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Max-margin Methods 
 

Notation 
 Notation Example 

Inputs xi 
 

images 
(coded) 

(v1
T, v2

T,…,v5
T)T, where 

v1 is a vector of grey 
level for letter ‘b’, etc. 

Number of Input 
micro-labels (length) 

Li 5 (can be tricky for CFG).  Assumption: segmented. 

Input Space X  The space of images. 
True outputs 

aka macro-label 
yi the word ‘brace’ 

Output Space Y  
{all possible words} = {An| n is a natural number}, where 
A is the alphabet. Note: Y  is NOT restricted to 5-letter 
words. n can be 10, 1, etc. 

Any output 
(candidate) 

y 
any element of Y , e.g., ‘bcace’, ‘brare’, ‘lrace’, or even 
‘is’, ‘country’ which are shorter or longer than 5 letters. 

 

We have a set of training examples ( ){ }, 1,...,i i i l∈ × =X Yx y .  For multi-class tasks 

which do NOT have structured outputs, we also conveniently adopt the above notation 

(viewing as if 1iL ≡ ).  The connotation of Y  and y are independent of xi.  But in the 

following we implicitly assume they are restricted once xi is given.  For example, in the 

above ‘brace’ case, we will restrict Y  to 5-letter words.  So it is better to write iY . 

 

Part I.  Data representation and model assumption 
Representing the data in a disposable form is a critical design task.  For binary classification, 
we simply write the input x as a real vector.  For multi-class classification (including struc-
tured output tasks), the data representation is rather tricky and depends on model assumption. 
  
Model assumption means the pool of models we want to investigate.  If the optimal separa-

tor is Tw x , then we can never achieve good performance if we restrict our attention only to 

functions in {sin( )}Tw x .  Below we want to restrict our classifier to the following form: 

( ) ( ) ( ); arg max , ; arg max , ,i i if F f
∈ ∈

= =
Y Yy y

x w x y w w x y  

w is a parameter vector.  This means the following process: 
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1. Map each pair of (xi, y) maps to a feature vector ( ),if x y  according to a certain prede-

fined rule (this rule is problem specific and is not to be learned here); 

2. Compute a score ( ), ; :iF R× →X Yx y w , which is the sum of features values weighted 

by w, i.e., ( ), ,ifw x y  (the w is to be learned from training examples); 

3. the classifier’s prediction is the y which yields the highest score. 
 
Example.   

 

This will result in the actual rule ( ) ( ); arg max ,i i
yf f

∈
=

Yy
x w w x .  Intuitively: 

 

If the task is binary, we usually only need feature vector f (x) and compare ( )Tw f x  with 0.  

We also take use ic  = 1 or –1 to represent that xi is positive or negative respectively. 

More about representation in CFG… 
 

Part II.  Max-margin philosophy [copied partly from Bousquet et al., 2003] 

Most existing learning algorithms perform a trade-off between fit of the data (to be discussed 
in Part III) and 'complexity' of the solution.  The way this complexity is defined varies from 
one algorithm to another and is usually referred to as a prior probability or a regularizer.  
The choice of this term amounts to having a preference for certain solutions and there is no a 
priori best such choice since it depends on the learning problem to be addressed.  This means 
that the right choice should be dictated by prior knowledge or assumptions about the problem 
or the class of problems to which the algorithm is to be applied. Let us consider the binary 
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classification setting.  A typical assumption that is (at least implicitly) used in many learning 
algorithms is the following 

Two points that are close in input space should have the same label. 

One possible way to enforce this assumption is to look for a decision function which is con-
sistent with the training data and which does not change too much between neighboring 
points. This can be done in a regularization setting, using the Lipschitz norm as a regularizer. 
For differentiable functions, the Lipschitz norm of a function is the supremum of the norm of 
the gradient.  We want a classifier function f, which produces low training loss and is 

smooth at training points.  That is, we do not want f∇  ( f∇  stands for the gradient of f ) 

be large at training points.  It is thus natural to consider algorithms of the form 

( ) 2
min sup

f x
f x∇ , under the constraint that training data is well fit  (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

X

Y 

f (x) 

X 



4 

Performing such a minimization on the set of linear functions leads to the maximum margin 
solution, whereas the 1-nearest neighbor decision function is one of the solutions of the above 
optimization problem when the set of functions is unconstrained. 

If we restrict f to linear functions Tw x b+ .  Then it means we want to minimize 

( ) ( )2

1

sup ,
l

T
i i i

i i
f x C loss w x b c

=

∇ + +∑  

But as f w∇ ≡  (independent of x), this is equivalent to minimize  

( )
1

1 ,
2

l
T T

i i
i

w w C loss w x b c
=

+ +∑  

Substituting hinge loss (or any other loss) for ( )loss ⋅ , we derive SVM. 

 
Although very useful because widely applicable, the above assumption is sometimes too weak. 
Indeed, most 'real-world' learning problems have more structure than what this assumption 
captures. For example, most data is located in regions where the label is constant (clusters) 
and regions where the label is not well-defined are typically of low density. This can be for-
mulated via the so-called cluster assumption: 

Two points that are connected by a line that goes through high density regions 
should have the same label. 

Another related way of stating this assumption is to say that the decision boundary should lie 
in regions of low density.  Assumption 1 slightly implies Assumption 2.   
 
How do we implement these assumptions?  Now suppose we restrict our classifiers to linear 
forms.  Intuitively, the assumptions imply that data points should be as far away from deci-
sion boundary as possible.   

1. We know a directed hyperplane (a hyperplane with normal direction) is uniquely decided 

by 0Tw x b+ =  where 1w = .  I.e., there is a bijection between {directed hyperplanes} 

and { }0 1Tw x b w+ = = .  So restricting ourselves in the world of 1w =  will not cause 

any loss of candidate hyperplane.  

