18
and end of line 8-18

fgets() 8-18
and binary data 8-18
and end of line 8-18

file I/O functions
binary 11-32
file positioning 11-31
formatted I/O 11-32
opening and closing 11-31
string conversion 11-32

file opening and closing 11-31
files

binary file I/O 11-32
formatted I/O 11-32
import and export functions 11-33
positioning 11-31
string conversion 11-32

filtering and convolution 11-25
finite differences 11-24
fopen() 8-17
for 2-7
for-loop, index variable 9-6
formatted I/O 11-32
Fourier transform functions 11-24
Fourier transforms 11-25
fprintf() 2-6, 8-14, 8-17

conflict with standard function 8-14
FreezeData() 5-31
fscanf() 8-18

Index

I-7

_func suffix 9-9
function-functions 5-19

how they are called 5-30
numerical integration with ODE solvers 11-28
ODE option handling 11-29
ODE solvers 11-28
optimization and root finding 11-28
passing function name 5-25

functions
call by value 2-8
calling conventions 2-6, 7-13

MATLAB vs. C++ 5-10, 9-5
cat 3-31
documented in online reference 1-7
indexing result of 4-45
MEX function 2-18
name conflicts 9-8
number of arguments 2-6
order of arguments 5-2
passed as argument 5-19
pointer type

mwErrorFunc 11-39
mwExceptionFunc 11-39
mwMemAllocFunc 11-39
mwMemCallocFunc 11-39
mwMemReallocFunc 11-39
mwOutputFunc 11-39

renamed functions 9-9
return values, multiple 2-11
side effects 2-8
signatures 5-12
vectorized 2-12
writing new 2-19

G
geometric analysis 11-27

GetData() 10-16
graphical user interface (GUI)

output to 7-4
graphics applications

trouble starting 1-38
GUI

output to 7-4

H
Handle Graphics 1-5
header files

including 3-16, 8-5
horzcat()

use instead of [] 9-3
using 3-10

I
i() 10-17
I/O streams 2-15, 8-2
if 2-7
indexing

and assignment 4-24, 4-35
and deletion 4-29, 4-36, 4-42
and function call 4-45
and ones() 4-45
base 4-4
C++ vs. MATLAB 4-47
cell arrays 4-31
concatenating subscripts 4-45
dimensions and subscripts 4-2
efficiency 2-22, 4-50
implementation 4-4
introduction 2-9
like for-loop 4-16
logical 2-9

Index

I-8

mwArray 10-7
mwIndex 2-13
mwSubArray 2-13
N-dimensional 4-13, 4-17
one-dimensional 4-9
similar to for-loop 4-4
structure array 4-38
table of examples 4-47
terminology 4-2
types of 4-2, 4-3
with colon 4-13
with mlfEnd() 4-15

indexing functions 11-42
indices

how MATLAB calculates 4-8
initializing

Microsoft Windows 7-7
X Window system 7-6

initializing arrays with data 3-13
input

arguments
optional 5-3

example 3-15, 8-4, 8-12
format 3-18, 8-6
load() 8-21, 8-24
mwArray 2-15, 8-3, 8-7
stream 2-15, 8-2

installing the library
PC details 1-10
UNIX details 1-10
with MATLAB 1-9
without MATLAB 1-10

interprocess communication 8-13

K
keyword

C++
catch 7-9
catch 7-12
const 2-21
for 9-6
throw 7-14
try 7-9

MATLAB
catch 2-7
end 2-7
for 2-7
if 2-7
switch 2-7
try 2-7
while 2-7

L
layering

C++ interface 7-20
layering, C++ interface 1-2
LD_LIBRARY_PATH

run-time libraries 1-37
ldivide() 6-4
LIBPATH

run-time libraries 1-37
library path 1-19
licensing

stand-alone applications 1-36
linear algebra 11-38
linear equations 11-21, 11-38
link

library order 1-35
load() 2-7, 8-21, 8-22, 8-24

nonstandard calling convention 8-22
log()

conflict with standard function 9-8

Index

I-9

logical
and relational operators 11-4
array 2-4
indexing 2-9
values, MATLAB vs. C++ 9-7

logical arrays
creating 9-7

logical flag 11-4
logical functions 11-10
logical index 2-9
logical indexing 4-20

