

Nanyang Technological University

SCE 02-434

Analysis of Fuzzy-Neuro Network Communications

 Zhang Xinhua

School of Computer Engineering
2003

Nanyang Technological University

SCE 02-434

Analysis of Fuzzy-Neuro Network Communications

Submitted in Partial Fulfillment of the Requirements for the
Degree of Bachelor of Computer Engineering

by

Zhang Xinhua

School of Computer Engineering
2003

I

ABSTRACT

Highly parallel computers are playing a central role in high-performance computing. In addition to

network topology, reliable and efficient message routing is becoming increasingly critical with the

rapidly growing system scale. Although many fault-tolerant routing strategies have been proposed

for various specific networks, there lacks a general algorithm that applies well to a wide variety of

topologies.

Fuzzy Neural Networks (FNNs) are a group of hybrid systems that incorporate fuzzy logic into

Artificial Neural Network (ANN) architectures. The fuzzy characteristic provides interpretable

human-like IF-THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy

systems by deriving membership function and/or rule base automatically. These traits make FNN a

promising tool for designing efficient general-purpose routers and the feasibility and difficulties are

explored in the project.

On the other hand, research in traditional routing algorithm is still not complete enough to encompass

all interconnection networks. Due to sparse connectivity and low node availability, there is no

existing fault-tolerant routing strategy for node/link diluted hypercubic networks. Among these

networks, Gaussian Cubes (GCs) use a common parameter to link the interconnection density and

algorithmic efficiency. The variation of it can scale routing performance according to traffic loads

without changing the routing algorithm. Fibonacci-class Cubes use fewer links than the

corresponding binary hypercube, with the scale increasing slower, allowing more choices of network

size.

To make these types of networks with such desirable properties more fault-tolerant, the project

investigates the approaches of divide-and-conquer and fault classification so as to tolerate more faults

than node availability. To facilitate our discussion, a new type of interconnection network named

Exchanged Hypercube (EH) is proposed. It reduces the number of links to only 1/n of binary

hypercubes with the same number of nodes (n is the network’s dimension) with little lose of structural

advantage. New auxiliary topologies are also proposed for illustrating EH’s desirable emulation and

communication properties.

Finally, as a new prototype for efficient simulation of incomplete networks, a software simulator is

built and the results about the performance of our algorithms are shown to be reasonable. FPGA

implementation is also completed to demonstrate the feasibility of physical manufacture.

II

ACKNOWLEDGEMENTS

The author wishes to acknowledge the following people.

A/P Peter, K K, Loh

for directing the research and development of this project

A/P Quek Hiok Chai

for guiding the choice and use of Fuzzy Neural Network

Mr. Tan Swee Huat

for providing hardware and software technical support in the

Intelligent Systems laboratory.

Mr. Tung W. L., Mr. Ang K. K., and Mr. Ting C. W.

for sharing programming experiences and problem solving techniques.

Administrators of Nanyang Technological University

and Shanghai Jiao Tong University

for providing this exchange program opportunity

III

TABLE OF CONTENTS

ABSTRACT …………………………………………………….. I
ACKNOLEDGEMENTS ………………………………………. II
TABLE OF CONTENTS ………………………………………. III
LIST OF FIGURES ……………………………………………. VIII
LIST OF TABLES ……………………………………………... X

1. Introduction ..……………………………………….……….……….. 1

 1.1 Background ..……………………………………………………………….. 1

 1.2 Purpose of Project ….……………………………………………………….. 2

 1.3 Objectives ….……………………………………………………………….. 3

 1.4 Overview of Report Organization ..…………………………………………. 4

2. Preliminaries ………….…………………………………….… 6
 2.1 Communications network ……………………………………….………….. 7

 2.1.1 Switching techniques ……………………………………………….. 8

 2.1.2 Flow control ………………………………………………………... 8

 2.1.3 Routing ……………………………………………………….……. 8

 2.2 Fault-tolerant Routing ………………………………………………………. 9

 2.2.1 Types of Faults ..……………………………………………………. 9

 2.2.2 Types of links / dimensions ...………………………………………. 9

 2.2.3 Adaptiveness ……………………………………………………….. 9

 2.2.4 Deadlock …………………………………………………………… 10

 2.2.5 Livelock ..…………………………………………………………... 11

 2.2.6 Types of information for routing decision ..………………………... 12

 2.2.7 Types of Communication ..………………………………….……... 13

 2.2.8 Optimality ..……………………….………………………………... 13

3. Fuzzy Neural Network for Routing ..……………………….. 14

 3.1 Overview of Fuzzy Neural Network .……………………………………….. 14

 3.2 Fuzzy Inference System …………………………………………………….. 15

IV

 3.2.1 Fuzzifier ..……………………… …………………………………... 15

 3.2.2 Fuzzy rule-based models for function

17

 3.2.3 Definition of operators on fuzzy sets ………………………………. 19

 3.2.4 Definition of fuzzy inference schemes …………………………….. 21

 3.2.5 Defuzzification ..……………………………………………………. 22

 3.3 Architecture of fuzzy neural networks .. …………………………………….. 24

 3.4 Self-organizing (Clustering) techniques in FNN ..………………………….. 28

 3.5 Rule formulation techniques in FNN ..…………………………………….... 31

 3.6 Problems in applying FNN to network routing …………………………….. 32

 3.6.1 Exponentially growing number of …………………………………. 32

 3.6.2 Too long offline training time ……………………………………… 34

 3.6.3 Difficulty in discussion of non-fuzzy metrics ……………………… 35

 3.7 A possible method for using FNN …………….……………………………. 35

4. A fault-tolerant routing strategy for Fibonacci-class Cubes 37

 4.1 Introduction ...……………………………………………………………….. 37
 4.2 Definition and analysis..……………………………………………………… 40
 4.2.1 Definitions of Fibonacci-class 40

