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1. Introduction

In this note, we present a self-contained proof of the following property in tree-structured
graphs, including trees, junction trees, and hypertrees:

The global joint distribution of any tree-structured graph factorizes in terms of the local
marginal distributions.

In tree-structured graphs, this property plays a central role in the proof of many properties,
which are unique to trees amongst all arbitrary graph topologies. These properties include,
but not limited to:

1. Local consistency guarantees the global consistency (see Proposition 2 and 4 below for
proof),

2. Inference on tree-structured graphs can be performed efficiently,

3. The Bethe approximation is exact on tree-structured graphs (see proof in section 4.2.3
of (Wainwright and Jordan, 2003)). In essence, the global entropy decomposes into
local entropies.

Many papers quote these results as given. Here we give a self-contained proof, using almost
only the fundamental definitions. The style is a little verbose, but we want to highlight
some subtle confusions and misunderstandings in this topic. The main objective is for you
to avoid the following awkward moments:

c©Xinhua Zhang.



Katherine: Hi Jack.
Do you know local consistency on trees implies global consistency?

Jack: Sure, everybody knows. Simple! I use it everyday.
Katherine: Fantastic. Could you show me the proof?

Jack: Obvious, hmmm. . . , let’s see.
(10 minutes)
hmmm. . . I refer you to Jordan’s book. (In fact, I don’t know ©)

Katherine: Then what does global consistency mean?
Jack: Well, I guess you should also read Jordan’s. (I am not sure as well.)

First of all, we introduce some notation. Suppose the graph is G = 〈V (G) , E (G)〉, where
V (G) is the set of nodes and E (G) is the set of edges. When G is clear from the context,
we just write V and E for simplicity. Associated with each node s ∈ V is a random variable
xs taking values in some set Xs called state space, which can be either continuous (e.g.,
Xs ∈ R) or discrete (e.g., Xs ∈ {1, ...,m}). For a subset A of the node set V , we define
xA := {xs|s ∈ A} and use x as a shorthand for xV . We use notations like p (xs, xt) and
p
(
x{s,t}

)
interchangeably.

2. Trees

We will start with trees, and then extend to more general tree-structured graphs. In a
tree, associated with each edge (s, t) is a non-negative edge potential function ψst (xs, xt),
and associated with each node is a non-negative node potential function ψs (xs). The joint
distribution is defined by

p (x) :=
1

Z

∏
s∈V

ψs (xs)
∏

(s,t)∈E

ψst (xs, xt) (1)

where Z is the normalization factor (partition function). On trees, the property of factor-
ization can be formally expressed in Proposition 1:

Proposition 1 If the graph T is a tree, then

p (x) =
∏

s∈V (T )

p (xs)
∏

(s,t)∈E(T )

p (xs, xt)

p (xs) p (xt)
.

To prove this result, we actually prove a strengthened result, which places a tree in a more
general graph.
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Lemma 1 For any graph G, suppose T is a connected subgraph of G. Assume for every pair
of nodes in T , there is a single path in G connecting them. Then the marginal distribution
of p (xT ) factorizes as follows:

p (xT ) =
∏

s∈V (T )

p (xs)
∏

(s,t)∈E(T )

p (xs, xt)

p (xs) p (xt)
(2)

where V (T ) and E (T ) are the set of nodes and edges of T , respectively.

Remark 1 1. The precondition of Lemma 1 ensures that T is a tree. For any two
different nodes s, t ∈ V (T ), they are singly connected in G, which means that there is a
unique path between them, namely sv1v2 · · · vnt (vi ∈ V (G)). But since T is a connected
subgraph and the path is unique in G, so all vi must be in V (T ). Figure 1 gives an example.
The whole graph G consists of nodes A to L, and G is not a tree. The subgraph composed of
nodes A to F forms a tree in G. But if we add an edge between node H and L, then node
set {A,B, · · · , F} no longer forms a tree in G because between A and C there are two paths
in G, namely AC and AHLC.
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Figure 1: Example of a tree in a general graph G. The nodes and edges in bold form the
tree T .