2. We also know that a point x’s distance to a hyperplane 0Tw x b+ =  is Tw x b w+ .  

Combining 1 and 2, we can safely add the constraint 1w =  and say that the larger 

T
iw x b+  is, the farther is xi from the decision boundary.  So similar to (1), we want to 

maximize min T
ii

w x b+  over w and b.  Also note that besides xi we also have labels ci, 
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which will decide on which side of the hyperplane xi is.  In the best case when the dataset is 

linear separable, we can maximize min T
ii

w x b+  under the constraint that 

( ) 0T
i ic w x b+ ≥ .  We call 2 min T

ii
w x b⋅ +  the margin of dataset X  with respect to 

hyperplane 0Tw x b+ =  ( 1w = ), usually denoted as ρ .  Maximizing the margin leads 

to the following formulation: 
 
1. Fix/Constrain the norm of weight vector w (QCQP) 

Max (wrt , ,w b γ )  γ            (2) 

s.t.    1w ≤  (or 1w = ) 

    ( )T
i ic w x b γ+ ≥    for i∀  

Finally, w  must be 1 (why?).  Note if the dataset is linearly separable, γ  will be 

automatically optimized to non-negative (otherwise, flip the sign of w and b). 
 

2. Fix the functional margin to 1, then minimize the norm of the weight vector w (QP) 
 

Mathematically, (2) is equivalent to (QP) (recall distance(x, plane) = Tw x b w+ ): 

Min (wrt ,w b ):  
1
2

Tw w  

s.t.     ( ) 1T
i ic w x b+ ≥   for i∀  

 
Note although in the linearly separable case, there always exist w and b which satisfies 

( ) 0T
i ic w x b+ ≥  under the constraint 1w = , there may not be any w and b which 

satisfy ( ) 1T
i ic w x b+ ≥  for i∀ .  But in the new form, we no longer restrict 1w = .   

 
In Vapnik’s statistical machine learning theory, it says that the optimal solution has VC 

dimension h bounded from above 
( )2

2min 1
diameter of dataset

h
ρ

   ≤ +  
    

. 

Let ( ) 1, ( , , ) ( , )
2

R w b y f x w b dP x y= −∫ , ( )
1

1, ( , , )
2

l

emp i i
i

R w b y f x w b
l =

= −∑  
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Then, ( ) ( ) ( )( ) ( )log 2 / 1 log / 4
, ,emp

h N h
R w b R w b

N
η+ −

≤ +  with probability 

1 η− .   

 
 
 
 
 
 
 
 
 
 
 

So the larger ρ , the smaller h, and the smaller ( ),R w b . 

Finally we realize we can not count on the linear separability.  So once there does not 
exist such a perfect linear boundary, we must find a trade-off between maximizing the 

margin and fitting the training data (soft-margin):  ( )
1

1 ,
2

l
T T

i i
i

w w C loss w x b c
=

+ +∑ .(3)  

One hard loss is 0/1 loss: ( ) ( )( ), 0T T
i i i iloss w x b c c w x b+ = ⋅ + ≥1 , where 

( ) 1true =1 , ( ) 0false =1  (indicator function).   

 
 
 
 
 
 
 
 
However this will make optimization problem (3) NP-complete, so we have to ap-
proximate the 0/1 loss by other choices, such as hinge loss lH.  

 
 
 
 
 
 
 

1 

T
iw x b+  

hinge loss 

ci = 1 (true class is positive) 

O 
–1 

T
iw x b+  

hinge loss 

ci = –1 (true class is negative) 

O 

T
iw x b+  

0/1 loss 

ci = 1 (true class is positive) 

O 

1 

T
iw x b+  

0/1 loss 

ci = –1 (true class is negative) 

O 

1 

1 1 
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Formally, we can write ( )
1

1 ,
2

l
T H T

i i
i

w w C l w x b c
=

+ +∑  into nicer form: (interpret it!) 

Primal:         (4) 

Min (wrt , ,w b ξ ): 
1

1
2

N
T

i
i

w w C ξ
=

+ ∑  

s.t.  ( ) 1T
i i ic w x b ξ+ ≥ −  for i∀  

        0iξ ≥        for i∀  

Dual:              (5) 

Max (wrt α ): 
1 1 1

1
2

l l l
T

i i j i j i j
i i j

d d x xα α α
= = =

−∑ ∑∑  

s.t.  
1

0
l

i i
i

dα
=

=∑ ,  [0, ]i Cα ∈  for i∀  

Once we solve the dual problem with *
iα , we will have * *

1

l

i i i
i

w d xα
=

= ∑ , and the determi-

nant hyperplane is * *

1

l
T T

i i i
i

w x b d x x bα
=

+ = +∑ . 

 
3. Motivating from the dual directly.  Kernel interpolation (not the Mercer Kernel). 

Assume that the discriminant function is ( ) ( )
1

,
l

i i i
i

f x c k x xα α
=

= ∑  ( { 1,1}ic ∈ − , binary for 

simplicity), where k can be a Gaussian kernel: ( ) ( )2 21, exp
2i ik x x x x σ
πσ

= − − , re-

stricting that 0iα > .  If the cost function is: ( )( )2

0 1

min
l

i i
i

f x cαα ≥
=

−∑ , then it becomes Ra-

dial Basis Neural Network.  It is know to be able to fit all ci perfectly, as Gaussian kernel 

matrix ( , )i jk x x  is always positive definite (thus invertible).  So people add regularization 

terms like ( )( )22

0 1

min
l

i i
i

C f x cαα
α

≥
=

 + − 
 

∑ .  Then people say, maybe hinge loss is better 

than square loss and they change the form into: ( )( )2

0 1

min ,
l

H
i i

i
C l f x cαα

α
≥

=

 + 
 

∑ , which is 

formally as:    min 2

1

l

i
i

Cα ξ
=

+ ∑  

   s.t.    ( )
1

, 1
l

i j j i j i
j

c d k x xα ξ
=

⋅ ≥ −∑     and  0iξ ≥ , 0iα ≥   for all i.    

This is already very similar to SVM, except that it used 2α  as regularizer.  The story that 
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finally introduces 
, 1

( , )
l

i j i j i j
i j

c c k x xα α
=

∑  is as follows.  2α  means that we adopt a Gaus-

sian prior of α ’s distribution (zero mean, covariance matrix being identity matrix).  Now 

we use a new prior of α  which kind-of reflects the conformability of ( ),i jk x x  and their 

labels ci and cj.  We assume that the prior of α  is a zero-mean Gaussian distribution with 

inverse covariance matrix V: ( ),ij i j i jV c c k x x= .  The purpose of inversion will be shown 

later.  Adding another trivial constraint [0, ]i Cα ∈ , the optimization problem is now for-

mulated as:  

Min     
, 1 1

( , )
l l

i j i j i j i
i j i

c c k x x Cα α ξ
= =

+∑ ∑  

   s.t.    ( )
1

, 1
l

i j j i j i
j

c d k x xα ξ
=

⋅ ≥ −∑     and  0iξ ≥ , [0, ]i Cα ∈   for all i. 