 4.2.2 Comments and Analysis ...…………………………………………. 42

 4.3 A Generic Approach for Cycle-free Routing (GACR) ……………………… 45

 4.3.1 Overview ..…………………………………………...……………. 45

 4.3.2 Basic GACR ……………………………………...………….….….. 46

 4.3.3 Extended GACR ……………………………..………………….. 49

 4.4 Fault-Tolerant Fibonacci Routing (FTFR) …………………………………... 51

 4.4.1 Definition and notation ..……………………………………………. 51

 4.4.2 Detailed description of FTFR .……………………………………… 54

 4.5 An illustrative example ….………………………………………………….. 59

5. Exchanged Hypercube ……………………………………….. 61

 5.1 Introduction ..……………………………………………………………….. 61

 5.2 The Exchanged Hypercube ...……………………………………………….. 64

V

 5.2.1 Definitions and construction ...……………………………………... 64

 5.2.2 Structural Properties ...…………………………………….………... 65

 5.3 Embedding other networks ……………………………………………….. 71

 5.4 Extended binomial tree …………………………………………………… 75

 5.5 Fault-tolerant routing in Exchanged Hypercube …………………………. 81

6. A Fault-Tolerant Routing Strategy for Gaussian Cube …... 85

 6.1 Introduction …..…………....………………………………………………... 85

 6.2 Preliminaries …..…………....……………………………………………….. 87

 6.2.1 Original Definition ...…………………………………………...…... 87

 6.2.2 Transformation ...…………………………………………...….…… 87

 6.3 Gaussian Tree …………....……………………………………………….. 91

 6.4 Routing Strategy for Fault-free Gaussian Cube …………....…………….. 95

 6.4.1 Introduction ……......…………………………………………...…... 95

 6.4.2 Routing in Gaussian Tree .……………………………………...…... 96

 6.4.3 Routing in fault-free Gaussian Cube .………………………………. 102

 6.5 Fault-tolerant Routing in Gaussian Cube …………....…………………… 104

 6.5.1 Introduction ……......…………………………………………...…... 104

 6.5.2 Basic Fault-tolerant Routing Strategy ..………………………...…... 105

 6.5.3 Extended Fault-tolerant Routing Strategy ….………………………. 110

7. Simulator ……………………………………………….…... 113

 7.1 Overview of the simulator …………………………………………………... 113

 7.2 Analysis of simulator components ……………………….………………….. 115

 7.2.1 Setup Network …......…………………………………………...…... 115

 7.2.2 Setup faulty components ..……………………………………...…... 117

 7.2.3 Gathering global network status …....………………………………. 118

 7.2.4 Generating packets ….…....………………………………………… 118

 7.2.5 Process output buffer queues ….…....………………………………. 119

 7.2.6 Process transit buffer queues ….…....………………………………. 119

 7.2.7 Process injection buffer queue ..…....………………………………. 120

 7.3 Special problems and solutions …………....…………….…………………..
120

VI

 7.3.1 Efficient Storage ………………………………………………..…... 120

 7.3.2 Timing strategy …………………………………………...….……… 125

 7.3.3 Timing precision issue …………………………………...….……… 126

 7.3.4 Two improvements ….…………………………………...….……… 126

 7.4 Filter of simulation results ………………....…………….………………….. 128

 7.5 Comments from the perspective of Software Engineering …...…………….. 130

8. Analysis of simulation results ….……………………….…... 133

 8.1 Introduction …………….…………………………………………………... 133

 8.2 Technical considerations for accurate simulation …………………………... 134

 8.2.1 Traits of expected result ………………………………………..…... 134

 8.2.2 Buffer size …………….………………………………………..…... 135

 8.2.3 Hop time ...…………….………………………………………..…... 135

 8.2.4 Simulation duration time ...……………………………………..…... 135

 8.3 Comparison of FTFR’s performance on various network sizes ..…………... 136

 8.4 Comparison of FTFR’s performance on various network sizes ..…………... 140

 8.5 Results of Gaussian Cube ……….………………………………………….. 144

9. FPGA Implementation of FTFR ..……………………….…... 147

 9.1 Background .…………….…………………………………………………... 147

 9.2 Overview of Experimental Methodology ……….…………………………... 150

 9.3 Testing scheme ………………………………….…………………………... 153

 9.4 Result of implementation …………………….………………………….….. 156

 9.5 Useful Tips for development ...………………….…………………………... 156

 9.5.1 Error report problem ..……………………………………..….……. 156

 9.5.2 Runtime Error ……………………….……………………..….……. 157

 9.5.3 Compiling strategy ………………….……………………..….……. 157

 9.5.4 Programming methodology ...……….……………………..….……. 158

 9.5.5 Design of common interface .……….……………………..….……. 159

 9.5.6 Floating point library ……….……….……………………..….……. 159

VII

10. Conclusion ……………………….….………………………. 160

 10.1 Conclusion ...……….……………………..….……………………... 160

 10.2 Accomplishments .……….……………………..….……………….. 161

 10.3 Project Limitation .……….……………………..….……………….. 161

 10.4 Future Work .……….……………………..….……………………… 162

REFERENCES …………………………………………………… 164

APPENDIX I Proof of Case III for Theorem 4.2 …………………….. 170
APPENDIX II Implementation Code for algorithm 6.1 ……………… 176
APPENDIX III Program that calculates the diameter of αT ………….. 178

APPENDIX IV Conversion functions for Extended Fibonacci Cube … 184

APPENDIX V CTimer Implementation ………………………………. 185

APPENDIX VI Raw Data of Simulation Result ……………………….. 187

APPENDIX VII A New Approach to Routing in Hypercube Based on
 Fuzzy Neural Network ……………………………… 206

APPENDIX VIII User’s Guide …………………………………………… 212

VIII

LIST OF FIGURES

Figure 2.1 4 dimensional binary hypercube (16 PEs) …………………...………. 6

Figure 2.2 Four packets in circular waiting using store-forward …...……………. 11

Figure 2.3 Livelock with four link faults ………………………………………... 11

Figure 3.1 Fuzzy Inference System ……………………………………………… 15

Figure 3.2 Structure of POPFNN-CRI(S) ………………………………………... 24

Figure 3.3 Trapezoidal-shaped membership function ...…………………………. 26

Figure 3.4 Error rate versus Resolution for learning bitwise XOR ……………… 33

Figure 4.1 Relationship between binary hypercube, regular Fibonacci Cube and
 Enhanced Fibonacci Cubes …………………………………………...

37

Figure 4.2 Relationship between binary hypercube, regular Fibonacci Cube and
 Extended Fibonacci Cubes ……………………………………………

37

Figure 4.3 Example for routing history ………………………………………….. 46

Figure 4.4 Logic circuit of function OnlyOne …………………………………... 48

Figure 4.5 Example of availability vector ……………………………………….

52

Figure 4.6 Illustrative example of FTFR ………………………………………… 52

Figure 5.1 EH(1, 2) ………………………………………………………………. 64

Figure 5.2 Hamiltonian cycle in EH(1, 2) ……………………………………….. 69

Figure 5.3 Hamiltonian cycle in EH(2, 2) ………………………………………..

69

Figure 5.4)2,16(GM and how 31 22 × mesh is embedded into)2,2(EH ………..

73

Figure 5.5 Embedment with dilation 2, expansion 2, loading 1 and congestion 2 ..

74

Figure 5.6 Embedment with dilation 3, expansion 2, loading 1 and congestion 1 ..

74

Figure 5.7 2EBT and 3EBT ……………………………………………………….

75

Figure 5.8)1,1(ET ………………………………………………………………. 77

Figure 5.9)2,1(ET ……………………………………………………………....

78

Figure 5.10)2,2(ET ……………………………………………………………...

79

Figure 6.1 (a) 2G , (b) 3G , and (c) 4G ……………………………………………

92

Figure 6.2 Diameter of αT versus α …………………………………………….

98

Figure 6.3 Example for CT algorithm ……………………………………………. 99

Figure 6.4 Percentage of nodes with degree 1, 2 …………………………………

101

Figure 6.5))2,((αnGCT ~ n ……………………………………………………… 108

IX

Figure 6.6)))2,(((log2
αnGCT ~ n ……………………………………………… 109

Figure 7.1 Simulation Design Flow Chart ………………………………………..