N-dimensional 4-23
logical operator functions 11-9
logical() 9-7
loops

and vectorized function 2-12
explicit 2-21

M
macros

MLM_THROW 7-15
macros, feval

DECLARE_FEVAL_ENTRY 5-23
DECLARE_FEVAL_TABLE 5-23
END_FEVAL_TABLE 5-23
requirements for function 5-21
what they replace 5-21

makefile 1-18
malloc() 7-20
MAT-files 8-20

.mat extension 8-22
and named variables 8-24
created by load() 8-24
created by save() 8-24
import and export functions 11-33
importing and exporting 8-2

read by load() 8-21
transmit in binary mode 8-22
written to with save() 8-20

math functions
complex 11-17
coordinate system transforms 11-20
exponential 11-17
number theoretic 11-19
rounding and remainder 11-18
specialized 11-19
trigonometric 11-16

MATLAB
Built-in Library

link order 1-35
C++ Math Library

functions 11-8
compared to C++ 9-2
control structure 9-6
errors 2-7
function calling conventions 9-5
functions 2-6, 11-7

calling 5-12
Handle Graphics 1-5
indexing 4-47

efficiency 4-50
input and output 2-6
logical

operators 11-5
values 9-7

MEX-file 2-18
M-File Math Library

link order 1-35

Index

I-10

operators 2-4
array 2-5
functional equivalents 6-4
indexing 11-5
input and output 11-5
logical 11-5
mathematical 6-2, 11-3
overloading 6-6
relational 11-4
unavailable 9-3
vs. C++ 9-7

string array 2-4
subscripts 4-47

efficiency 4-50
syntax, compared to C++ 9-3
vs. C++ 9-2

example 9-11
MATLAB Built-In Library

calling conventions 7-13
MATLAB C++ Math Library

installing
PC details 1-10
UNIX details 1-10
with MATLAB 1-9
without MATLAB 1-10

relationship to C Math Library 5-19
unsupported MATLAB features 2-4
utility routines 11-39

MATLAB Engine 2-18
MATLAB Math and Graphics Run-Time Library

Installer 1-36
MATLAB M-File Math Library

calling conventions 7-13
matlab.hpp

including 3-16, 8-5
matrices, elementary functions 11-13
matrices, specialized functions 11-15

matrix
analysis functions 11-21
array operators 2-5
functions 11-22
operators 2-5

matrix manipulation functions 11-14
mbuild 1-13

–setup option 1-25
–setup option on PC 1-25
–setup option on UNIX 1-16
syntax and options

on Microsoft Windows 1-30
on UNIX 1-20

troubleshooting 1-33
verbose option on PC 1-27
verbose option on UNIX 1-17

member functions, of mwArray 3-43, 10-16, 10-18
memory allocation

writing a calloc routine 7-18
writing a deallocation routine 7-18
writing a malloc routine 7-19
writing a reallocation routine 7-19

memory allocation functions 11-41
memory management 2-16

and performance 7-20
arrays 7-17
avoiding destructor call 5-30
function pointer types 7-17
memory leaks 5-30
mwArray 10-11
mwSetLibraryAllocFcns() 7-17
setting up your own 7-17

message display 11-12
MessageDialog, Motif widget 7-5
MEX-files 2-18
MFC42.dll 1-38
mglinstaller 1-36

Index

I-11

mglinstaller.exe 1-37
Microsoft Windows

building stand-alone applications 1-23
directory organization A-7
MessageBox 7-6
PopupMessageBox() C code 7-7
print handling 7-6

minus() 6-4
mldivide() 6-4
mlfFevalTableSetup() 5-27
mlfFuncp function pointer type 5-26, 5-29
mlfNnz() 3-23
MLM_THROW macros 7-15
MLM_THROW0() 7-16
Motif