2. The p (xT ) in Eq (2) is actually given by

p (xT ) =
∑

xV (G)\V (T )

p (x), (3)

i.e., marginalizing out xV (G)\V (T ) from the joint distribution p (x) on xV (G). A common
confusion is assuming that

p (xT ) :=
1

ZT

∏
s∈V (T )

ψs (xs)
∏

(s,t)∈E(T )

ψst (xs, xt), (4)
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which is not what we mean here. And in general, the p (xT ) given by Eq (3) does not
necessarily has the form of Eq (4), where the ψ’s are the potential functions used to define
the whole joint distribution p (xG).

3. Proposition 1 is a special case of Lemma 1, by choosing T = G.

4. Lemma 1 does not say that p (xT ) is independent of all the xs where s ∈ V (G) \V (T ).
Generally speaking, the node potentials ψs (xs) and edge potentials ψst (xs, xt) (s, t ∈ V (G) \V (T ))
DO affect p (xT ), as long as there is a path connecting s or t to T . For example, in Figure
1, ψH (xH) affects p (xT ). But since they also affect the right-hand side (RHS) of Eq (2), so
Eq (2) can still hold.

5. Equation (2) can be rewritten as

p (x) =
∏

s∈V (T )

p (xs)
∏

(s,t)∈E(T )

p (xs, xt)

p (xs) p (xt)
=

∏
(s,t)∈E(T )

p (xs, xt)∏
s∈V (T )

p (xs)
ds−1

,

where ds stands for the degree of node s in the tree. For example, in Figure 1, dB = 4 in
tree T , and dA = 2 in T (not counting in the edges linking to node G and H).

Proof. We prove Lemma 1 by induction on the number of nodes in T . If |V (T )| = 1,
i.e., the tree T is just a single node, then Eq (2) obviously holds. Suppose Eq (2) holds for
any |V (T )| < k (k > 1). Then for an arbitrary subgraph tree T with |V (T )| = k, since
it is a tree, T must have a leaf node s, i.e., whose degree is 1 in T (i.e., only one adjacent
node in T , though it may have other neighbors in G\T ). Let that neighbor be t and denote
U = T\ {s, t}. So U ∪ {t} is a tree. Refer to Figure 2.

Then by the graph structure, we have

p (xs, xt, xU) = p (xs, xt) p (xU |xs, xt)

(a)
= p (xs, xt) p (xU |xt) = p (xs)

p (xs, xt)

p (xs) p (xt)
p (xU , xt) , (5)

where (a) is because xU ⊥⊥ xs|xt due to the topology of G, in which the only path connecting
node s and nodes in U must be via node t.

Since U ∪ {t} is also a tree, which we denote as T ′, and its cardinality is k − 1, so by the
assumption of induction, we have

p (xU , xt) =
∏

p∈U∪{t}

p (xp)
∏

(p,q)∈E(T ′)

p (xp, xq)

p (xp) p (xq)
, (6)
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Figure 2: Illustration of Lemma 1 proof.

where the second product is defined as 1 if T ′ consists of a single node t only (i.e., U = ∅).
Continuing Eq (5), we have

p (xs, xt, xU) = p (xs)
p (xs, xt)

p (xs) p (xt)

∏
p∈U∪{t}

p (xp)
∏

(p,q)∈E(T ′)

p (xp, xq)

p (xp) p (xq)

=
∏

p∈V (T )

p (xp)
∏

(p,q)∈E(T )

p (xp, xq)

p (xp) p (xq)
.

So Eq (2) also holds for tree T with |V (T )| = k. So by induction, we have proven that Eq
(2) holds for all trees.

It looks redundant to put a tree in a general graph and prove the strengthened result.
However, the reason is that otherwise we will have trouble when invoking Eq 6, since the
tree U ∪{t} is in a bigger tree U ∪{s, t}. If we directly prove the Proposition 1 by induction,
then the induction assumption does not allow us to invoke Eq 6 (at least not directly).

Based on Proposition 1, we are able to prove the important result about the relationship
between local consistency and global consistency on a tree. First of all, we describe in detail
the meanings of local and global consistency.

Suppose we are given a set of marginal distributions on all cliques: {pc : c ∈ C} where C is
the set of all cliques in the graph in general. In the special case of trees, C consists of all
edges and all nodes. In general, we say {pc : c ∈ C} is locally consistent if the following two
conditions are satisfied:
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L1. Validity (non-negativity and normalization): For all cliques c ∈ C,
∑
xc

pc (xc) = 1, and

pc (xc) ≥ 0 for all configuration xc.