114

Figure 7.2 Node model ………………………………………………………….. 116

Figure 8.1 Throughput (logarithm) of Fault-free Fibonacci-class Cubes ……

136

Figure 8.2 Latency of Fault-free Fibonacci-Class Cubes ………………………. 138

Figure 8.3 Latency and Throughput (logarithm) of 14-dim Extended Fibonacci
 Cube ………………………………………………………………….

140

Figure 8.4 Latency and Throughput (logarithm) of faulty 20-Dim regular
 Fibonacci Cube Fibonacci Cube ……………………………………..

142

Figure 8.5 Latency and Throughput (logarithm) of faulty 19-Dim Enhanced
 Fibonacci Cube ………………………………………………………

142

Figure 8.6 Latency and Throughput (logarithm) for faulty 18-Dim Extended
 Fibonacci Cube ………………………………………………………

143

Figure 8.7 Average Latency and log2(Throughput) versus dimension for
 GC(n,1) ………………………………………………………………

144

Figure 8.8 Average Latency and log2(Throughput) versus dimension for
 GC(14,2n) …………………………………………………………….

145

Figure 8.9 Influence of faulty node 0n on network average latency ……………. 146

Figure 8.10 Influence of faulty node 0n on network throughput ………………….

146

Figure 9.1 DK1 Design Flow ……………………………………………………. 147

Figure 9.2 RC100 Board Components …………………………………………... 149

Figure 9.3 RC100 Development Board ...……………………………………….. 149

Figure AI.1 Deduction flow for step 1 ..………………………………………….. 172

Figure AI.2 Deduction flow for step 2 ..………………………………………….. 172

Figure AI.3 Deduction flow for case 5 ...…………………………………………. 174

Figure VII.1 architecture for implicit trading ……………………………………... 206

Figure VII.2 one architecture for explicit trading ………………………….……… 206

Figure VII.3 another architecture for mixed explicit trading ………….………….. 207

Figure VII.4 Illustration for 1-hop look-ahead approach …………………………. 208

Figure VII.5 mechanism of comparison by FNN …………………………………. 209

Figure VII.6 membership function of possible fuzzy variables ……………………. 210

X

LIST OF TABLES

Table 4.1 availability vector for Fig. 4.5 ……………………………………….. 52

Table 5.1 Node distance in Exchanged Cube …………………………………...

68

Table 9.1 Comparison of Input Methods ……………………………………….. 151

Table 9.2 Comparison of Output Methods ……………………………………... 153

Table VIII.1 output files of simulation ……………………………………………..

214

Page 1 of 215

Chapter 1 Introduction

1.1 Background

With the growing demand for high-performance computing power in more and more

software applications, highly parallel computers have attracted increasing interest in

recent years. Multicomputers, which are based on message–passing for interprocessor

communications, can scale up to hundreds of thousands of processors, providing the

capability of massive parallel processing. Hypercube Multicomputers [37], considered

one of the most extensively studied topology due to their structural regularity, easy

construction and high potential for parallel execution of various algorithms, have been

used in several experimental and commercial machines including NCUBE-2 [35] and

Intel iPSC [36]. Many variations of the hypercube topology have been proposed to

improve certain parameters, such as diameter, node degree, emulation and

communication efficiency, etc [1][12-15][39- 43][52][53].

Unicasting, the focus of this project, is a one-to-one communication between a source

node and a destination node. Unicasting in fault-free hypercubes and its variations have

been extensively studied in [44-47]. As in [54], when the scale of parallel computer

systems grows, the probability of component failure (processors and/or links) increases.

Reliable and efficient message routing is thus becoming more and more critical, requiring

the routing algorithm to be capable of tolerating high probability of component failures.

There have been a number of fault-tolerant unicasting schemes proposed [6][19][48-51].

In designing fault tolerant communication strategies in large networks, there are many

issues deserving special attention. Firstly, besides having fault-tolerant mechanism, an

adaptive routing algorithm, which makes more efficient use of network bandwidth and

Page 2 of 215

provides resilience to failure [54], is also necessary for routing in faulty communication

networks.

Secondly, besides reliability, efficiency is also an important consideration. As in [55],

the fault-tolerant communication mechanism should not degrade the performance gained

by parallelism and at the same time guarantee delivery of messages to their destinations

in the presence of faulty network components. It also should not incur message routing

overheads in a fault-free network.

Thirdly, scalable and space efficient schemes [33][34] should be used. A fault tolerant

routing algorithm should not require excessive space to store status information in the

network. It should maintain or update status information efficiently so as to ensure high

performance under fault-free condition, be free from deadlock and livelock, and

guarantee specified levels of reliability and efficiency in its performance.

1.2 Purpose of Project

A large variety of interconnection network topologies have been proposed, each with its

possible unique fault-tolerant routing algorithm. However, there is no general algorithm

that can apply to all types of topologies. In the exploration of a general-purpose router,

the technology of Fuzzy Neural Network (FNN) is looming as a promising tool. FNN is

equipped with outstanding learning and clustering capability that have found successful

applications in many areas. It can also provide human-like interpretable rules that

overcome the problem of black-box in ordinary artificial neural networks. In this project,

efforts are taken to evaluate the potential and feasibility of fuzzy logic routing, to

investigate the possibility of unifying the membership functions and rules learned from

Page 3 of 215

different topologies of networks. In the best case, framework of software tools is to be

studied so as to measure and compare the communications performance of fuzzy logic

routing against existing fault-tolerant routing strategies.

On the other hand, even in the realm of classic fault-tolerant routing strategies, there is a

void for link/node diluted hypercubic networks. The intrinsic problem lies in the sparse

connectivity that brings about susceptibility to the occurrence of faults. Attracted by their

other desirable properties, we attempt to design fault-tolerant routing algorithms to make

Gaussian Cubes and Fibonacci-class Cubes more fault-tolerant topologies. Later on,

these algorithms will be implemented by software simulator and FPGA, so that their

performance can be benchmarked and the feasibility of physical manufacture can be

assessed. If fuzzy routing is proved a practicable approach, the simulation result of the

performance of both FNN and classic methods can be compared as well.

1.3 Objectives

In order to fulfill the purpose of the project, the following objective are defined:

• To explore fuzzy neural network applied in network communications.

• To design a fault-tolerant routing algorithm for Gaussian cube.

• To design a fault-tolerant routing algorithm for Fibonacci-class Cubes.

• To propose a new interconnection topology: Exchanged Hypercube.

• To write software simulation tools for implementation and benchmark.

• To implement the routing algorithm of Fibonacci-class Cubes and fuzzy routing

strategy on FPGA with Handel-C.

Page 4 of 215

1.4 Overview of Report Organization

The report is organized into 10 chapters.

In Chapter 2, the preliminaries of fault-tolerant interconnection network routing are

presented. Basic terms are defined and the requirements for the routing algorithm in

question are also given.

In Chapter 3, the fundamentals of Fuzzy Neural Network (FNN) are reviewed. The

possibility and difficulty in applying FNN to the interconnection network routing are

explored.

In Chapter 4, a new fault-tolerant routing strategy is presented for Fibonacci-class Cube.

We also designed a generic approach for cycle-free routing.

In Chapter 5, a new interconnection topology named ‘Exchanged Hypercube’ is proposed

based on link dilution from binary hypercube. Its structural features and emulation,

communication properties are discussed.