This is exactly the same as (4) mathematically (except a bias term). 
 
Note the regularization term is usually exerting opposite influence of loss function.  If we 

interpret ( )
, 1 1

( , )
l l

i j i j i j i i i
i j i

c c k x x c f xαα α α
= =

= ⋅∑ ∑ , then minimizing it means encouraging the 

model prediction ( )if xα  to be of different sign from ci (the correct label). 

 
Another way to view dual cost function: training error + regularizer. 
 
4. One important variant 

(ν -SVM) ( )
, , 0 1

1min , ,
2

N
T H T

i iw b i
w w C l w x b c

ρ
ρ νρ

≥
=

+ + −∑  (C, ν  are user specified) 

The new hinge loss function is: 
 
 
 
 
 
 
 
 

 
ν -SVM allows changeable function margin. ν  is an upper bound on the fraction of margin 

ρ  

T
iw x b+  

loss 

1c =  (true class is positive) 

O 
ρ−  

T
iw x b+  

loss 

1c = −  (true class is negative) 

O 
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errors, a lower bound on the fraction of support vectors, and that both of these quantities ap-
proach ν  asymptotically.  Formally, 

Min (wrt , , ,w b ξ ρ ):  
1

1
2

l
T

i
i

w w C ξ
=

+ ∑  

s.t.      ( )T
i i ic w x b ρ ξ+ ≥ −  for i∀  

          0iξ ≥      for i∀   and   0ρ ≥  

ν  is an important parameter, and there is also some algorithms that learn ν . 
 

Part III.   Choice of loss function and multi-class SVM  
 
Loss function is often used in a confusing way because people use it to refer to two different 
things: goodness of sequence label probability distribution given by the model (e.g. hinge loss) 
vs. difference measure of two sequences (e.g., Hamming distance).  The most distinctive 
difference is the latter requires the w vector and a probability model (e.g., CRF, logistic re-

gression) to calculate, whereas the latter only depends on the tuple ( ), ,i ix y y .  Usually, the 

latter is positive when iy y≠  and 0 if iy y= .  For mathematical convenience, it is desir-

able to be decomposable on cliques.  This measure is relatively simple and thus we focus on 
the former so-called loss function. 

Since for multi-class SVM, the regularizer is still Tw w  as in binary case, the only difference 

is the loss function.  So discussing the loss function is exactly discussing multi-class SVM.  
We will also see some loss functions for non-max-margin classifiers (e.g., CRF) for compari-
son.  This part borrows a lot from (Altun 03 EMNLP). 
1. What is the numerical form of the loss function ? 

log loss, hinge loss, exp loss, 0/1 loss, … 
2. What is graph components (e.g., sequence) are involved in loss function calculation? 

sequence, cliques, single node, sub-tree, … 
 
We first look at some loss functions defined on the whole sequence. 

1. 0/1 loss for multi-class: 
1

( , ) max ( , )
i

l
T i i T i

y yi
step w f x y w f x y

≠=

 − 
 ∑  

 Corresponding margin = ( , ) max ( , )
i

T i i T i

y y
w f x y w f x y

≠
−  Discontinuous, NP-complete. 

2. hinge loss.  ( ) ( )( )
1

max 0,1 max , ,
i

l
T i i T i

y yi
w f x y w f x y

≠=

 − − 
 ∑ , which checks whether 

the ( , )T i iw f x y  is larger than the max of the rest ( ),T iw f x y  by more than 1.  
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Max-margin models are built upon hinge loss. 
 

3. log loss (soft-max): ( )
1

( , ) log exp ( , )
l

T i i T i

i y
w f x y w f x y

=

 
− + 

 
∑ ∑  = ( )

1

log 1 i

l
H

i
e−

=

+∑ , 

where  

( ) ( )( , ) log exp ( , ) ( , ) ( , )
ii

T i i T i T i i T i
i

y yy y

H w f x y w f x y w f x y softMax w f x y
≠≠

= − = −∑  

since ( )log exp( ) exp( ) max( , )x y x y+ ≈  called soft max.  This loss function is motivated 

by assuming that ( )
( )( )

( )( )
exp ,

| ,
exp ,

T

T
y

w f x y
P y x w

w f x y
=

∑
.  So maximizing the log likelihood  

( ) ( )( )
( )( ) ( ) ( )( )( )

1 1

exp ,
log | , log , log exp ,

exp ,

Tl l
i i T T

T y
i ii y

w f x y
P y x w w f x y w f x y

w f x y= =

 
 = = −
 
 

∑ ∑ ∑∏ ∑
.  If ( , )T i iw f x y  is the largest, then it measures the relative value of ( )exp ( , )T i iw f x y  

and ( )exp ( , )
i

T i

y y

w f x y
≠
∑  (how much the latter can pull the former away).  If 

( , )T i iw f x y  is not the largest, then compare the loss compares the (soft-max – ( , )T i iw f x y ).  

Log loss is used in CRF. 
Preferable when uncertain on noisy data, penalty not that peaky. 
 
4. rank loss.  The 0/1 loss, log loss and hinge loss all count whether the desired label has 
been mistakenly ranked (not getting the highest score).  However, most of the time, systems 
(particularly sequence labelling systems) are tested with respect to their error rate on test data, 

i.e., the fraction of times the function assigns a higher score the a label sequence iy y≠ .  

So the rank loss might be a more natural objective to minimize 

( ) ( )( )
1

, ,
i

l
T i T i i

i y y

w f x y w f x y
= ≠

Θ −∑ ∑ , which is the total number of label sequences whose 

score ranks higher than the correct label sequences for the training instances in corpus C.   
 