L2. Consistency : For all cliques s, t ∈ C, if c := s ∩ t 6= ∅, then for all assignment xc:∑
x′

s:x
′
c=xc

ps(x
′
s) =

∑
x′

t:x
′
c=xc

pt(x
′
t).

In other words, the marginal distribution of c calculated from clique s must agree with that
calculated from clique t. Written in function form:

∑
xs\c

ps(xc, xs\c) =
∑

xt\c
pt(xc, xt\c)

1.

We say {pc : c ∈ C} is globally consistent if there exists a global joint distribution p (x) on
xV (G), such that the following two conditions are satisfied:

G1. Validity : p (x) ≥ 0 for all configuration x, and
∑
x

p (x) = 1,

G2. Consistency :
∑

x′:x′
c=xc

p (x′) = pc (xc) for all clique c ∈ C and xc. Written in function

form:
∑

xV (G)\c

p(x) = pc(xc) for clique c ∈ C (note we are deliberately not saying for all xc,

because this equality is already between functions).

It is obvious that for any graph and any distribution, global consistency implies local con-
sistency. But the reverse direction is not necessarily true. A classic example is illustrated in
Figure 3.

In Figure 3, suppose all random variables xA, xB, xC are binary ({0, 1}). Consider the fol-
lowing marginals on nodes and edges:

p (xA = 0) = p (xA = 1) = 0.5, p (xB = 0) = p (xB = 1) = 0.5, p (xC = 0) = p (xC = 1) =
0.5.

1. Normally, people just write
∑

xs\c
ps(xs) =

∑
xt\c

pt(xt), which in appearance, does not explicitly say the
variable xc assumes the same value in the LHS and RHS. However, this assumption is made explicitly if
we write

∑
xs\c

ps(xc, xs\c) =
∑

xt\c
pt(xc, xt\c). Albeit a standard notation, if you think of it carefully,

this new notation does not make immediate mathematical sense, and needs some explanation. Here
ps(xs) represents a function, just like what we normally write f(x) as a function. However, if I write
f(x0) or f(x̂), then chances are that you will feel it is a particular value after applying a function f on
x0 or x̂. The meaning should of course not depend on the symbol of variable, and that is why I call
it a notational confusion. Sometimes people write f(·) to clearly represent a function, or just write f .
This is particularly useful when one talks about functional spaces (spaces of functions). So now, let us
think of ps(xs) as a function over xs. Then

∑
xs\c

ps(xs) obviously represents a function over xc. So∑
xs\c

ps(xs) =
∑

xt\c
pt(xt) is actually an equality between two functions! In this case, it means the

marginal distribution of xc (a function of the assignment of xc) is the same. We will use this function
form when the notation becomes messy otherwise. In fact, we have used it in Eq (3).
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Figure 3: Example of a locally consistent distribution, but not globally consistent.

p (xAxB) xA = 0 xA = 1 p (xBxC) xC = 0 xC = 1 p (xAxC) xC = 0 xC = 1
xB = 0 0.4 0.1 xB = 0 0.4 0.1 xA = 0 0.1 0.4
xB = 1 0.1 0.4 xB = 1 0.1 0.4 xA = 1 0.4 0.1

It is easy to check that the marginals are locally consistent. However, one can prove that there
doesn’t exist any global distribution p (xAxBxC) which yields such a marginal distribution.
In fact a quick proof of the non-existence is that if they were globally consistent, then
Ep(xAxBxC)Jyy>K would be positive semi-definite, where y = (1, xA, xB, xC)>. However,

EJyy>K =


1 p (xA = 1) p (xB = 1) p (xC = 1)
p (xA = 1) p (xA = 1) p (xA = xB = 1) p (xA = xC = 1)
p (xB = 1) p (xA = xB = 1) p (xB = 1) p (xB = xC = 1)
p (xC = 1) p (xA = xC = 1) p (xB = xC = 1) p (xC = 1)



=


1 0.5 0.5 0.5
0.5 0.5 0.4 0.1
0.5 0.4 0.5 0.4
0.5 0.1 0.4 0.5

 ,

and the last matrix turns out not to be positive semi-definite. In fact, the determinant of
the first, second, third and fourth principal minors are 1, 0.25, 0.04, –0.008, respectively.
The negativity of the determinant of the matrix alone is enough to disprove the positive
semi-definiteness of the matrix.