In Chapter 6, a new fault-tolerant routing strategy for Gaussian Cube is described. The

major merits and general significance are emphasized.

In Chapter 7, a software simulator is constructed to test the performance of the two fault-

tolerant routing strategies presented in Chapter 4 and 6. The architecture and many

features of the simulator are discussed.

Page 5 of 215

In Chapter 8, the simulation results are illustrated. Detailed analysis is also carried out to

investigate the result, including comparisons between different topologies and some

seemingly irregularities.

In Chapter 9, we discuss the FPGA hardware implementation of the routing strategy

proposed in Chapter 4, as well as routing with fuzzy neural network. Many suggestions

are listed for future development.

Chapter 10 concludes the report with discussion of findings in this project and provides a

recommendation for future work.

Page 6 of 215

Chapter 2 Preliminaries

2.1 Communications network

For many parallel applications, the interconnection network determines overall

performance [58]. The most commonly used topology is binary hypercube.

An n-dimensional hypercube can be modeled as a graph),(nn EVG , with the node set Vn

and edge set En, where n
nV 2|| = , 12|| −= n

n nE . Each node represents a processor and its

memory. Each edge represents a communication link between a pair of processors. The

2n nodes are distinctly addressed by n-bit binary numbers, with values from 0 to 12 −n .

Each node has links at n dimensions, ranging from 0 (lowest dimension) to 1−n (highest

dimension), connecting to n neighbors. An edge connecting nodes u and v is said to be at

dimension j or to be the jth dimensional edge if their binary addresses u and v differ at bit

position j only. Figure 2.1 shows a 4-dimensional binary hypercube.

Figure 2.1 4-dimensional binary hypercube (16 PEs)

Page 7 of 215

The length of a path is equal to the number of links contained in the path. The distance

between two nodes u0 and ud is equal to the hamming distance between their binary

address, denoted by H(u0 , ud). A path between u0 and ud is called an optimal path if its

length is equal to the distance between the two nodes. A shortest path is a path of

minimal length among all possible paths between the two nodes when constrained by the

presence of faulty components. A shortest path may or may not be an optimal one.

2.1.1 Switching Techniques

Switching refers to the means of transferring a packet from the input channel to the

output channel. Four switching techniques, store-forward, circuit switching, wormhole

routing and virtual cut-through, are discussed here. The choice of switching technique

has a great bearing on the network performance, especially on deadlock and livelock

freeness.

In store-forward, the received packet is stored in a buffer and then forwarded to the

selected neighboring node based on the routing decision made by the routing algorithm.

After the packet is forwarded, it waits for an acknowledgement from the receiver. The

whole process of storing and forwarding a packet is referred to as a hop.

In circuit switching, a physical connection path between the source and destination nodes

must be established. After the path is established, the packet is allowed to move through

the path without any buffering. During the transmission of a packet along this path, the

connection is not switched and thus no other packets are allowed to move along this path.

This physical connection path is torn down after the packet has reached its destination.

In wormhole routing [59], the packet to be routed is divided into chunks called flits.

These flits spread over the entire path between the source and destination nodes where

Page 8 of 215

each node along the path has a queue for each of its adjacent links to hold the flit. If

there is space in the next node or when flits are consumed by the destination node, the

head will move and the entire packet can move by moving to the free space created.

In virtual cut-through, if there is free space in the next node, the received packet is

forwarded without buffering. Otherwise, the received packet is stored in a queue that can

hold the entire packet.

2.1.2 Flow Control

Flow control refers to the allocation of channels and buffers to a packet as it moves along

the path between the source and destination nodes. An appropriate flow control policy

should be used for different switching techniques. For store-forward and virtual cut-

through, flow control policy is applied on packet, whereas for wormhole routing, each flit

will have a unique flow control. The flow control policy determines whether packet will

be discarded, buffered, blocked or rerouted through another channel.

2.1.3 Routing

In multiple hop topologies, routing determines the path by which a message packet

generated by an arbitrary source is to traverse in order to reach its destination. Routing

can be classified into source routing and distributed routing.

In source routing, the entire path for a message packet to traverse is determined by the

source node based on the current network condition. Once the packet leaves the source

node, it will follow the selected path till it reaches its destination. In distributed routing,

when a node receives a packet, it will determine whether the packet has reached

destination. If packet reaches destination, this packet is delivered to the local processor.

Page 9 of 215

Otherwise, the routing algorithm is used to determine which neighboring node to forward

the packet to.

A disadvantage of using source routing is larger packets size where routing information is

included in every packet. In distributed routing, the routing algorithm will normally

produce a path with lower network latency. Thus, distributed routing is the major focus

of this project.

2.2 Fault-tolerant routing
In the presence of faulty components in the interconnection network, it is desired that

alternative paths can be found and used to bypass the faults. The following concepts are

important in fault-tolerant routing.

2.2.1 Types of Faults

Component faults in a communication network can be either node faults or link faults or

both. A node faults will incur the breakdown of all links incident to that node.

2.2.2 Types of links / dimensions

Let the current node be u and destination be d. The relative address r is defined as

dur ⊕= , where ⊕ denotes the bitwise exclusive OR (XOR). All the dimensions

whose corresponding bit in r equals 1 are called preferred dimensions, while all the rest

dimensions whose corresponding bit in r equals 0 are called spare dimensions. A faulty

dimension refers to either a faulty neighboring node or a faulty link at that dimension.

2.2.3 Adaptiveness

Routing algorithm can be either classified as static (deterministic) or adaptive. In static

Page 10 of 215

or deterministic routing algorithm, a fixed path is used to send messages between a given

pair of source and destination nodes. At the source node, the selected path is determined

based on the destination node and the current network conditions. As for adaptive

routing algorithm, alternative paths between the source and destination nodes are used to

route messages. Each node can only determine the next node to forward a message based

on the local or global information that it contains.

In the context of minimal routing, dynamic adaptive routing algorithm can dynamically

adjust its adaptivity based on fault distribution in the neighborhood [54]. This dynamic

adaptivity can be further categorized as fully adaptive, partial adaptive, one-adaptive and

zero-adaptive (also called infeasible). Fully adaptive algorithm can use all possible

minimal paths between the source and destination node. As for partially adaptive

algorithm, a subset of available minimal paths between the source and destination nodes

is used. Only a single minimal path is available for one-adaptive algorithm. For zero-

adaptive, there is no available minimal path at an intermediate node.

Adaptive algorithm can be characterized as progressive, backtracking, profitable and

derouting (or misrouting). Progressive algorithm will wait, deroute or abort if no

preferred link is available at an intermediate node. Backtracking refers to messages using

the input link to route when they are at deadend nodes. In order for a message to move

closer to the destination, preferred links are used. In contrast, spare links move a

message farther away from the destination. Profitable algorithms only consider profitable

links. Derouting or misrouting algorithm can use both preferred and spare links.