MessageDialog widget 7-5
print handler 7-5

mpower() 6-4
mrdivide() 6-4
mtimes() 6-4
multidimensional array functions 11-35
multidimensional arrays

concatenating 3-11
creating by assignment 3-13
creating with constructors 3-7
of characters 3-26

multidimensional cell arrays
concatenating 3-31

mwArray 2-12
cell member function 3-33
class interface 10-2
constructors 10-4
converting

to Boolean 9-7
to mxArray pointer 3-40
to scalar 3-40

creating 3-3
complex 3-14
example 3-15

efficiency of size functions 10-14
exception messages, in 7-16
extracting mxArray * 10-16
GetData() 10-16
indexing 10-7

see also indexing
input 8-3
marshalling 8-13
member functions 10-2

cell() 10-8
constructors 10-4
data access 10-16
ExtractData() 10-17
ExtractScalar() 10-17
field() 10-9
memory management 10-11
size 10-14
Size() 3-43
ToString() 10-18

memory management 10-11
modifying contents 1-3
operator delete() 10-11
operator double() 10-10
operator new() 10-11
operator() 4-49
operators 10-12

array 2-5
defining new 6-6
see also operators

output 8-3
pointer to 5-15
print handler

getting 7-4
setting 7-3

Index

I-12

reading from disk 8-21, 8-24
reference count 5-30, 5-31
saving to disk 8-20, 8-24
SetData() 10-16
size functions 10-14
string 8-17
user-defined conversions 10-10

mwArray operators
matrix 2-5

mwArraydeleting elements from 4-29
mwBadAlloc class B-4
mwChainError class B-3
mwDisplayException() 11-40
mwDomainError class B-4
mwErrorFunc 11-39
mwException

available subclasses B-3
deriving classes from B-2

mwException class 1-4, 2-16, 7-9, 7-12, B-3
mwExceptionFunc 11-39
mwGetErroMsgrHandler() 11-40
mwGetPrintHandler() 7-4, 11-40
mwIllegalOperation class B-4
mwIndex class 2-13
mwLogicError class B-3
mwMemAllocFunc 11-39
mwMemCallocFunc 11-39
mwMemReallocFunc 11-39
mwOutputFunc 11-39
mwOverflowError class B-4
mwRangeError class 7-16, B-4
mwRuntimeError class B-3
mwSetErrorMsgHandler() 11-41
mwSetErrorMsgHandler() routine 7-14
mwSetExceptionMsgHandler() 11-41
mwSetLibraryAllocFcns() 7-17
mwSetPrintHandler() 7-3, 11-40

calling first 7-5
mwSubArray 2-13

converting to mwArray 3-39
mwSubclassResponsibility class B-3
mwVarargin object 5-11
mwVarargin> class 5-7
mwVarargout object 5-11
mwVarargout> class 5-9
mxArray 5-30

array access routines 11-44
conversion to mwArray 5-30

mxArray *
converting to mwArray 3-39

N
name conflicts 9-8

table of 9-9
naming conventions

array access routines 11-44
N-dimensional indexing 4-13, 4-17

selecting a matrix of elements 4-16
selecting a single element 4-14
selecting a vector of elements 4-14

nonzero elements
determining number of 3-23

not_func() 9-9
null array 2-21, 4-36

and array deletion 4-29
number theoretic functions 11-19
numeric arrays

converting to cell arrays 3-29
converting to character arrays 3-26
creating 3-4

numerical integration 11-28
numerical linear algebra

eigenvalues and singular values 11-22

Index

I-13

factorization utilities 11-23
linear equations 11-21
matrix analysis 11-21
matrix functions 11-22