5. exp loss.   Rank loss is NP-complete to optimize, so one can optimize an upper bound: 

( ) ( )( )
1

exp , ,
i

l
T i T i i

i y y

w f x y w f x y
= ≠

−∑ ∑  

The advantage of the exp loss over the log loss is its property of penalizing incorrect labelings 
very severely, whereas it penalized almost nothing when the label sequence is correct.  
However, it also means the disadvantage of being sensitive to noisy data, since systems opti-
mizing exp loss spends more effort on the outliers and tends to be vulnerable to noisy data. 
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The relationship of the 4 loss functions (excluding rank loss) is illustrated as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The x-axis is ( ) ( ), max ,
i

T i i T i

y y
w f x y w f x y

≠
−  for 0/1 loss and hinge loss and  

( ) ( ), ,
i

T i i T i

y y
w f x y softMax w f x y

≠
−  for log loss and exp loss. 

 
Besides defining on the complete sequence, it is useful to realize that in many applications it 
is very difficult to get the whole label sequence correct since most of the time classifiers are 
not perfect and as the sequences get longer, the probability of predicting every label in the 
sequence correctly decreases exponentially. For this reason performance is usually measured 
pointwise, i.e. in terms of the number of individual labels that are correctly predicted. Most 
common optimization functions in the literature, however, treat the whole label sequence as 
one label, penalizing a label sequence that has one error and a label sequence that is all wrong 
in the same manner. We may be able to develop better classifiers by using a loss function 
more similar to the evaluation function.  One possible way of accomplishing this may be 
minimizing pointwise loss functions. Sequential optimizations optimize the joint conditional 

probability distribution ( )| ;P y x w , whereas pointwise optimizations that we propose opti-

mize the marginal conditional probability distribution, ( ) ( ):
| | ;i

t t

i i
t y y y

P y x P y x w
=

= ∑ .  

Then using the CRF probabilistic model, pointwise log loss function is  

( ) ( )
1 1 1 1 :

log | ; log | ;
i i

i
t t

L Ll l
i i i
t

i t i t y y y

P y x w P y x w
= = = = =

− = −∑∑ ∑∑ ∑ . 

Also using the CRF model, the pointwise exp loss is:  

( ) ( ) ( ) 1

1 1 1 1:

exp , log exp | ;
i i

i
t t

L Ll l
T i T i i

t
i t y i ty y y

w f x y w y P y x w
−

= = = ==

 
− =  

 
∑∑∑ ∑ ∑∑  

By the way, the sequential log loss is exactly what Lafferty et al. used.  The sequential exp 
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loss is defined as ( ) ( )( ) ( )( )1

1 1

exp , , | 1
i

l l
T i T i i i i

i iy y

w f x y w f x y P y x
−

= =≠

− = −∑ ∑ ∑ . 

Similarly, hinge loss 0/1 loss etc can be defined pointwise.  Between pointwise and sequen-
tial, we can also define loss function on cliques, subtrees or other interesting sub-graphs. 
 
 

Part IV.  Variants of hinge loss function for structured output  

In part III, we defined hinge loss ( ) ( )( )
1

max 0,1 max , ,
i

l
T i i T i

y yi
w f x y w f x y

≠=

 − − 
 ∑ .  In 

ordinary multi-class classification, we do not emphasize the measurement of how different 
two classes are.  We only say they are different.  But once we have structured output space, 
how to define the difference between two sequences (or other structures) is a crucial concern.  

We use ( )il y  to denote the loss ( ), ,i iloss x y y , which can be Hamming distance of yi and 

y, or 0/1 loss ( )iy y≠1 , or any other loss function.  So we change the original hinge loss 

(specifically the 1) to ( ) ( ) ( )( )max 0,max , ,
i

T i T i i
i

y y
l y w f x y w f x y

≠

 + − 
 

.  This means if 

there is a certain y which is very different from y i and li (y) is large, then even when 

( ),T iw f x y  is small, their sum is already possible to be larger than ( ),T i iw f x y  and may 

cause more loss (contribute to the max).  As a result, the learner will try to make 

( ),T iw f x y  by far smaller than ( ),T i iw f x y  to ensure that serous mistakes will not be 

made.  It is essentially re-scaling the margin.  If we notice that ( ) 0i
il y = , we can write it 

in a compact form:  

 ( ) ( )( ) ( )max , ,T i T i i
iy

l y w f x y w f x y+ − . (6) 

Note when ( ) ( )i i
il y y y= ≠1 , (6) becomes normal hinge loss: 

 ( ) ( )( )max 0,1 , max ,T i i T i

y
w f x y w f x y− + . (7) 

Another possible definition of hinge loss is  

 ( ) ( ) ( )( )( )max 1 , ,T i i i
iy

l y w f x y f x y⋅ − − . (8) 

This is essentially re-scaling the slack variable according to the loss.  Intuitively, violating a 

margin constraint involving a iy y≠  with high loss ( )i
il y  should be penalized more se-

verely than a violation involving an output value with smaller loss. Note when 
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( ) ( )i i
il y y y= ≠1 , (8) also becomes normal hinge loss (7).   

The potential disadvantage of the margin re-scaling (6) is that it may give significant weight 

to output values y ∈Y  that are not even close to being confusable with the target values y i, 

because every increase in the loss increases the required margin.  Putting (6) and (8) 
mathematically: 

   2

, 1

1
2

l

iw i

CMin w
lξ

ξ
=

+ ∑                 (6)’ 

   s.t. ( ) ( )( ) ( ), , , 0 , \T i i i i
i i iw f x y f x y l y for i y yξ ξ− ≥ − ≥ ∀ ∀ ∈Y  

and   2

, 1

1
2

l

iw i

CMin w
lξ

ξ
=

+ ∑                 (8)’ 

   s.t. ( ) ( )( ) ( )
, , 1 , 0 , \T i i i ii

i
i

w f x y f x y for i y y
l y

ξ
ξ− ≥ − ≥ ∀ ∀ ∈Y  

 

Part V.  Solving the optimization problem 
1.  Dual formulation. 

We re-write the formulation (6)’ after some equivalent simplification ( ( ) ( ),i if y f x y@ ). 

    2

, 1

1
2

l

iw i
Min w C

ξ
ξ

=

+ ∑             (9) 

    s.t. ( ) ( ) ( ) ,T i T
i i i iw f y w f y l y for i yξ+ ≥ + ∀ ∀ ∈Y  

The number of constraints can go exponentially with Li, thus intractable to solve.  We can 
use Lagrange multiplier methods. 