2.2.4 Deadlock

A deadlock maybe defined as a cyclic dependency of ungranted packet requests for

buffer or channel resources [57]. It refers to the situation where a packet is blocked

forever in the network. Deadlock occurs when a packet is holding some resources while

Page 11 of 215

Node A

Node D

Node B

Node C

Figure 2.2: Four packets in circular waiting using store-forward

Livelock refers to the situation where a packet is circulating in the network without

reaching the destination. Livelock usually occurs when misrouting is allowed in the

requesting for other resources that other packets are holding and these other packets are

requesting for those resources that are held by this packet which results in a circular wait.

An example where deadlock occurs is shown in Figure 2.2.

In Figure 2.2, there are four packets each holding a packet buffer represented by black

square and four nodes represented by circles. Each node has a packet buffer. The packet

in node A is requesting buffer in node B. Packet in node B is requesting buffer from

node C. Packet in node C is requesting buffer from node D and packet in node D is

requesting buffer from node A. As a result, a circular wait is formed.

2.2.5 Livelock

routing algorithm in order to tolerate faults. An example where livelock occurs is shown

in Figure 2.3.

Figure 2.3 Livelock with four link faults

D S

Page 12 of 215

There are four link faults represented by dashed lines. Source and destination nodes are

represented by a circle with ‘S’ and ‘D’, respectively. The arrows represent the path by

which a packet generated by the source node traverses. These arrows form a cycle which

means that the packet is circulating in the network without reaching its destination.

Hence, livelock arises.

2.2.6 Types of information for routing decision

An adaptive algorithm requires either local or global information to make routing

decision. However, there is limited global information based approach which is a

compromise between local information based and global information based approaches.

In local information based model [6], each node exchanges information with its adjacent

neighbors and it only knows the status of its neighbors. This model can only achieve

local optimization and is heuristic in nature. However, it can be proved for some special

network topologies that routing strategies based on local information is enough for

tolerating faults with satisfactory performance.

As for global information based model, such as the Shortest Path Routing in [20], each

node exchanges information with its adjacent neighbors as similar to local information

based model. But this information is propagated throughout the entire network. Hence,

each node knows the status of all the nodes and this model can normally achieve optimal

or suboptimal result. The problem here is the huge task of gathering and exchanging

global information, which is usually in large size.

Limited global information based approach [54] requires a relatively simple process to

collect and maintain fault information in the neighborhood (such information is called

limited global information) and is more cost effective than local or global information

based approaches.

Page 13 of 215

2.2.7 Types of Communication

Three types of communication are generally discussed: unicasting, multicasting and

broadcasting. Unicasting is a one-to-one communication between two nodes; one is

called source node and the other the destination node. Multicasting and broadcasting

involve communication between several nodes, but the difference is that multicasting is a

one-to-many communication that involves only one source node and several destination

nodes whereas broadcasting is a one-to-all communication that involve one source node

and all other nodes in a network.

2.2.8 Optimality

A routing algorithm can be categorized as optimal or suboptimal or both based on the

path that a message traverses from source to reach its destination. In optimal or minimal

routing, a message moves along a minimal path (also called a Hamming distance path) to

its destination node. This means that each link along the minimal path is a preferred link.

As for suboptimal or nonminimal routing, a path (where a message traverses) with the

length more than the Hamming distance between the source and destination is generated.

This means that nonpreferred or spare links are used for deroute or misroute when faulty

component is encountered.

Page 14 of 215

Chapter 3: Fuzzy Neural Network for Routing

3.1 Overview of Fuzzy Neural Network

Fuzzy Neural Networks (FNNs) are a group of hybrid systems that incorporate fuzzy

logic into Artificial Neural Network (ANN) architectures. The fuzzy characteristic

overcomes the problem of black box in ANN by providing interpretable human-like IF-

THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy

systems by deriving fuzzy rule base and/or membership function automatically. Such

hybrid systems can be deployed in clustering, time series or stock market prediction, as

well as automated control of large, complex systems.

The main advantage of a fuzzy logic is its ability to model a problem domain using a

linguistic model instead of complex mathematical models. Zadeh proposed fuzzy logic

as a new method to manage vagueness and uncertainty [60-63]. When modeling

vagueness, fuzzy predicates without well-defined boundaries concerning the set of

objects may be applied. The rationale for using fuzzy logic is that the denotations of

vague predicates are fuzzy sets rather than probability distributions. In many situations,

vagueness and uncertainty are simultaneously presented since any precise or imprecise

fact may be uncertain as well. Fuzzy set and possibility theories provide a unified

framework to deal with vagueness and uncertainty.

However, the fuzzy logic itself does not have learning ability, i.e. the parameters of fuzzy

rules and membership functions can not be self-adjusted, but must be set by expert

knowledge. As such, fuzzy neural networks are adopted due to their recognized learning

ability. Generally, FNNs perform cluster analysis on each dimension of the inputs and

Page 15 of 215

outputs of training data to determine the fuzzy sets and subsequently derive the fuzzy

rules by connecting the input and output fuzzy sets.

In this chapter, we explore the possibility of applying Fuzzy Neural Network (FNN) to

interconnection network routing, though the result is pessimistic.

3.2 Fuzzy Inference System

A fuzzy inference system is composed of following components:

The specification of fuzzy inference system encompasses the five blocks in Fig. 3.2. The

following components are important:

3.2.1 Fuzzifier

This part focus on the shape of membership function: Gaussian, Trapezoidal, Triangular,

Bell-shape, etc).

 y

 Figure 3.1 Fuzzy Inference System

Page 16 of 215

Gaussian:

Other less frequently used functions include:

a b c

Triangular:

Trapezoidal:

a b c d

–

 m

1

Page 17 of 215

Still less frequently used shapes are S membership function, π membership function.

The simplest forms of membership function are trapezoid and triangle. They can provide

high speed inference and fairly good accuracy. The two slopes belonging to [a, b] and [c,

d] makes fuzzy logic different from classic two-value logic. But they are not ideal if high

accuracy is desired. In such cases, Gaussian membership function is preferred because of

its soft shape and long ‘tail’, which is different from the hard cut-off in trapezoid and

triangle.

3.2.2 Fuzzy rule-based models for function approximation

How the rules are represented is very important for the compactness and effectiveness of

the fuzzy system. There are three types of fuzzy rule-based models for function

approximation: (a) the Mamdani model [23], (b) the Takagi-Sugeno-Kang (TSK) model

[24][25][26], and (c) Kosko’s Standard Additive Model (SAM) [27].

i) Mamdani model is one of the most widely used fuzzy models in practice, which

consists of the following linguistic rules that describe a mapping from rUUU ×⋅⋅⋅×× 21

to W.

iirrii CisyTHENAisxandandAisxIFR ...: 11

where,
)...,,2,1(rjX j = input variables

 y output variable
 ijA fuzzy sets for xj

 iC fuzzy sets for y.