O
object functions 11-33
ODE option handling 11-29
ODE solvers 11-28
offsets

for indexing 4-8
one-dimensional indexing 4-9

range for index 4-9
selecting a matrix 4-11
selecting a single element 4-10
selecting a vector 4-10
table of examples 4-47
with a logical index 4-20

ones()
and indexing 4-45

opening files 11-31
operator delete() 10-11
operator double() 10-10
operator new() 10-11
operator&() 5-5
operator() 4-49
operator**(), unavailability of 6-6
operator*=() 6-6
operator<<() 8-3, 10-12
operator>>() 8-3, 10-12
operators 2-13

arity 6-6
array 2-5, 6-2
C++ syntax 6-4
defining new 6-6
functional equivalents 6-4

indexing 11-5
list of 11-3
mathematical 11-3
MATLAB

unavailable 9-3
matrix 2-5, 6-2
miscellaneous 11-5
mwArray 10-12
overloading 6-6

arity 6-6
precedence 6-6

precedence
and parentheses 6-6
overloading 6-6

relational 2-4, 11-4
logical result 11-4
return value 9-7

stream 11-5
vectorized 2-13

operators and special functions
arithmetic operators 11-8
bitwise functions 11-11
logical functions 11-10
logical operators 11-9
MATLAB as a programming language 11-12
message display 11-12
set operators 11-9
special operators 11-10

optimization and root finding 11-28
options file

locating on UNIX 1-16
making changes persist

on UNIX 1-18
options files

combining customized on PC 1-28
locating on PC 1-23
locating on UNIX 1-15

Index

I-14

making changes persist
on PCs 1-27

modifying on PC 1-26
modifying on UNIX 1-17
PC 1-27
purpose 1-14
temporarily changing on PC 1-28
temporarily changing on UNIX 1-18

options, mbuild
on Microsoft Windows 1-30
on UNIX 1-20

or_func() 9-9
order

link 1-35
of call to mwSetPrintHandler() 7-5

ordinary differential equations
option handling 11-29
solvers 11-28

output
and graphical user interface 7-3
arguments

optional 5-3
example 3-15, 8-4, 8-12
format 3-18, 8-6
mwArray 2-15, 8-3
save() 8-20, 8-24
stream 2-15, 8-2
to GUI 7-4

P
packaging stand-alone applications 1-36
parentheses

and operator precedence 6-6
indexing operator 4-3

pascal_func() (PC only) 9-9
PATH

run-time libraries 1-37
performance 4-27

and memory manager 7-20
data type conversion 3-41
See also efficiency

plus() 2-21, 6-4
polynomial and interpolation functions

data interpolation 11-26
geometric analysis 11-27
polynomials 11-27
spline interpolation 11-26

polynomial root-finder 9-11
polynomials 11-27
PopupMessageBox()

Microsoft Windows C code 7-7
X Window system C code 7-5

power() 6-4
precedence, of operators 6-6
print handlers

default, C++ code 7-3
getting 7-4
Microsoft Windows example 7-6
mwGetPrintHandler() 7-4
mwSetPrintHandler() 7-3
providing your own 7-3
setting 7-3
X Window system example 7-5

print handling functions 11-40
printing

array 3-17
exception objects 7-13
See also output

Q
quad_func() 9-9
quadrature 11-28

Index

I-15

R
ramp() 11-42

use instead of : 9-3
ramps

creating 3-8
rdivide() 2-21, 6-4
reallog() C-8
reallog10() C-8
realpow() C-8
reference

const 2-21
reference count 5-31, 7-21
registering functions with feval() 5-23
relational operator functions

list of 11-9
remainder functions 11-18
reordering algorithms 11-37
response file 1-30
return values, multiple 2-11, 5-15
roots() 9-11
rounding functions 11-18
row2mat() 3-14
row-major order 2-21, 3-14
run-time libraries

distributing 1-36

S
save() 2-7, 8-20, 8-22, 8-24

nonstandard calling convention 8-22
scalar expansion 3-14
scalars

converting to mwArray 3-39
scanf() 2-6
sequences, generating functions 11-42
set operator functions 11-9
SetData() 10-16