Primal problem:  
( )

( )
: 0w g w
Min f w

≥
             (10) 

Lagrangian:   ( ) ( ) ( ), TL w f w g wα α−@  

Let (primal) ( ) ( ) ( ) ( )( )
0 0

max , max TL w L w f w g w
α α

α α
≥ ≥

= −@ ,   ( )min
w

p L w% @ , 

(dual) ( ) ( ) ( ) ( )( )min , min T

w w
L L w f w g wα α α= −@ ,    ( )

0
maxd L

α
α

≥

% @ . 

Proposition 1.  
( )

( )
: 0w g w

p Min f w
≥

=%  .  This is because  

p% ( ) ( )( )
0

min max T

w
f w g w

α
α

≥
−@        
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( )
( ) ( )( )

( )
( ) ( )( )

: 0 : 00 0
min min max , min maxT T

w g w w g w
f w g w f w g w

α α
α α

≥ <≥ ≥

 = − − 
 

 

  
( )

( )
: 0

min min ,
w g w

f w
≥

 = + ∞ 
 

 

  
( )

( )
: 0
min

w g w
f w

≥
=  

Proposition 2.    ( ) ( )
0 0

max min , min max ,
w w

d L w L w p
α α

α α
≥ ≥

= ≤ =% %  

Proposition 3.  (Slater's condition)  If the primal problem (10) is convex and is strictly 

feasible, i.e., there exists 0u : ( )0 0if <u , then p d= %% . 

Combining Proposition 1 and 3, we conclude that we can solve 
( )

( )
: 0w g w
Min f w

≥
 by solving 

( ) ( )( )
0

max min T

w
f w g w

α
α

≥
− . 

So the Lagrangian of (9) is 

 ( ) ( ) ( ) ( )( )2

, 0 1 ,

1min max
2

l
T i T

i i i i i iw i i y
w C y w f y w f y l y

ξ α
ξ α ξ

≥
=

+ − + − −∑ ∑  (11) 

which has the same value as   

 ( ) ( ) ( ) ( )( )2

,0 1 ,

1max min
2

l
T i T

i i i i i iw i i y
w C y w f y w f y l y

ξα
ξ α ξ

≥
=

+ − + − −∑ ∑ . (12) 

The significant difference is that the inner optimization of (11) is constrained, while that of 
(12) is unconstrained, which can be solved analytically.  Also, the outer optimization only 
involves a bound constraint.  Now we optimize over α . 
 
To do the inner optimization, we only need to apply normal unconstrained optimization, 

viewing α  as fixed constant.  Setting 
( ) ( ), ; , ;

0
L w L w

w
ξ α ξ α

ξ
∂ ∂

= =
∂ ∂

, we finally derive 

the dual problem: 

 ( ) ( ) ( ) ( )
2

, , ,

1
2 i i i iw i y i y

Min y f y y l y
ξ

α α− ∆ +∑ ∑   

      s.t.  ( ) ( ), 0i i
y

y C yα α= ≥∑  for ,i y∀  

where ( ) ( ) ( )i
i i if y f y f y∆ −@ .  Without loss of generality, we normalize iα  by C and 

divide objective by C, then the resulting dual is given by 

 ( ) ( ) ( ) ( )
2

, , ,

1
2 i i i iw i y i y

Min C y f y y l y
ξ

α α− ∆ +∑ ∑  (13) 
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      s.t.  ( ) ( )1, 0i i
y

y yα α= ≥∑  for ,i y∀ . 

The original w is given by ( ) ( )
,

i i
i y

w C y f yα= ∆∑  and the score function is  

 ( ) ( ) ( ) ( )
,

T
x i i x

i y
w f y C y f y f yα= ∆∑  (14) 

So we can stay in the space of α .  The main insight is that ( )i yα  can be interpreted as a 

kind of distribution over y, since they lie in the simplex:   

( ) ( )1, 0i i
y

y yα α= ≥∑  for ,i y∀ . 

This dual distribution does not represent the probability that the model assigns to an instantia-
tion, but the importance of the constraint associated with the instantiation to the solution. The 

dual objective is a function of expectations of ( )il y  and ( )if y∆  with respect to ( )i yα .  

This is totally different from the dual form of binary classification. Max (wrt α ): 

1 1 1

1
2

l l l
T

i i j i j i j
i i j

C d d x xα α α
= = =

−∑ ∑∑ , s.t.  
1

0
l

i i
i

dα
=

=∑ ,  [0,1]iα ∈  for i∀ . (opposite sign). 

 

Non-zero ( )i yα  are called support vectors.  However, even solving the dual problem (13) 

may be expensive for large datasets or large output spaces.  Special algorithms like Sequen-
tial Minimal Optimization have been proposed to this end. 

 
2. Factorization. 
This part is the most exciting part of M3N.  However, the solution is more mathematical than 
machine learning.  We will try to interpret it more from machine learning angle. 
 
The biggest problem in structured output learning is that the number of possible labelling is 
usually exponential to the number of variables. This usually makes a model mathematically 
intractable.  Sometimes, it is relatively easy to design a dynamic programming algorithm to 
do exact inference.  In the worse cases, approximate inference algorithms are abundant.  
However, learning a model (estimating parameters) is usually more troubled by the computa-
tional cost.  Most algorithms either use approximate algorithms, or cleverly decompose the 
structured model into some parts and learn the intra-part and inter-part model separately.  
For CRF, the exponential computational cost stems from the calculation of model expectation.  
Fortunately, there is a Baum-Welch algorithm which can compute the expectation in polyno-
mial time.  However, this comes with the price that CRF is a chain.  Changing it into higher 
order r will cause computational complexity to grow exponentially with respect to r. 
 
M3N deals with the efficiency problem by decomposing the feature vector and loss function 

over the cliques of the Markov network.  It assumes that ( ) ( ),i i c c
c

l y l y
∈

= ∑
C

 and 
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( ) ( ),i i c c
c

f y f y
∈

∆ = ∆∑
C

.  Correspondingly, we need clique marginals of the distribution 

( )i yα .  So we define the marginal dual variables as: 

 ( ) ( ),
~

, ,
c

i
i c c i c

y y
y y i c yµ α= ∀ ∀ ∈ ∀∑ C  (15) 

(15) defines a map from ( )i yα  space to ( ),i c cyµ  space.  The intuitive objective of the 

transformation is variable reduction.  Compared with the exponential number of ( )i yα  

variables, the number of ( ),i c cyµ  is just exponential to the tree-width of the graph (W), and 

proportional to the number of cliques (nc): ( )W
cO ln e .  Hopefully the tree-width we need to 

deal with is small.  The major objective is that the optimization problem (13) can be re-ex-

pressed in terms of ( ),i c cyµ .  After the optimal ( ),i c cyµ ’s are found, we can map the 

value back to ( )i yα  efficiently.  To make this work, we must pay attention to 2 problems: 

 

1.  The validity of translation between ( )i yα  and ( ),i c cyµ .  We denote the map as 

:α µM a .  The domain of M , D (M ), is the product of simplices of the l examples.  