The contribution of rule Ri to a Mamdani model’s output is a fuzzy set whose

membership function is computed by

Page 18 of 215

)()...()(21' yy
ii

CiniiC µαααµ ∧∧∧∧=

where))()((sup ' jAjA
x

ij xx
ijj

j

µµα ∧=

αi is the matching degree of rule Ri

αij is the matching degree between xj and Ri’s condition about xj

The final output of the model is the aggregation of outputs from all rules using the max

operator:

)}(),...,(),(max{)(''
2

'
1

yyyy
LCCCC µµµµ =

ii) The Takagi-Sugeno-Kang (TSK) model was introduced in 1984. The main

motivation of this model is to reduce the number of rules required by Mamdani model,

especially for high-dimensional problems. It consists of rules in the form of:

irrii AisxandandAisxIFR ...: 11

 THEN ririiri xbxbbxxxfy +++== ...),...,,(11021

where
 fi is the linear model

),...,1,0(rjbij = are real-valued parameters

The total output of the model is given as

∑

∑

∑

∑

=

=

=

=

+++
== L

i
i

L

i
ririii

L

i
i

L

i
rii xbxbbxxxf

y

1

1
110

1

1
21)...(),...,,(

α

α

α

α

The inputs to a TSK model are crisp (nonfuzzy) numbers. Therefore, the degree of input

rr axaxax === ,...,, 2211 that matches the ith rule is typically computed using the min

operator:

)}(),...,(),(min{ 21 21 rAAAi aaa
irii

µµµα = .

Page 19 of 215

TSK seems to be more effective (as in ANFIS) in the use of the number of rules in a

fuzzy rule-based system as compared to CRI (as in POPFNN and GenSoFNN). But CRI

inference is more intuitive and readable.

iii) The Standard Additive Model (SAM) was introduced by B. Kosko in 1996. The

structure of fuzzy rules in SAM is identical to that of the Mamdani model. The rules is in

the form of

iii CiszTHENBisyandAisxIF

Given crisp inputs 00 , yyxx == , the output of the model is

∑ ××=
i

CBA zyxCentroidz
iii

))()()((00 µµµ

3.2.3 Definition of operators on fuzzy sets including: union,

intersection, and complement.

There are multiple choices for the fuzzy conjunction and fuzzy disjunction operators.

The choice of a fuzzy conjunctions operator determines the choice of the fuzzy

disjunction, and vice versa. This is due to the principle of duality between the two

operators. A fuzzy conjunction operator, denoted as t(x,y) and fuzzy disjunction operator,

denoted as s(x,y), form a dual pair if they satisfy the following condition:

)1,1(),(1 yxsyxt −−=− , so as to ensure BABA ∪=∩ .

Here, the set of candidate fuzzy conjunction operators called triangular norms or t-norms

is defined as a mapping T:]1,0[]1,0[]1,0[→× which is symmetric, associative, non-

Page 20 of 215

decreasing in each argument and aaT =)1,(, for all]1,0[∈a . In other words, any t-

norm T satisfies the properties:

),(),(xyTyxT = symmetricity

)),,(()),(,(zyxTTzyTxT = associativity

)','(),(yxTyxT ≤ if 'xx ≤ and 'yy ≤ monotonicity

xxT =)1,(,]1,0[∈∀x one identity

Basic t-norms include the following:

minimum },min{),(babaMIN =
Lukasiewicz }0,1max{),(−+= babaLAND
Probabilistic abbaPAND =),(
week },min{ ba if 1},max{ =ba
 0 otherwise
Hamacher

,
))(1(

),(
abba

abbaHAND
−+−+

=
γγγ 0≥γ

Dubois and Prade
},,max{

),(
αα ba

abbaDAND =)1,0(∈α

Yager ppp
P babaYAND /1])1()1[(,1min{1),(−+−−= , 0>p

Likewise, we can define t-conorm. The only difference between t-norm and t-conorm is

that in t-conorm S, aaS =)0,(, for all]1,0[∈a . Basic t-conorm include the following:

maximum },max{),(babaMAX =
Lukasiewicz }1,min{),(babaLOR +=
Probabilistic abbabaPOR −+=),(
strong },max{ ba if 0},min{ =ba
 1 otherwise
Hamacher

,
)1(1

)2(),(
ab

abbabaHOR
γ

γ
γ −−

−−+
= 0≥γ

Yager ppp
p babaYOR /1][,1min{),(+= }, 0>p

=),(baWEEK

=),(baSTRONG

Page 21 of 215

3.2.4 Definition of fuzzy inference schemes.

The operations of fuzzy neural network need to be clearly defined and mapped to formal

fuzzy inference schemes. There are several such schemes such as Compositional Rule of

Inference (CRI) [30], Approximate Analogous Reasoning Schema (AARS) [28] or the

Ttruth Value Restriction (TVR) [29]. The most commonly used is CRI which works as

follows.

Knowledge: If x is A then y is B

 Fact: x is A’

Conclusion: y is B’

Here, RAB ''= . VvvuRuATvB
Uu

∈=
∈

)},,(),('{sup)(' . There are a number of

definitions of R.

Zadeh:

 min-max rule:

∫ ×
−∨∧=×¬×=

VU ABAm vuuvuVABAR),/())(1())()(()()(µµµ

)]()[(VABAARAB mm ×¬×′=′=′ 

))]}(1())()([()({)(uvuuv ABAAUuBm
µµµµµ −∨∧∧∨= ′

∈
′

 arithmetic rule:

∫ ×
−∨∧=×¬×=

VU ABAm vuuvuVABAR),/())(1())()(()()(µµµ

)]()[(BUVAARAB aa ×⊕×¬′=′=′ 

))]}()(1(1[)({)(vuuv BAAUuBa
µµµµ +−∧∧∨= ′

∈
′

Mamdani: ∫ ×
∧=×=

VU BAc vuvuBAR),/()()(µµ

Mizumoto: ∫ ×
→=×⇒×=

VU BsAss vuvuBUVAR),/()]()([µµ

Page 22 of 215

 where




>
≤

=→
)()(,0
)()(,1

)()(
vu
vu

vu
BA

BA
B

s
A µµ

µµ
µµ

∫ ×
→=×⇒×=

VU BgAgg vuvuBUVAR),/()]()([µµ





>
≤

=→
)()(),(
)()(,1

)()(
vuv
vu

vu
BAB

BA
B

g
A µµµ

µµ
µµ

∫ ×
−→−∧→=

¬×⇒×¬×⇒×=

VU BgABsA

gs
sg

vuvuvu

BUVABUVAR

),/())]}(1())(1[()]()({[

)()(

µµµµ



∫ ×
−→−∧→=

¬×⇒×¬×⇒×=

VU BgABgA

gg
gg

vuvuvu

BUVABUVAR

),/())]}(1())(1[()]()({[

)()(

µµµµ



∫ ×
−→−∧→=

¬×⇒×¬×⇒×=

VU BsABgA

sg
gs

vuvuvu

BUVABUVAR

),/())]}(1())(1[()]()({[

)()(

µµµµ



∫ ×
−→−∧→=

¬×⇒×¬×⇒×=

VU B
s

AB
s

A

ssss

vuvuvu

BUVABUVAR

),/())]}(1())(1[()]()({[

)()(

µµµµ



 ∫ ×
∨−=××¬=

VU BAb vuvuBUVAR),/()]())(1[()()(µµ

∫ ×
→=×⇒×=

VU BA vuvuBUVAR),/()]()([
*** µµ

where)()()(1)()(
*

vuuvu BAABA µµµµµ ×+−=→

There is no principle to judge which one is best on a general basis because the system’s

performance is closely related to the specific application. We can use experiment to

choose the best fit one.