Fortunately, on trees, it is well-known (though its proof is much less well-known) that local
consistency is sufficient to guarantee global consistency. We state it formally in Proposition
2.

Proposition 2 On any tree T , local consistency implies global consistency. Formally, sup-
pose we are given a set of marginal distributions {ps (·) : s ∈ V (T )} and {pst (·, ·) : (s, t) ∈ E (T )}
which satisfy the above two conditions L1 and L2. On trees, L1 and L2 mean:
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(a1) For any node s ∈ V (T ),
∑

xs
ps (xs) = 1, and ps (xs) ≥ 0 for all xs ∈ Xs.

(a2) For any edge (s, t) ∈ E (T ),
∑

xs,xt
pst (xs, xt) = 1, and pst (xs, xt) ≥ 0 for all (xs, xt) ∈

Xs ×Xt.

(b) For any edge (s, t) ∈ E (T ),
∑

xs
pst (xs, xt) = pt (xt) for all xt ∈ Xt, and

∑
xt

pst (xs, xt) =

ps (xs) for all xs ∈ Xs. In fact, (b) and (a2) implies (a1).

Then there must exist a global joint distribution p̃ (x)2 satisfying G1 and G2. More specifi-
cally,

(A) p̃ (x) ≥ 0 for all x, and
∑

x p̃ (x) = 1,

(B1)
∑

x′:x′
s=xs

p̃ (x′) = ps (xs) for all xs ∈ Xs, and node s ∈ V (T ),

(B2)
∑

x′:x′
s=xs,x′

t=xt

p̃ (x′) = pst (xs, xt) for all (xs, xt) ∈ Xs ×Xt and edge (s, t) ∈ E (T ).

Proof. We prove by construction, i.e., by showing that the following global joint distribution
p (x) (simply according to Proposition 1) satisfies the above three conditions (A), (B1), and
(B2):

p̃ (x) =
∏

s∈V (T )

ps (xs)
∏

(s,t)∈E(T )

pst (xs, xt)

ps (xs) pt (xt)
. (7)

Now we check (A), (B1), and (B2). Obviously p (x) ≥ 0 for all x. Since ps (·) and pst (·, ·)
are locally consistent by assumption, it suffices to check (B2)

∑
x′:x′

s=xs,x′
t=xt

p̃ (x′) = pst (xs, xt) , (8)

for all (xs, xt) ∈ Xs × Xt and (s, t) ∈ E (T ), which implies (B1) in conjunction with local
consistency (b), and implies

∑
x p̃ (x) = 1 in conjunction with (a2). We prove Eq (8) by

induction on the number of nodes in the tree. As a basis, if the tree has only two nodes
s and t, then p̃ = pst trivially satisfies Eq (8). Suppose Eq (8) holds for any |V (T )| < k
(k > 2), i.e., marginalizing the joint distribution defined by Eq (7) into every edge recovers
the prescribed edge marginal. Then for an arbitrary tree T with |V (T )| = k, since it is a
tree, T must have a leaf node s. Denote its unique neighbor as t. Then T ′ := T\ {u} is a

2. Perhaps p̃ makes you feel more comfortable than p.
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tree with k − 1 nodes. Refer to Figure 2 for illustration. Now we define a joint distribution

p̃T (x) :=
∏

u∈V (T )

pu (xu)
∏

(u,v)∈E(T )

puv (xu, xv)

pu (xu) pv (xv)

= ps (xs)
pst (xs, xt)

ps (xs) pt (xt)

∏
u∈V (T ′)

pu (xu)
∏

(u,v)∈E(T ′)

puv (xu, xv)

pu (xu) pv (xv)
.

By induction assumption,

q̃
(
xV (T ′)

)
:=

∏
u∈V (T ′)

pu (xu)
∏

(u,v)∈E(T ′)

puv (xu, xv)

pu (xu) pv (xv)

is a valid global joint distribution on T ′. So p̃T (x) = pst(xs,xt)
pt(xt)

q̃
(
xV (T ′)

)
. Now observe

i) ∑
x′:x′

s=xs,x′
t=xt

p̃T (x′) =
∑

x′:x′
s=xs,x′

t=xt

pst (x′s, x
′
t)

pt (x′t)
q̃
(
x′V (T ′)

)
=
pst (xs, xt)

pt (xt)

∑
x′

V (T ′):x
′
t=xt

q̃
(
x′V (T ′)

)
.