settings
compiler 1-14
linker 1-14

SHLIB_PATH
run-time libraries 1-37

side effects 2-8
sin()

conflict with standard function 9-8
singular values 11-22
size

determining array size 3-42
size() 10-14
sound and audio 11-26
sparse matrix

converting numeric array 3-20
converting to full matrix format 3-23
creating 3-19
creating from data 3-21

sparse matrix functions
linear algebra 11-38
linear equations 11-38
list of 11-36
miscellaneous 11-38
reordering algorithms 11-37

special operator functions 11-10
specialized math functions 11-19
spline interpolation 11-26
sprintf() 2-6

conflict with standard function 8-15
sqrt()

conflict with standard function 9-8
sscanf() 2-6
stand-alone applications 2-18

building on Microsoft Windows 1-23
building on UNIX 1-15
distributing 1-36
licensing 1-36

Index

I-16

std_func() 9-10
storage layout

column-major 3-14
MATLAB vs. C++ 3-16

string array 2-4
input of 8-17

string operations 11-30
string tests 11-29
string to number conversion 11-31
strings

converting to mwArray 3-39
creating 3-24
extracting data from 10-18

strstream 7-16
struct_func() 9-10
structure functions 11-36
structure indexing

accessing a field 4-40
accessing the contents of a field 4-40
assigning values to a field 4-40
assignment values to field elements 4-40
deleting elements 4-42
referencing a single structure 4-41
referencing nested structures 4-41
use of mwArray field() 4-38
within cells 4-41

structures
converting cell arrays 3-36
converting to cell arrays 3-29
creating 3-35
using mlfStruct() 3-36

subscripting
how MATLAB calculates indices 4-8

subscripts 4-4
concatenation 4-45
logical 4-20

svd() 5-12

switch 2-7
syntax

C++ 2-10, 9-3
feval macros 5-23
indexing 4-47
library functions, documented online 1-7
MATLAB 2-4
subscripts 4-47

T
tan()

conflict with standard function 9-8
templates, required feature 1-11
temporary variables

and C++ 7-21
avoiding when indexing 4-45

throw 7-14, 7-16
thunk functions

grouping in one file 5-29
handling one type of function 5-29
require C Math Library interface 5-19, 5-29
writing 5-29

time, current 11-34
time/space trade-off 7-20
times() 6-4
timing functions 11-34
tobool() 2-11, 8-25, 9-7
ToString() 10-18
translating from MATLAB to C++ 9-2
transpose() 6-4, 6-5

use instead of .’ 9-3
trigonometric functions

conflict with standard functions 9-8
list of 11-16

troubleshooting

Index

I-17

starting stand-alone graphics applications
1-38

try 7-9
try block 2-7
try-block 7-9, 7-12
two-dimensional indexing

table of examples 4-47
with logical indices 4-20

U
union_func() 9-10
UNIX

building stand-alone applications 1-15
directory organization A-3

utility functions
error and exception handling 11-40
generating sequences 11-42
indexing 11-42
memory allocation 11-41
print handling 11-40

V
varargin functions 5-6
varargout functions 5-8
variable declaration, C++ 9-4
vectorization 1-3, 2-3

of functions 2-12, 2-21
of operators 2-13

vertcat()
use instead of [] 9-3

W
while 2-7

X
X Window system

initializing 7-6
PopupMessageBox() C code 7-5
print handler 7-5
X Toolkit

XtPopup() 7-5
XtSetArg() 7-5
XtSetValues() 7-5

XmCreateMessageDialog() 7-6
xor_func() 9-10

Index

I-18

	Getting Started
	Introduction
	Overview of the MATLAB C++ Math Library
	Who Should Read This Book
	New MATLAB C++ Math Library Features
	MATLAB C++ Math Library Documentation
	Getting Started Quickly

