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Introduction:
Application of text classification

� Text classification is useful, widely applied:
– cataloging news articles (Lewis & Gale, 1994; Joachims, 1998b); 

– classifying web pages into a symbolic ontology (Craven et 
al., 2000); 

– finding a person’s homepage (Shavlik & Eliassi-Rad, 1998); 

– automatically learning the reading interests of users (Lang, 
1995; Pazzani et al., 1996);

– automatically threading and filtering email by content
(Lewis & Knowles, 1997; Sahami et al., 1998);

– book recommendation (Mooney & Roy, 2000).
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Early ways of text classification

� Early days: manual construction of rule sets.  
(e.g., if advertisement appears, then filtered).

� Hand-coding text classifiers in a rule-based style 
is impractical.  Also, inducing and formulating the 
rules from examples are time and labor consuming.
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Supervised learning for 
text classification

� Using supervised learning
– Require a large or prohibitive number of 

labeled examples, time/labor-consuming.
– E.g., (Lang, 1995) after a person read and hand-

labeled about 1000 articles, a learned classifier 
achieved an accuracy of about 50% when 
making predictions for only the top 10% of 
documents about which it was most confident.
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What about using unlabeled data?

� Unlabeled data are abundant and easily available, 
may be useful to improve classification.  

– Published works prove that it helps.

� Why do unlabeled data help?
– Co-occurrence might explain something.
– Search on Google, 

• ‘Sugar and sauce’ returns  1,390,000 results
• ‘Sugar and math’ returns      191,000 results
though math is a more popular word than sauce
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Using co-occurrence and pitfalls

� Simple idea: when A often co-occurs with B (a 
fact that can be found by using unlabeled data) 
and we know articles containing A are often 
interesting, then probably articles containing B are 
also interesting.

� Problem:
– Most current models using unlabeled data are based on 

problem-specific assumptions, which causes instability 
across tasks.
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Generative and discriminative
semi-supervised learning models

� Generative semi-supervised learning 
– Expectation-maximization algorithm, which can 

fill the missing value using maximum likelihood
� Discriminative semi-supervised learning

– Transductive Support Vector Machine (TSVM)
• finding the linear separator between the labeled 

examples of each class that maximizes the margin 
over both the labeled and unlabeled examples 

(Vapnik, 1998) 

(Nigam, 2001)
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Other semi-supervised 
learning models

� Co-training

� Active learning

� Reduce overfitting

(Blum & Mitchell, 1998) 

e.g., (Schohn & Cohn, 2000)

e.g. (Schuurmans
& Southey, 2000)
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Theoretical value of unlabeled data
� Unlabeled data help in some cases, but not all.
� For class probability parameters estimation, 

labeled examples are exponentially more valuable 
than unlabeled examples, assuming the underlying 
component distributions are known and correct. 
(Castelli & Cover, 1996)

� Unlabeled data can degrade the performance of a 
classifier when there are incorrect model 
assumptions. (Cozman & Cohen, 2002)

� Value of unlabeled data for discriminative 
classifiers such as TSVMs and for active learning 
are questionable. (Zhang & Oles, 2000)
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Models based on clustering 
assumption (1): Manifold

� Example:  handwritten 0 as an ellipse (5-Dim)
� Classification functions are naturally defined only 

on the submanifold in question rather than the total 
ambient space.

� Classification will be improved if the convert the 
representation into submanifold.
– Same idea as PCA, showing the use of unsupervised 

learning in semi-supervised learning
� Unlabeled data help to construct the submanifold.
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Manifold, unlabeled data help

Belkin & 
Niyogi
2002

A
B

A’ B’
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Models based on clustering 
assumption (2): Kernel methods

� Objective:
– make the induced distance small for points in the same 

class and large for those in different classes
– Example: 

• Generative: for a mixture of Gaussian              one kernel can be 

defined as 

• Discriminative:  RBF kernel matrix 

� Can unify the manifold approach

( , )k kµ Σ
1

1
( , ) ( | ) ( | )q T

kk
K x y P k x P k y x y−

=
= Σ∑

( )2exp || || /ij i jK x x σ= − −

(Tsuda et al., 2002) 
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Models based on clustering 
assumption (3): Min-cut