Since q̃
(
x′V (T ′)

)
is consistent with the local marginals by induction assumption, we have∑

x′
V (T ′):x

′
t=xt

q̃
(
x′V (T ′)

)
= pt (xt). So

∑
x′:x′

s=xs,x′
t=xt

p̃T (x′) =
pst (xs, xt)

pt (xt)
pt (xt) = pst (xs, xt) .

ii) Since ∑
xs

p̃T (x) =
∑
xs

pst (xs, xt)

pt (xt)
q̃
(
xV (T ′)

)
=
pt (xt)

pt (xt)
q̃
(
xV (T ′)

)
= q̃

(
xV (T ′)

)
,

so for any edge (α, β) ∈ E (T ′) and any assignment (xα, xβ), we have∑
x′:x′

α=xα,x′
β=xβ

p̃T (x′) =
∑

x′:x′
α=xα,x′

β=xβ

∑
x′

s

p̃T (x′) =
∑

x′
V (T ′):x

′
α=xα,x′

β=xβ

q̃
(
x′V (T ′)

)
= pαβ (xα, xβ) .

Combining i) and ii), we have shown that Eq (8) holds for all edges in T . So by induction,
we have shown that Eq (8) holds for all trees and hence local consistency implies global
consistency on all trees.
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3. Junction Trees

One immediate generalization of trees is the junction tree. In a junction tree, each node is
a collection of the original nodes, i.e., a subset of V (G), and are called clique nodes. The
original graph G need not be a tree. The edges in the junction tree ensure that the topology
is a tree and the running intersection property is satisfied:

For every pair of clique nodes V and W, all clique nodes on the unique path between V and
W contain V ∩W.

X1

X1 X2

X1 X1 X2

X1 X2 X3

X2 X3 X5

X2 X5 X6

X2 X4

X2

X2 X3 X2 X5

X1 X2 X7

X1 X2

Figure 4: A junction tree example. Clique nodes (C(J)) are ellipses and sepset nodes (S(J))
are rectangles.

For each edge in the junction tree, we introduce a set called separator set (sepset) defined as
the intersection of the two end clique nodes. For clarity, in a junction tree J , we call the set
of clique nodes as C (J), and the set of sepset as S (J). For example, in Figure 4, we have:

C (J) = {{X1} , {X1X2} , {X1X2X3} , {X2X4} , {X2X3X5} , {X2X5X6} , {X1X2X7}} ,
S (J) = {{X1} , {X1X2} , {X2} , {X2X3} , {X2X5}} .

Note that the sepset {X1X2} appears twice in J . However, since the definition of set does
not allow duplicate elements, we use dc to denote one plus how many times a sepset node
c ∈ S(J) appears in J . For example, d{X1X2} = 3. This “one plus” is to comply with the
common notation, e.g., (Wainwright and Jordan, 2003), which (on page 15) claims dc is
the number of maximal cliques to which c is adjacent. However, even though we have the
running intersection property, the following claim still does not necessarily hold:

If a sepset node c appears for x times in a junction tree, then c must be adjacent to x + 1
clique nodes.
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Figure 5: A counter-example of #adjacent max clique = 1 + #occurrance.
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BD
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(b) Corresponding junction tree

Figure 6: An example of a tree and its corresponding junction tree.

A counter-example is given in Figure 5, where the sepset node {A} appears twice but is
adjacent to 4 clique nodes. So in this note, we stick to the definition of one plus the multi-
plicity.

When the original original graph is a tree T , then d{s} = ds, where the second ds is the
degree of node s in T (ref. point 5 of Remark 1). For example, in Figure 6b, we have
d{B} = 3 + 1 = 4 (since {B} appears for three times as a sepset), while in Figure 6a, dB = 4
as well. In this sense, we call dc the degree of c for c ∈ S(J). When s is a leaf in T , d{s} = 1
which is consistent with the fact that {s} does not appear in the junction tree.