3.2.5 Defuzzification

Defuzzification is a process to select a representative element from the fuzzy output

Page 23 of 215

inferred from the fuzzy control algorithm. There are three common defuzzification

techniques:

i) Mean of Maximum (MOM): It calculates the average of those output values that

have the highest possibility degrees. It can be expressed formally as:

||

*
)(*

P

y
AMOM Py

∑
∈=

ii) Center of Area (COA): The center of area (COA), also referred to as center of

gravity or centroid, is the most commonly used defuzzification technique.

∑
∑ ×

=

x
A

x
A

x

xx
ACOA

)(

)(
)(

µ

µ

iii) Height Method: First, convert the consequent membership function Ci into crisp

consequent y=ci where ci is the center of gravity of Ci. The centroid defuzzification is

then applied to the crisp consequents. It can be expressed formally as:

∑

∑

=

== M

i
i

M

i
ii

w

cw
y

1

1

Page 24 of 215

3.3 Architecture of fuzzy neural networks
There are many architectures of fuzzy neural network in existence. One typical kind of

architecture is what is used in Generic Self-Organizing Fuzzy Neural Network

(GenSoFNN) [31] and Pseudo Outer Product based Fuzzy Neural Network (POPFNN)

[32]. It is actually a Multi-Input Multi-Output (MIMO) system is a five-layer neural

network as shown in Figure 3.2. For simplicity, only the interconnections for the output

ym are shown [32].

Each layer in POPFNN-CRI(S) performs a specific fuzzy operation. The inputs and

outputs of the POPFNN-CRI(S) are represented as non-fuzzy vector XT=[x1, x2, … xi, …

xn1] and nonfuzzy vector YT=[y1, y2, … yl, … yn5] respectively. Fuzzification of the

input data and defuzzification of the output data are respectively performed by the input

and output linguistic layers, while the fuzzy inference is collectively performed by the

Figure 3.2 Structure of POPFNN-CRI(S)

Page 25 of 215

rule-base and the consequence layers. The number of neurons in the condition and the

rule-base layers are defined in as:

∑
=

=
1

1
2

n

i
iJn ∑

=

=
5

1
4

n

m
mLn 423 nnn ×= .

where

Ji is the number of linguistic labels for the ith input,

Lm is the number of linguistic labels for the mth output,

n1 is the number of inputs,

n2 is the number of neurons in the condition layer,

n3 is the number of rules or rule-based neurons,

n4 is the number of linguistic labels for the output, and

n5 is the number of outputs.

A detailed description of the functionality of each layer is given as follows:

i) Input linguistic layer:

ii) Condition layer:

Each input-label node ILi,j represents the jth linguistic label of the ith linguistic node from

the input layer. The input-label nodes constitute the antecedent of the fuzzy rules. Each

node is represented by a trapezoidal membership function)(, xjiµ described by a fuzzy

interval formed by four parameters (jijijiji ,,,, ,,, δγβα) and a centroid jiv , as shown in

Fig. 3.3.

net input: i
I

i xf = , and

net output: I
i

I
i fo =

where: ix = value of the ith input

Page 26 of 215

net output:

net input: I
i

II
ji of =, , and















−

−

−

−

=

II
ji

II
ji

II
ji

II
ji

II
ji

II
ji

II
ji

II
ji

II
ji

f

f

o

,,

,,

,,

,,

, 1

0

γδ

δ

βα

α

where

 [II
ji

II
ji ,, ,δα] is the kernel of the fuzzy interval for the jth linguistic label of the ith input,

 [II
ji

II
ji ,, ,γβ] is the support of the fuzzy interval for the jth linguistic label of the ith input, and

 l
io is the output of ith input node.

iii) Rule-base layer

 net input:)(min ,
II

jii

III
k of = , and

 net output: III
k

III
k fo = .

where

 ji,α ji ,β ji,ν ji,γ ji,δ

Figure 3.3 Trapezoidal-shaped membership function

if II
ji

II
jif ,, α< or II

ji
II
jif ,, δ>

if II
ji

II
ji

II
ji f ,,, βα ≤≤

if II
ji

II
ji

II
ji f ,,, γβ ≤≤

Page 27 of 215

 II
jio , = output of the input-label node that forms the antecedent conditions

 for the ith input to the kth fuzzy rule Rk.

iv) Consequence layer

 net input:)(max,
II
kk

IV
lm of = , and

 net output: IV
lm

IV
lm fo ,, = .

where

 III
ko = output of the rule node Rk whose consequence is Olm,l.

v) Output Linguistic layer

net input:










×

×−×
=

∑

∑

=

=
)(

1
,,

)(

1
,,,,

)(

))((

mL

l

IV
lm

IV
lm

mL

l

IV
lm

IV
lm

IV
lm

IV
lm

V
m

ov

ov
f

βγ

 net output:















−×
=

∑

∑

=

=

)(

1
,

)(

1
,,,))((

mL

l

IV
lm

V
m

mL

l

IV
lm

IV
lm

IV
lm

V
m

V
m

v

f

v

f

o
βγ

where

 IV
lmv , = the centroid of the output-label node OLm,l, and

 IV
lm,γ , IV

lm,β = the width of the membership function for output-label node OLm,l.

if IV
lm

IV
nmk ,βγ >

if IV
lm

IV
nmk ,βγ =

if IV
lm

IV
nmk ,βγ >

if IV
lm

IV
nmk ,βγ =

Page 28 of 215

3.4 Self-organizing (Clustering) techniques in FNN

Generally FNNs perform cluster analysis on each dimension of the inputs and outputs of

training data to determine the fuzzy sets, which are subsequently used to derive the fuzzy

rules by connecting the input and output fuzzy sets. After the fuzzy inference system is

chosen, several parameters need to be learned from training data. The challenges lie in:

i) Required prior knowledge such as number of clusters for different sets of

training data, such as in Pseudo Outer Product based Fuzzy Neural Network

(POPFNN).

ii) No principled method to configure the parameters of membership functions

or parameters for learning process, e.g. set support parameter and STEP in

Discrete Incremental Clustering (DIC).

iii) How to make the number of clusters as small as possible so that the rule

number can be effectively reduced. This is also known as horizontal

reduction.

iv) How to be resistant to noisy/spurious training data and overcome the

stability-plasticity dilemma. Most partition-based clustering techniques,

such as fuzzy C-means (FCM), Linear Vector Quantization (LVQ) and LVQ-

inspired technique such as modified LVQ, fuzzy Kohonen partitioning (FKP)

and pseudo FKP, are all susceptible to noisy data and lack the flexibility to

incorporate new clusters of data after the training has completed. This is

called stability-plasticity dilemma, making online learning difficult.

There are many fuzzy clustering techniques, such as: DIC, Fuzzy Kohonen Partition

(FKP), Pseudo Fuzzy Kohonen Partition (PFKP), fuzzy C-means (FCM), LVQ, modified

LVQ, self-organizing map (SOM), fuzzy adaptive resonance theory (fuzzy ART), etc.