But there is no guarantee that the domain of M  is the set of all legal marginals, i.e., not all 

free marginals ( ),i c cyµ  can be translated back to ( )i yα .  For examples: 

 
 
 
 
 
 
 
 

( ) ( )0,0 1,1 0.5AB ABµ µ= =    ( ) ( )1,0 0,1 0AB ABµ µ= =  

( ) ( )0,0 1,1 0.5BC BCµ µ= =    ( ) ( )1,0 0,1 0BC BCµ µ= =  

( ) ( )0,0 1,1 0.5CD CDµ µ= =    ( ) ( )1,0 0,1 0CD CDµ µ= =  

( ) ( )0,0 1,1 0DA DAµ µ= =    ( ) ( )1,0 0,1 0.5DA DAµ µ= =  

 

A 

C B 

D 
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The zeros on the edges AB, BC, CD only allows 0000 or 1111.  But the edges DA disallows 
either.  Finally, there is no valid corresponding α  on y. 
 
So we must restrict the range of M , R(M ), so that the map from D ( M ) to R(M ) is a 

surjection.  If the graph iG  is triangulated, then the following equations will guarantee that 

the M  is surjection.  

( ), 1, ,
c

i
i c c

y
y i cµ = ∀ ∀ ∈∑ C  

( ), 0, , ,i
i c c cy i c yµ ≥ ∀ ∀ ∈ ∀C  

( ) ( ), ,
~

, , , , ,
c s

i
i s s i c c c

y y
y y i s c s c yµ µ= ∀ ∀ ∈ ⊂ ∀∑ C  

 
The third condition is stating the consistency between cliques that share variables.  It means 
for any two cliques C1 and C2, if they share the same variables C, then the marginals on C 
derived from C1 should be equal to the marginals on C derived from C2.  The real value of 

( ),i C Cyµ  is not important and it only makes notation more concise.    

 
 
 
 
 
 
 
For example, in the above figure, suppose all nodes are binary.  Then it requires 

( ) ( ) ( ) ( ) ( ) ( )1,1,1 0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1ABC ABC BCDE BCDE BCDE BCDEµ µ µ µ µ µ+ = + + +

( ) ( ) ( )
, {0,1}

1,1,0 0,1,0 1,0, ,ABC ABC BCDE
d e

d eµ µ µ
∈

+ = ∑  

( ) ( ) ( )
, {0,1}

1,0,1 0,0,1 0,1, ,ABC ABC BCDE
d e

d eµ µ µ
∈

+ = ∑  

( ) ( ) ( )
, {0,1}

1,0,0 0,0,0 0,0, ,ABC ABC BCDE
d e

d eµ µ µ
∈

+ = ∑ . 

Note the iC  may contain non-maximum cliques.  If the graph is not triangulated, then we 

must triangulate it and then define the ( ),i c cyµ .  Otherwise, the three conditions are not 

sufficient to guarantee that M  is surjection.  The first example illustrates the case.  Note 
the node marginals are all set to 0.5. 
 

Once the three conditions are met, we wish to find a decoding from ( ),i c cyµ  back to 

B 

E C 

A 

D 
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( )i yα .  As M  is a many-to-one map, the ( )i yα  will not be uniquely determined.  We 

can just pick one, which can be the maximum-entropy distribution. 
 
2.  We should reformulate he entire QP (13) in terms of these marginal dual variables. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,
, ~ ,c c c

i i i i c c i c c i i c c i c c
y y c c y y y c y

y l y y l y l y y y l yα α α µ= = =∑ ∑ ∑ ∑ ∑ ∑  

( ) ( ) ( ) ( ) ( ) ( ), , ,
, ~ ,c c c

i i i c c i i c c i c c
y c y y y c y

y f y f y y y f yα α µ∆ = ∆ = ∆∑ ∑ ∑ ∑  

Putting 1 and 2 together, we have the dual structured dual QP: 

 
( )

( ) ( ) ( ) ( )
,

2

, , , ,
, , , ,

1
2i c c

c c

i c c i c c i c c i c cy i c y i c y
Max y l y C y f y
µ

µ µ− ∆∑ ∑  (16) 

s.t.   ( ), 1, ,
c

i
i c c

y
y i cµ = ∀ ∀ ∈∑ C  

( ), 0, , ,i
i c c cy i c yµ ≥ ∀ ∀ ∈ ∀C  

( ) ( ), ,
~

, , , , ,
c s

i
i s s i c c c

y y
y y i s c s c yµ µ= ∀ ∀ ∈ ⊂ ∀∑ C  

 The solution to the structured dual *µ  will give us the primal solution 

( ) ( )* *
, ,

, , c

i c c i c c
i c y

w C y f yµ= ∆∑  

 

Part VI.  Kernelization 
We go back to the binary SVM dual optimization problem (5): 

Max (wrt α ): 
1 1 1

1
2

l l l
T

i i j i j i j
i i j

d d x xα α α
= = =

−∑ ∑∑  

s.t.  
1

0
l

i i
i

dα
=

=∑ ,  [0, ]i Cα ∈  for i∀  

Note input ix  and jx  appear only in the form of inner product.  For non-linearly separa-

ble dataset, we can always map it to a high dimensional space where they become linearly 

separable.  So if we map all x to another feature space ( )xϕ , then it still involves inner 

product in feature space only: 

Max (wrt α ): ( ) ( )
1 1 1

1
2

l l l
T

i i j i j i j
i i j

d d x xα α α ϕ ϕ
= = =

−∑ ∑∑  



19 

s.t.  
1

0
l

i i
i

dα
=

=∑ ,  [0, ]i Cα ∈  for i∀  

and the determinant boundary is ( ) ( )* *

1

l
TT

i i i
i

w x b d x x bα ϕ ϕ
=

+ = +∑ . 