Now the factorization property can be expressed mathematically in Proposition 3.
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Proposition 3 In a junction tree J , let C (J) be the set of clique nodes, and let S (J) be
the set of sepset, then the joint distribution p (x) factorizes as

p (x) =

∏
c∈C(J)

p (xc)∏
c∈S(J)

p (xc)
dc−1

. (9)

Remark 2 Although Proposition 1 and Proposition 3 are expressed in slightly different ways,
the former can be easily derived from the latter. If the original graph T is a tree, then every
clique node in its corresponding junction tree J corresponds to an edge in T , and the sepset
of two neighboring clique nodes {a, b} and {a, c} is {a}, which corresponds to the common
node in the two original edges (a, b) and (a, c). So by using Eq (9), we have

p (x) =

∏
c∈C(J)

p (xc)∏
c∈S(J)

p (xc)
dc−1

(a)
=

∏
(s,t)∈E(T )

p (xs, xt)∏
s∈V (T )

p (xs)
ds−1

=
∏

s∈V (T )

p (xs)
∏

(s,t)∈E(T )

p (xs, xt)

p (xs) p (xt)
,

where ds stands for the degree of node s in T . Equality (a) is because for each node s ∈ T ,
the sepset {s} appears for ds − 1 times in J .

Before proving Proposition 3, we need a lemma which essentially tells us how to read off
conditional independence relations from a junction tree, in analogy to the conditional inde-
pendence relations in a tree graph.

Lemma 2 (The lemma 1 in Jordan’s book, Chapter 17) Let C be a leaf in a junction
tree for a graph with node set V . Let S be the associated sepset. Let R := C\S be the set of
nodes in C but not in the sepset, and let U := V \C be the set of nodes in V but not in C.
Then R ⊥⊥ U |S.

Proof. We prove by contradiction. Refer to Figure 7 for illustration. For any arbitrary
node a ∈ R, suppose it has a neighboring node b ∈ U in the original graph. Since a and
b are adjacent, there must be a maximal clique node, which contains both a and b. This
clique node can’t be C because b /∈ C. But a can’t be in any clique other than C because
otherwise a must belong to S by the running intersection property. Hence no such b exists,
and therefore S must separate a from U . Since a ∈ R is arbitrary, S separates R from U .

Now we turn to proving Proposition 3.
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V \ R

Figure 7: Illustration for Lemma 2.

Proof. We prove Proposition 3 by induction. If the junction tree has only one clique
node, then Proposition 3 is obviously true (defining

∏
c∈S(J) p (xc) to be 1 if S (J) = ∅). If

|C (J)| = 2, it is also easy to verify. Suppose Eq (9) holds for all junction trees J with
|C (J)| < k (k > 1). Then for an arbitrary junction trees J with |C (J)| = k, since J a tree,
J must have a leaf clique node C whose degree is 1 in J . Using the same notation as in
Lemma 2, we have

p (x) = p (xU |xR, xS) p (xR, xS)
(a)
= p (xU |xS) p (xR, xS)

=
p (xU∪S)

p (xS)
p (xR, xS) = p (xU∪S)

p (xC)

p (xS)
, (10)

where (a) is by Lemma 2. Observe that after deleting C and S from J , the rest of the graph
is still a junction tree because C is a leaf clique node. Denote the (smaller) junction tree as
J ′ and |C (J ′)| = k − 1. By induction assumption,

P (xU∪S) =

∏
c∈C(J ′)

p (xc)∏
c∈S(J ′)

p (xc)
d′c−1

,

where d′c is the degree of sepset node c in J ′. So Eq (10) continues as

p (x) =

∏
c∈C(J ′)

p (xc)∏
c∈S(J ′)

p (xc)
d′c−1

· p (xC)

p (xS)
=

∏
c∈C(J)

p (xc)∏
c∈S(J)

p (xc)
dc−1

.

So Eq (9) also holds for any arbitrary junction tree J with |C (J)| = k. By induction, we
have proven that Eq (9) holds for all junction trees.
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In analogy to Proposition 2, it is also true that in a junction tree, local consistency implies
the global consistency, after a proper re-definition of local and global consistency. In contrast
to the ground symbol form used in Proposition 2 and its proof, now we will use the function
form (ref. footnote 1).

Suppose a junction tree J has clique node set C (J) and sepset set S (J). We say the
marginals {pc : c ∈ C (J) ∪ S (J)} are locally consistent if all the following two conditions
are satisfied:

JL1. Validity : For any clique node or sepset node c ∈ C (J) ∪ S (J),
∑
xc

pc (xc) = 1, and

pc (xc) ≥ 0 for all xc;

JL2. Consistency : For any clique node c ∈ C (J), and for any sepset node s adjacent to c
and assignment xs,

∑
xc\s

pc (xc) = ps (xs). In other words, the marginal distribution calculated

from the clique node must agree with the marginal distribution of its associated sepsets.