	Installing the C++ Math Library
	Installation with MATLAB
	Installation Without MATLAB
	Verifying a UNIX Installation
	Verifying a PC Installation
	Installing Your C++ Compiler

	Building C++ Applications
	Overview�

	Building a Stand-Alone Application on UNIX�
	Configuring the Build Environment�
	Building an Application�
	mbuild Options

	Building a Stand-Alone Application on PCs�
	Configuring the Build Environment�
	Building an Application�
	mbuild Options

	Troubleshooting mbuild
	Linking Applications Without mbuild�
	Distributing Stand-Alone Applications�
	Packaging the MATLAB Math Run-Time Libraries
	Installing Your Application
	Problem Starting Stand-Alone Application

	Fundamentals
	MATLAB Basics
	Data Types
	Operators
	Functions
	Input and Output
	Errors
	Flow of Control

	MATLAB for C++ Programmers
	C++ for MATLAB Users
	How the Library Is Similar to MATLAB
	How C++ and the Library Differ from MATLAB

	MATLAB C++ Math Library Basics
	Data Types
	Operators
	Functions
	Input and Output
	Errors
	Memory Management

	Stand-Alone Programs
	Example Program: Writing Simple Functions (ex4.cpp)
	Writing Efficient Programs

	Learning More

	Working with MATLAB Arrays
	Overview
	Supported MATLAB Array Types
	MATLAB Array C++ Object

	Numeric Arrays
	Creating Numeric Arrays
	Initializing a Numeric Array with Data
	Example Program: Creating Arrays and Array I/O (ex1.cpp)

	Sparse Matrices
	Creating a Sparse Matrix
	Converting a Sparse Matrix to Full Matrix Format
	Evaluating Arrays for Sparse Storage

	Character Arrays
	Creating MATLAB Character Arrays

	Cell Arrays
	Creating Cell Arrays
	Displaying the Contents of a Cell Array

	MATLAB Structures
	Creating Structures

	Performing Common Array Programming Tasks
	Converting Data to MATLAB Arrays
	Determining Array Size

	Indexing into Arrays
	Overview
	Terminology
	Dimensions and Subscripts in MATLAB
	Dimensions and Subscripts in the MATLAB C++ Math Library
	Array Storage

	Using One-Dimensional Subscripts
	Overview
	Selecting a Single Element
	Selecting a Vector
	Selecting a Matrix
	Selecting the Entire Matrix As a Column Vector

	Using N-Dimensional Subscripts
	Overview
	Selecting a Single Element
	Selecting a Vector of Elements
	Selecting a Matrix
	Extending Two-Dimensional Indexing to N Dimensions

	Using Logical Subscripts
	Overview
	Using a Logical Matrix As a One-Dimensional Index
	Using Two Logical Vectors as Indices
	Using One colon() Index and One Logical Vector as Indices
	Using a Scalar and a Logical Vector
	Extending Logical Indexing to N Dimensions

	Using Indexing in Assignment Statements
	Overview
	Assigning to a Single Element
	Assigning to a Multiple Elements
	Assigning to a Subarray
	Assigning to All Elements
	Extending Two-Dimensional Assignment to N Dimensions

	Deleting Elements from an Array
	Indexing into Cell Arrays
	Overview
	Referencing a Cell in a Cell Array
	Referencing a Subset of a Cell Array
	Referencing the Contents of a Cell
	Referencing a Subset of the Contents of a Cell
	Indexing Nested Cell Arrays
	Assigning Values to a Cell Array
	Deleting Elements from a Cell Array

	Indexing into MATLAB Structure Arrays
	Overview
	Accessing a Field
	Accessing the Contents of a Structure Field
	Assigning Values to a Structure Field
	Assigning Values to Elements in a Field
	Referencing a Single Structure in a Structure Array
	Referencing into Nested Structures
	Accessing the Contents of Structures Within Cells
	Deleting Elements from a Structure Array