So we can define kernel ( ) ( ) ( ), T
i iK x x x xϕ ϕ= .  ( )ϕ ⋅  may be a high dimensional space 

(or even infinite dimension), but we can still define ( ),iK x x .  So it offers us a convenient 

way to implicitly deal with rich feature spaces.  Commonly used kernels include polynomial 

kernel ( )1
pT

ix x + , radial basis function kernel ( )2 2exp 2ix x σ− − , linear kernel T
ix x , 

( )0 1tanh T
ix xβ β+ .   

 
Note in the dual optimization problem (16), local (clique) basis functions appear only in terms 
of inner products. 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,
TT i i i j j j

i c c j c c c c c c c c c cf y f y f x y f x y f x y f x y   ∆ ∆ = − −     

and the score function for unseen data is 

( )*T neww f y  ( ) ( ) ( )*
, ,

, , c

new
i c c i c c c c

i c y c
C y f y f yµ= ∆ ⋅∑ ∑  

   ( ) ( ) ( )( ) ( )*
,

, , ,

, ,
c

Ti i i new
i c c c c c c c c

i c c y
C y f x y f x y f yµ= −∑  

So what really matters is the inner products of local basis function, which makes kernelization 
possible.  The definition of kernel is problem specific.  Note here the kernel is defined be-
tween cliques of (possibly) different sequences.  We use the handwriting recognition as an 
example. 
 
 
 
 
 
 
 

We first define a kernel on flat vector ( ),i j
c ck x x , e.g. ( )1

pi T j
c cx x + .  There are two types of 

cliques: node cliques and edge cliques.  It is not straightforward to define kernel between 
node and edge cliques or between edge cliques.  So we just define them to be 0 and focus on 
kernels between node cliques: 

( ) ( )( ) ( ) ( ), , , ,i i j j i j i j
c c c c c c c ck x y x y y y k x x=1@  
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Some other definitions on sequences may allow inter-edge kernels: 

( ) ( )( ) ( ) ( ) ( ) ( )( ), , ,i i j j i j i j
c c c c c c c ck x y x y y l y l y r y r= ∧ =1@  

where i
cy  is an edge clique:    

 
 
 
There are also many types of kernel defined for structured data, say string kernels, tree ker-
nels. 
 

Part VII.  Other two techniques 
1. Linear programming for MAP decoding 

The dual form gives one solution to the primal problem (9):        

2

, 1

1
2

l

iw i
Min w C

ξ
ξ

=

+ ∑           (9) 

    s.t. ( ) ( ) ( ) ,T i T
i i i iw f y w f y l y for i yξ+ ≥ + ∀ ∀ ∈Y  

Another solution is to view the constraint as 

( ) ( ) ( )( )max ,
i

T i T
i i i i

y
w f y w f y l y for i yξ

∈
+ ≥ + ∀ ∀ ∈

Y
Y  

If we have a polynomial time algorithm to infer ( ) ( )( )max
i

T
i i

y
w f y l y

∈
+

Y
 and substitute in 

the constraint we will be able to circumvent the max over a exponentially many values.  We 
formulate the inference problem by a linear programming problem.  We still assume that the 
loss function and feature vector can be decomposed over cliques.  We represent a possible 

assignment y by a set of binary variables ( )c cyµ , one for each clique c and each value of the 

clique yc, which denotes whether the assignment has that value.  So the inference problem 
can be formulated as 

( )
( ) ( ) ( )( )

,
, , ,

,

max
i c c

c

T
i c c i c c i c cy c y

y w f y l y
µ

µ +∑  

s.t. ( ), 1, ,
c

i
i c c

y
y i cµ = ∀ ∀ ∈∑ C  

( ), 0, , ,i
i c c cy i c yµ ≥ ∀ ∀ ∈ ∀C  

( ) ( ), ,
~

, , , , ,
c s

i
i s s i c c c

y y
y y i s c s c yµ µ= ∀ ∀ ∈ ⊂ ∀∑ C  

We should have added a constraint that ( ),i c cyµ  can only be integers.  Fortunately, for a 

triangulated network with unique MAP assignment, the integrality constraint can be relaxed 
and the resulting LP is guaranteed to have integer solutions.  If the MAP assignment is not 

( )i
cy l  ( )i

cy r  
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unique, the value of the LP is the same as the value of the integer program, and any linear 
combination of the MAP assignments maximizes the LP. 
 
The dual is: 

,min i c
c

λ∑  

s.t. ( ) ( ) ( ) ( ), , , , , , ,
, ~

, ,
s c

T i
i c i s c c i s c s i c c i c c c

s c s c y y
m y m y w f y l y c yλ

′⊃ ⊂

′+ − ≥ + ∀ ∈ ∀∑ ∑ C  

Plugging the dual into (9), for each example i, we obtain  

2

, , , 1

1
2

l

iw m i
Min w C

ξ λ
ξ

=

+ ∑  

s.t.  ( ) ,
T i

i i i c
c

w f y iξ λ+ ≥ ∀∑  

  ( ) ( ) ( ) ( ), , , , , , ,
, ~

, ,
s c

T i
i c i s c c i s c s i c c i c c c

s c s c y y
m y m y w f y l y c yλ

′⊃ ⊂

′+ − ≥ + ∀ ∈ ∀∑ ∑ C  

This is already polynomial. 
 
2. Certificate problem 
This problem is crucial for matching problem.  It is similar to verifying a NP problem by a 
polynomial-time algorithm, though we may not be able to solve it in polynomial time.  E.g. 
 

 

 

Part VIII.  Application 1: Context Free Grammar Parsing 
To discuss application, the most important consideration is how to formulate the application 
into the theoretical framework.  We give the following correspondence between the concepts 
in this CFG parsing application and in M3N: 
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Input vector sentence 
Output space valid CFG parse trees 
Cliques parts (two types, see above).  Let R(x 

i, y) be the set of parts belonging to 
a particular parse y. Because all rules are in binary-branching form, |R(x 

i, 
y)| is constant across different derivations y for the same input sentence x 

i. 
Loss function ( ) ( )

( ),

, , , ,
i

i i i i

r R x y

L x y y l x y r
∈

= ∑ , note the third operand is a clique. One 

approach would be to define l(x 
i, y 

i, r) to be 0 only if the non-terminal A 
spans words s . . . e in the derivation y 

i and 1 otherwise. This would lead 
to L(x 

i, y 
i, y) tracking the number of “constituent errors” in y, where a 

constituent is a tuple such as <A, s, e, i>. Another, more strict definition 
would be to define l(x 

i, y 
i, r) to be 0 if r of the type <A → B C, s, m, e, i> 

is in the derivation y 
i and 1 otherwise. This definition would lead to L(x 

i, 
y 

i, y) being the number of CF-rule-tuples in y which are not seen in y 
i. 