� Express pair-wise relationship (similarity) between 
labeled/unlabeled data as a graph, and find a 
partitioning that minimizes the sum of similarity 
between differently labeled examples.
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Min-cut family algorithm
� Problems with min-cut

– Degenerative (unbalanced) cut 
� Remedy

– Randomness
– Normalization, like Spectral Graph Partitioning
– Principle:
Averages over examples (e.g., average margin, 

pos/neg ratio) should have the same expected 
value in the labeled and unlabeled data. 
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Overview:
Maximum entropy models

� Advantage of maximum entropy model
– Based on features, allows and supports feature induction 

and feature selection
– offers a generic framework for incorporating unlabeled 

data
– only makes weak assumptions
– gives flexibility in incorporating side information 
– natural multi-class classification

� So maximum entropy model is worth further
study.
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Feature in MaxEnt

� Indicate the strength of certain aspects in the 
event

– e.g., ft (x, y) = 1 if and only if the current 
word, which is part of document x, is 
“back” and the class y is verb.  Otherwise,   
ft (x, y) = 0.

� Contributes to the flexibility of MaxEnt
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Standard MaxEnt Formulation

( ) ( | ) log ( | )i k i k i
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The dual problem is just the maximum likelihood problem.
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Smoothing techniques (1)
� Gaussian prior  (MAP)

2
2( ) ( | ) log ( | )

2
t

i k i k i t
i k t

p x p y x p y x σ δ− +∑ ∑ ∑maximize

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t
i k

E f p x p y x f x y tδ− =∑ ∑

( | ) 1    for all k i
k

p y x i=∑
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Smoothing techniques (2)
� Laplacian prior (Inequality MaxEnt)

( ) ( | ) log ( | )i k i k i
i k

p x p y x p y x−∑ ∑maximize

s.t. [ ] ( ) ( | ) ( , )     for all p t i k i t i k t
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E f p x p y x f x y A t− ≤∑ ∑

( ) ( | ) ( , ) [ ]     for all i k i t i k p t t
i k

p x p y x f x y E f B t− − ≤∑ ∑
( | ) 1    for all k i

k
p y x i=∑

Extra strength: feature selection.
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MaxEnt parameter estimation 

� Convex optimization   ☺
� Gradient descent, (conjugate) gradient descent
� Generalized Iterative Scaling (GIS)
� Improved Iterative Scaling (IIS)
� Limited memory variable metric (LMVM)
� Sequential update algorithm
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Semi-supervised MaxEnt
� Why do we choose MaxEnt?

– 1st reason: simple extension to semi-supervised learning

– 2nd reason: weak assumption

( ) ( | ) log ( | )i k i k i
i k

p x p y x p y x−∑ ∑

( | ) 1    for all k i
k

p y x i=∑
[ ] ( ) ( | ) ( , )p t i k i t i k

i k
E f p x p y x f x y=∑ ∑where

maximize

s.t. [ ] ( ) ( | ) ( , ) 0    for all p t i k i t i k
i k

E f p x p y x f x y t− =∑ ∑
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Estimation error bounds
� 3rd reason: estimation error bounds in theory

( ) ( | ) log ( | )i k i k i
i k

p x p y x p y x−∑ ∑
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i k
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( | ) 1    for all k i
k

p y x i=∑
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Side Information

� Only assumptions over the accuracy of empirical 
evaluation of sufficient statistics is not enough

y
1.

xy
x

OO

2.  Use distance/similarity info
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Source of side information
� Instance similarity.

– neighboring relationship between different instances 
– redundant description
– tracking the same object

� Class similarity, using information on related     
classification tasks

– combining different datasets (different distributions) 
which are for the same classification task; 

– hierarchical classes; 
– structured class relationships (such as trees or other 

generic graphic models)
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Incorporate similarity information:
flexibility of MaxEnt framework

� Add assumption that the class probability of xi , xj is similar 
if the distance in one metric is small between xi , xj.