We say the marginals {pc : c ∈ C (J) ∪ S (J)} are globally consistent if there exists a global
joint distribution p̃ (x), such that the following two conditions are satisfied:

JG1. Validity : p̃ (x) ≥ 0 for all x, and
∑

x p̃ (x) = 1;

JG2. Consistency :
∑

xV (J)\c

p̃ (x) = pc (xc) for all c ∈ C (J) ∪ S (J).

It is again obvious that for any junction tree and any distribution, global consistency implies
local consistency. But the reverse implication is not clear. The following Proposition 4 says
the reverse direction also holds.

Proposition 4 On any junction tree J , local consistency implies global consistency.

Proof. The proof is largely similar to Proposition 2. Suppose we are given a set of
marginals {pc : c ∈ C (J) ∪ S (J)} which are locally consistent. With hint from Proposition
3, we construct a global joint distribution

p̃ (x) :=

∏
t∈C(J)

pt (xt)∏
t∈S(J)

pt (xt)
dt−1

. (11)

14



Then we show that p̃ (x) satisfies JG1 and JG2. Obviously, p̃ (x) ≥ 0 for all x. Since
{pc : c ∈ C (J) ∪ S (J)} satisfies JL1 and JL2, it suffices to check that for all c ∈ C (J),∑

xV (J)\c

p̃ (x) = pc (xc) . (12)

Again, we prove Eq (12) by induction on the number of clique nodes in a junction tree. If
|C (J)| = 1, Eq (12) obviously holds if we define

∏
t∈∅ pt (xt) = 1. If |C (J)| = 2, it is also

simple to verify. Now suppose Eq (12) holds for any |C (J)| < k (k > 2), i.e., marginalizing
the joint distribution defined by Eq (11) into every clique node recovers the prescribed clique
marginal. Then for any arbitrary junction tree J with |C (J)| = k, since it is a junction tree,
J must have a leaf clique node C. Denote its unique adjacent sepset as S (hence S ⊆ C),
and its unique adjacent clique node as W . Then the graph formed by removing C and S
from J is still a junction tree, which we call J ′. |C (J ′)| = k − 1 and

V (J ′) = (V (J) \C) ∪ S = V (J) \ (C\S) . (13)

By induction assumption, we have

q̃
(
xV (J ′)

)
:=

∏
t∈C(J ′)

pt (xt)∏
t∈S(J ′)

pt (xt)
d′t−1

is a valid joint distribution on J ′ which is consistent with {pc : c ∈ C (J ′) ∪ S (J ′)}. Also

notice p̃ (x) = pC(xC)
pS(xS)

q̃
(
xV (J ′)

)
. So

i) ∑
xV (J)\C

p̃ (x) =
∑

xV (J)\C

pC (xC)

pS (xS)
q̃
(
xV (J ′)

) (a)
=
pC (xC)

pS (xS)

∑
xV (J′)\S

q̃
(
xV (J ′)

)
(b)
=
pC (xC)

pS (xS)
pS (xS) = pC (xC) ,

where (a) is because S ⊆ C and Eq (13), and (b) is because q̃ is consistent with the prescribed
marginals on W and hence consistent with S due to JL2.

ii) Since C is a leaf clique node of J , so no variable in C\S appears in J ′. Hence,∑
xC\S

p̃ (x) =
∑
xC\S

pC (xC)

pS (xS)
q̃
(
xV (J ′)

)
=
q̃
(
xV (J ′)

)
pS (xS)

∑
xC\S

pC (xC) =
q̃
(
xV (J ′)

)
pS (xS)

pS (xS) = q̃
(
xV (J ′)

)
,

so any further marginalization onto clique nodes in J ′ will be equal to the prescribed
marginals, as guaranteed by the induction assumption on q̃

(
xV (J ′)

)
.

Combining i) and ii), we obtain that Eq (12) holds for all c ∈ C (J), and by induction, local
consistency implies global consistency in all junction trees.
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4. Hypertrees

Finally, similar properties can be derived for hypertrees. The explanation requires too much
effort, so we refer to the Equation 84 and 85 in (Wainwright and Jordan, 2003). The proof of
factorization is similar to Proposition 1 and 3, i.e., first identify the conditional independence
relationship, and then prove by induction.
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