Feature vector any function mapping a rule production and its position in the sentence x 
i, 

to some feature vector representation. For example, it could include fea-
tures which identify the rule used in the production, or features which 
track the rule identity together with features of the words at positions s, m, 
e, and neighboring positions in the sentence x. 

( ) ( )
( ),

,
i

i i
r

r R x y

f x y f x
∈

= ∑  

dual joint distri-

bution ( )i yα  
probability distributions over all possible valid parse trees for each sen-
tence i 

dual cost func-
tion ( ) ( ) ( ) ( ) ( )

2

,

1 , , , ,
2

i i i i i
i i

i y i y
Min C f x y y f x y y l x y yα α

 
− − + 

 
∑ ∑ ∑
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Let ( ) ( ),i i
yR x R x y= ∪ , ( )( ), , ,i r i y

y
r R x yµ α= ∈∑ 1 , then minimize 

( )
( )

( )( ) ( )
( )

2

, ,
, ,

1, , ,
2i i

i i i i i
i r i r r

i r R x i r R x

l x y r C r R x y f xµ µ
∈ ∈

 − ∈ − ∑ ∑ 1  

dual marginals 

( ),i c cyµ  

As cliques are parts r, there is no different instantiations of r’s.  We write 

( ),i r iµ α  or ,i rµ , meaning the proportion of parses that would contain 

part r if they were drawn from a distribution ( )i yα .  

( ) ( )( ), , ,i r i i y
y

r R x yµ α α= ∈∑ 1  

The number of such marginal terms is the number of parts, which is poly-
nomial in the length of the sentence. 

dual marginals 
consistency 

Essentially, we need to enforce the condition that the expected proportions 
of parses having particular parts should be consistent with each other. 

, , ,0,0, 1
ii r i A L

A
µ µ≥ =∑ , and , , , , , , ,

, ,
i A s e i A BC s m e

B C s m e
µ µ →

< <

= ∑   

, , , , , , , , , , ,
, , , ,0i

i A s e i B AC s m e i B CA s m e
B C e m L B C m s

µ µ µ→ →
< ≤ ≤ ≤

= +∑ ∑  (more in thesis?) 

 
 

Part IX.  Application 2: Protein Disulfide Connectivity Prediction 
Abstracted problem: 

We have a set of nodes N, 2N n= . We wish to partition N into two subsets of nodes A, B, 

such that | | | |A B= , A B φ=∩ .  Besides, we wish to find a matching between nodes in A 

and B (a bijection between A and B).  This is called perfect matching. 

The total number of possible match is ( )( )2 ! (2 )! 2
2 2 !

n
nn

n n

C n n O n
n

= =
⋅

, super-exponential. 

 
What is known: the attraction strength (similarity) between each pair of nodes. We represent 

each possible edge between nodes j and k ( j k< ) in the example ix  using a binary variable 

i
jky .  Let iY  be the set of partition (bipartite) and matching 2 ! 2i

i

ni n
nC n=Y .  Then we 

assume 
1. The similarity between node j and k in example x is  

( ) ( ) ( )T
jk d d jk jk

d
s x w f x w f x= =∑ . 
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Here ( )d jkf x  is a real-valued basis function representing arbitrary information about the 

two cysteine (j, k) neighborhoods such as: the identity of the residues at specific positions 
around the two cysteines, or the predicted secondary structure in the neighborhood of each 
cysteine. We assume that the user provides the basis functions.  w is what we will learn. 
 
2. The hypothesis is a matching which maximizes weight of the matching edges: 

 

 

We denote ( ) ( ),T T
jk jk

jk
w f x y w f x y∑@ , ( ) ( ),T T i

iw f y w f x y@ .  So our max-margin 

optimization problem can be written as: 

      Min 21
2

w  

      s.t. ( ) ( ) ( ) , ,T i T i
i i iw f y w f y l y i y≥ + ∀ ∀ ∈Y  

Again, work must be done to reduce the complexity of constraints.  We want a compact cer-

tificate of optimality that guarantees ( ) ( )( )arg maxi T
i i

y
y w f y l y= + . Then in these satis-

fying w’s, we find the one with minimum norm. 
 
Let M be a perfect matching for a complete undirected graph G = (V;E).  In an alternating 
cycle/path in G with respect to M, the edges alternate between those that belong to M and 
those that do not. An alternating cycle is augmenting with respect to M if the score of the 
edges in the matching M is smaller that the score of the edges not in the matching M. 
 
Theorem 1. A perfect matching M is a maximum weight perfect matching if and only if there 
are no augmenting alternating cycles. 

Theorem 2. There exists a distance function { }e
jd  satisfying the constraints below if and 

only if no augmenting alternating cycles exist. 
0 1 0 1

jk k j jk j ks d d s d d jk M≥ − ≥ − ∀ ∉  

1 0 1 0
jk k j jk j ks d d s d d jk M≥ − ≥ − ∀ ∈  

So we only need to introduce an auxiliary vector d, leading to 

       Min 21
2

w  

      s.t. i i i iH w G d q i+ ≥ ∀  

The , ,i i iH G q  are coefficients from equations in Theorem 2.  They are constants and of 

polynomial size.  So this means that among the w which satisfies 

( ) ( ) ( )arg max arg max T
jk jk jk jk

y yjk jk
h x s x y w f x y

∈ ∈
= =∑ ∑

Y Y
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( ) ( )( )arg maxi T
i i

y
y w f y l y= + , we pick the one with smallest norm.  If our basis func-

tions are not rich enough to predict the training data perfectly, we can introduce a slack vari-

able vector iξ  to allow violations of the constraints. 

 
Questions. 
1. How to add bias?  Add constant feature?  Is it included in w and thus in the ||w|| to be 

optimized? 
2. … 