� Use the distance metric to build a minimum spanning tree 
and add side info to MaxEnt.  Maximize:

2
,( , ) , ,

,( , )

( ) ( | ) log ( | )i k i k i k i j i j k
i k k i j E

p x p y x p y x w ε
∈

− −∑ ∑ ∑
[ ] ( ) ( | ) ( , )   for all p t i k i t i k

i k
E f p x p y x f x y t=∑ ∑

( | ) 1    for all k i
k

p y x i=∑
, ,( | ) ( | )     for all  and ( , )k i k j i j kp y x p y x k i j Eε− = ∈

,( , ) ( , )k i j s i jw C w where w(i,j) is the true distance between (xi, xj)
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Connection with Min-cut family
� Spectral Graph Partitioning
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Harmonic function
(Zhu et al. 2003)
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Miscellaneous promising 
research openings (1)

� Feature selection
– Greedy algorithm to incrementally add 

feature to the random field by selecting the 
feature which maximally reduces the 
objective function.

� Feature induction
– If IBM appears in labeled data while Apple

does not, then using ‘IBM or Apple’ as 
feature can help (though costly).



2005-7-4 School of Computing,  NUS 33

Miscellaneous promising 
research openings (2)

� Interval estimation

– How should we set the At and Bt ?  Whole bunch of results 
in statistics.  W/S LLN, Hoeffding’s inequality

or using more advanced concepts in statistical learning 
theory, e.g., VC-dimension of feature class

( ) ( | ) log ( | )i k i k i
i k

p x p y x p y x∑ ∑
[ ] ( ) ( | ) ( , )     for all t p t i k i t i k t

i k
B E f p x p y x f x y A t− ≤ − ≤∑ ∑

( | ) 1    for all k i
k

p y x i=∑

minimize

s.t.

( ) 2[ ] [ ] exp( 2 )p t p tP E f E f mβ β− > ≤ −
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Miscellaneous promising 
research openings (3)

� Re-weighting
– In view that the empirical estimation of statistics is 

inaccurate, we add more weight to the labeled data, 
which may be more reliable than unlabeled data.

2
2( ) ( | ) log ( | )

2
t

i k i k i t
i k t

p x p y x p y x σ δ+∑ ∑ ∑
[ ] ( ) ( | ) ( , )     for all p t i k i t i k t

i k
E f p x p y x f x y tδ− =∑ ∑

( | ) 1    for all k i
k

p y x i=∑

exp ( , )i t t i k
k t

Z f x yλ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ s.t.

minimize
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Re-weighting
� Originally, n1 labeled examples and n2 unlabeled 

examples

Then p(x) for labeled data:

p(x) for unlabeled data:

1 2

1 2

1 2 1 2

labeled data  unlabeled data

, ,..., , , ,...,l l l u u u
n n

n n

x x x x x x
1 1

1 1

1 2

 copies  copies 
   of    of 

1 1 1 2

labeled data  unlabeled data

,... ,..., ,... , , ,...,

ll
nxx

l l l l u u
n n n

n n

x x x x x x x

ββ

β

2

u

1 2

1
n n+ 1 2n n

β
β +

1 2

1
n n+ 1 2

1
n nβ +

All equations before keep unchanged!
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Initial experimental results

� Dataset:  optical digits from UCI
– 64 input attributes ranging in [0, 16], 10 classes

� Algorithms tested
– MST MaxEnt with re-weight
– Gaussian Prior MaxEnt, Inequality MaxEnt, TSVM 

(linear and polynomial kernel, one-against-all)

� Testing strategy
– Report the results for the parameter setting with the best 

performance on the test set
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Initial experiment result
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Summary

� Maximum Entropy model is promising for semi-
supervised learning.

� Side information is important and can be flexibly 
incorporated into MaxEnt model.

� Future research can be done in the area pointed 
out (feature selection/induction, interval 
estimation, side information formulation, re-
weighting, etc).
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Question and Answer Session

Questions
are 

welcomed. 
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GIS
� Iterative update rule for unconditional probability:

� GIS for conditional probability 

( 1) ( )
( )

[ ]
log

( ) ( | , ) ( , )
p ts s

t t s
i k i t i k

i k

E f
p x p y x f x y

λ λ η
λ

+

⎛ ⎞
⎜ ⎟= + ⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑

( )

( ) [ ]
log

[ ]s

p ts
t

tp

E f
E f

λ η
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

( )

( 1) ( ) [ ]
log

[ ]s

p ts s
t t

tp

E f
E f

λ λ+
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

( )

( 1) ( )
( )

( ) ( )
( ) ( )

( ) ( )

t if x

j t j
js s

i i s
t j t j

j

p x f x
p x p x

p x f x
+

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∏ ∑



2005-7-4 School of Computing,  NUS 41

IIS
� Characteristic:

– monotonic decrease of MaxEnt objective function
– each update depends only on the computation of expected 

values       , not requiring the gradient or higher derivatives 
� Update rule for unconditional probability:

– is the solution to:

– are decoupled and solved individually
– Monte Carlo methods are to be used if the number of 

possible xi is too large

tλ∆
( )[ ] ( ) ( )exp ( )   for all s

p t i t i t j i
i j

E f p x f x f x tλ
⎛ ⎞

= ∆⎜ ⎟
⎝ ⎠

∑ ∑
tλ∆

( )sp
E
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( )s
tλ

GIS
� Characteristics:

– converges to the unique optimal value of λ
– parallel update, i.e.,        are updated synchronously 
– slow convergence

� prerequisite of original GIS
– for all training examples xi:                 and  
– relaxing prerequisite

( ) 0t if x ≥ ( ) 1t i
t

f x =∑

( )s
tλ

( )t i
t

f x C=∑if t tf f C′=then define
If not all training data have summed feature equaling C, then
set C sufficiently large and incorporate a ‘correction feature’.
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Other standard optimization 
algorithms

� Gradient descent

� Conjugate gradient methods, such as Fletcher-
Reeves and Polak-Ribiêre-Positive algorithm

� limited memory variable metric, quasi-Newton
methods: approximate Hessian using 
successive evaluations of gradient 

( 1) ( )
( )

s s
t t s

t

Lλ λ η
λ λλ

+ ∂
= +

=∂
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Sequential updating algorithm

� For a very large (or infinite) number of features, 
parallel algorithms will be too resource consuming to 
be feasible. 

� Sequential update: A style of coordinate-wise 
descent, modifies one parameter at a time. 

� Converges to the same optimum as parallel update.
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Dual Problem of Standard MaxEnt 
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∑ ∑where
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( ) log ( ) [ ] ( ) logi i t p t i i
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Relationship with 
maximum likelihood

1( | ) exp ( , )k i t t i k
ti

p y x f x y
Z

λ⎛ ⎞
= ⎜ ⎟
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( ) ( , ) log ( , )i k i k
i k

L p x y p x yλ =∑∑

min( , ) [ ] ( ) logt p t i i
t i

L p E f p x Zλ λ= − +∑ ∑

exp ( , )i t t i k
k t

Z f x yλ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑where

← maximize

Dual of 
MaxEnt:

← minimize
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Smoothing techniques (2)
� Exponential prior
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Smoothing techniques (1)
� Gaussian prior  (MAP)
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Smoothing techniques (3)
� Laplacian prior (Inequality MaxEnt)
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Smoothing techniques (4)
� Inequality with 2-norm Penalty
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2 2

1 2( ) ( | ) log ( | )i k i k i t t
i k t t

p x p y x p y x C Cδ ζ+ +∑ ∑ ∑ ∑exp ( , )i t t i k
k t

Z f x yλ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

[ ] ( ) ( | ) ( , )     for all p t i k i t i k t t
i k

E f p x p y x f x y A tδ− ≤ +∑ ∑
( ) ( | ) ( , ) [ ]    for all i k i t i k p t t t

i k
p x p y x f x y E f B tζ− ≤ +∑ ∑

s.t.

( | ) 1    for all k i
k

p y x i=∑



2005-7-4 School of Computing,  NUS 51

Smoothing techniques (5)
� Inequality with 1-norm Penalty

minimize

1 2( ) ( | ) log ( | )i k i k i t t
i k t t

p x p y x p y x C Cδ ζ+ +∑ ∑ ∑ ∑exp ( , )i t t i k
k t

Z f x yλ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

[ ] ( ) ( | ) ( , )     for all p t i k i t i k t t
i k

E f p x p y x f x y A tδ− ≤ +∑ ∑
( ) ( | ) ( , ) [ ]    for all i k i t i k p t t t

i k
p x p y x f x y E f B tζ− ≤ +∑ ∑

s.t.

( | ) 1    for all k i
k

p y x i=∑
0, 0   for all t t tδ ζ≥ ≥



2005-7-4 School of Computing,  NUS 52

Using MaxEnt as Smoothing
� Add maximum entropy term into the target function of other 

models, using MaxEnt’s preference of uniform distribution
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Bounded error

� Correct distribution pC(xi)

� Conclusion:

then
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