	Indexing Techniques
	Duplicating a Row or Column
	Concatenating Subscripts

	C++ and MATLAB Indexing Syntax
	The mwIndex Class
	Programming Efficient Indices

	Calling Library Functions
	Overview
	How to Call C++ Library Functions
	One Result and Only Required Input Arguments
	Passing Optional Input Arguments
	Passing Optional Output Arguments
	Passing Optional Input and Output Arguments
	Passing Any Number of Inputs
	Passing Any Number of Outputs
	Summary of Library Calling Conventions
	Example Program: Calling Library Functions (ex2.cpp)

	How to Call Operators
	Example – Passing Functions As Arguments (ex3.cpp)
	Representing Input Arguments As a Cell Array

	Using the Mathematical Operators
	Overview
	Using the Operators
	Defining Your Own Operators

	Printing, Exceptions, and Memory Management
	Defining a Print Handler
	Providing Your Own Print Handler
	Using the Print Handler to Print Your Own Messages
	Output to a GUI

	Handling Exceptions
	C++ Exception Handling Overview
	Handling C++ Math Library Exceptions in Your Code
	Example Program: Handling Exceptions (ex5.cpp)
	Replacing the Default Library Error Handler
	Exception Handling in the MATLAB C++ Math Library

	Memory Management
	Setting Up Your Own Memory Management Routines
	Performance and Efficiency
	The Space-Time Continuum

	Array Input and Output
	Overview
	Using Array Stream I/O�
	Overview�
	Example – Array Stream I/O (ex1.cpp) �
	Stream I/O Format Definitions�
	Using Stream I/O to Files�
	Using Streams for Interprocess Communication�

	Using File I/O Functions�
	Specifying Library File I/O Functions
	Example – Using File I/O Functions (ex6.cpp)

	Importing and Exporting MAT-File Data�
	Exporting Array Data to a MAT-File
	Importing Array Data from a MAT-File
	Example – Using load() and save() (ex7.cpp)

	Translating from MATLAB to C++
	Differences Between C++ and MATLAB
	Syntax
	Variable Declaration
	Function Calling Conventions
	Control Structure
	Logical Values
	Name Conflicts with Standard C Library Functions
	Casting an Argument to Avoid a Name Conflict
	Renaming Functions to Avoid a Name Conflict

	Example Program: Rewriting roots.m in C++ (ex8.cpp)
	The M-File roots() Function
	The C++ roots() Function

	mwArray Class Interface
	Introduction
	Constructors
	Indexing and Subscripts
	Array Indexing
	Cell Content Indexing
	Structure Field Indexing

	User-Defined Conversions
	Memory Management
	Operators
	Array Size
	Extracting Data from an mwArray
	GetData()
	SetData()
	ExtractScalar() and ExtractData()
	ToString()

	Library Routines
	Introduction
	Operators
	Arithmetic Operators
	Relational Operators
	Miscellaneous Operators

	MATLAB Functions
	General Purpose Commands
	Operators and Special Functions
	Elementary Matrices and Matrix Manipulation
	Elementary Math Functions
	Specialized Math Functions
	Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Polynomial and Interpolation Functions
	Function Functions and ODE Solvers
	Character String Functions
	File I/O Functions
	Data Types
	Time and Dates
	Multidimensional Array Functions
	Cell Array Functions
	Structure Functions
	Sparse Matrix Functions

	Utility Functions
	Array Access Functions

	Directory Organization
	Introduction
	Directory Organization on UNIX
	<matlab>/bin
	<matlab>/extern/lib/$ARCH
	<matlab>/extern/include
	<matlab>/extern/include/cpp
	<matlab>/extern/examples/cppmath

	Directory Organization on Microsoft Windows
	<matlab>\bin
	<matlab>\extern\lib
	<matlab>\extern\include
	<matlab>\extern\include\cpp
	<matlab>\extern\examples\cppmath

	Exception Classes
	Overview
	Exception Class Descriptions

	Error Messages
	Overview
	Error Types
	Reporting Errors

	Alphabetized Error Messages�

	Index