Page 29 of 215

As the rules used for implementing FPGA routing is generated by POPFNN, we take a

look at the fuzzy membership learning algorithms in POPFNN: FKP and PFKP. The

difference between FKP and PFKP is that the latter produces pseudo fuzzy partitions

while the former only produces fuzzy partitions. The former is a supervised learning

algorithm, while the latter is unsupervised.

Step 1: Define c as the number of classes,
Ω

<
1

λ as the learning constant, η as the

learning width and a small positive number ε as a stopping criterion; where

Ω = number of data vectors in a cluster, n=total number of data vectors.

Step 2: Initialise the training iteration T = 0 and the weights)0(
iv with

))(min)(max(2/1)(min)0(
kkkkkki xx

c
ixv −
+

+= for i = 1,…,c, k = 1,…, n.

Step 3: Initialize)()1(T
i

T
i vv =+ for ci ,...,1= .

Step 4: For k = 1..n:

 FKP: Determine the ith cluster the data xk belongs to from the training data.

 PFKP: Find the winner using:

|)(|min||)1()1(++ −=− T
jkj

T
ik vxvx for cj ...,,1= .

 Update weights vi of

FKP: the ith cluster

PFKP: the winner i

with)()()()1(T
ik

T
i

T
i vxvv −+=+ λ

Step 5: Compute)1(+Te using ∑
=

++ −=
n

k

T
ik

T vxe
1

)1()1(||

Step 6: Compare)1(+Te and)(Te where 0)0(=e , using)()1()1(TTT eede −= ++ .

Step 7: If ε≤+)1(Tde , stop, otherwise, repeat step 3-7 for 1+= TT .

Page 30 of 215

Step 8: Initialize)1(+===== T
iiiiii vϕγδβα for ci ...,,1= .

Step 9: For nk ,...,1=

FKP: Determine the ith cluster the data xk belongs to from the

 training data.

PFKP: Find the winner using |)(|min|| jkjik xx ϕϕ −=− for

 cj ,...,1= .

 Update pseudo weights iϕ of

 FKP: the ith cluster

 PFKP: the winner i

 the ith cluster using)(ikii x ϕηϕϕ −+=

 Update the four points of the Trapezoidal Fuzzy Number (TrFN) with

 FKP:),min(kii xαα =

 PFKP:

 FKP:),max(kii xγγ =

 PFKP:

min(αi, xk) for i = 1

1−iδ for i > 1

αi =

),min(iii ϕββ =

max(iγ , xk) for i = c

1+iβ for i < c

αi =

Page 31 of 215

3.5 Rule formulation techniques in FNN

The rule formulation techniques are different between TSK-based and CRI-based models.

Even in CRI-based models, different approaches might be adopted. In GenSoFNN,

RuleMap is used while the method used in POPFNN to identify the fuzzy rules is the

Pseudo Outer-Product (POP) learning algorithm. The POP learning algorithm is a simple

one-pass learning algorithm. In POPFNN-CRI(S), each node in the condition and

consequence layers represents a linguistic label once the membership functions have been

identified. Under the POP learning algorithm, the set of training data {Xp, Yp}, where

Xp is the input vector and Yp is the output vector, is simultaneously fed into both the

input linguistic and output linguistic layers. The membership values of each input-label

node oII are then determined. These values are subsequently used to compute the firing

strength fIII of the rule nodes in the rule-base layer. Similarly, the membership values of

each output-label node are determined by feeding the output value back from the output

layer to the consequence layer. The weights of the consequence layer linking the rule-

based layer are then determined using: ∑
=

×=
n

p

p
mlm

pIII
klmk yXfw

1
,,,)()(µ (*)

lmkw ,, = weight of the link between the kth rule node and the lth linguistic label for

 the mth output, and

)(pIII
k Xf = firing strength of kth rule node when presented with input vector Xp, and

)(,
p
mlm yµ = membership value of the mth output of Yp with the fuzzy subset Ym,l that

 semantically represents the lth linguistic label of the mth output.

The weights in Equation (*) are initially set to zero. After performing POP learning,

these weights represent the strength of the fuzzy rules having the corresponding output-

label nodes as their consequences. Among the links between a rule node and the output-

Page 32 of 215

label nodes, the link with the highest weight is chosen and the rest are deleted. The links

with zero weights to all output-label nodes are also deleted. The remaining rule nodes

after this link selection process subsequently represent the rules used in the POPFNN-

CRI(S).

3.6 Problems in applying FNN to network routing

Although FNN is a powerful data analysis and prediction tool, it is very difficult to apply

FNN to interconnection network due to the following reasons:

3.6.1 Exponentially growing number of rules

With careful re-examination of the Virus Infection Clustering and clustering techniques

in POPFNN and GenSoFNN, it is clear that the clustering process is related only to the

input of training examples, with no relationship with the respective output. To make

routing decision, it is indispensable to take the binary address of nodes into consideration.

So they are selected as part of FNN’s inputs. However, in a n-dimension network, if in

the training set, we feed all the 2n combinations to FNN, then obviously, each input i will

be assigned two linguistic labels, namely Hi centering on 1 and Li centering on 0. Recall

the process of rule formulation. No matter whether Mamdani or TSK, SAM model is

used, the rule antecedent is always in the form of irri AisxandandAisxIF ...11 . So

the rule number is always in the magnitude of 2n with each tuple (nxxx ,...,, 21)

(},{ iii LHx ∈) corresponding to a rule. In other words, the FNN is just memorizing each

case without any intelligence demonstrated. In practice, this number is intolerable.

A trial to circumvent this problem is to convert the n-digit binary number into its

corresponding decimal value for input. This is supported by the fact that the n bits are

Page 33 of 215

Figure 3.4 Error rate versus Resolution for learning bitwise XOR

independent. However, as what counts is the bit pattern of the node address, this attempt

suffers from the following problem. For example, at current node, a packet is to be sent

to 10000 and another packet is to be sent to 01111. In decimal value, their difference is

only 1. However, the routing decisions for them are quite different. Experiments also

show that this conversion will not reduce the number of rules effectively because more

linguistic labels are needed for each input.

Another attempt to overcome the problem is to use pure CMAC and feed in the decimal

value. The result still shows that unless the resolution grows exponentially with

dimension, the error rate is intolerable. The test is run on learning the function of bitwise

XOR. The inputs are two integers ranging from 0 to 127. The output is the bitwise XOR

of the inputs. In the training set, all 128*128 combinations of inputs are enumerated and

the testing set is same as the training set. The following Figure 3.4 demonstrates the

trend of error rate with respect to the resolution r. The resolution r applies to both inputs

simultaneously.

Page 34 of 215

Fig. 3.4 shows that the error rate decreases slowly when the resolution is far from 128.

Actually, the error rate goes below 50% only when CMAC is nearly memorizing all

individual maps from input space to output space. This rote is not acceptable due to its

large space cost for storing rule base.

3.6.2 Too long off-line training time

Suppose the input for FNN is three n-bit binary strings: current node address, destination

address, and safety vector of current node [54]. Then for a 5-dimension network, if we

use all the 522 × combinations of (source, destination) pair, the training time is about 2

minutes with POPFNN on a 1.7GHz CPU computer. For networks of practical size, say

11 dimensions, the training time will be intractable. The problem in nature is that the

application of routing in interconnection network is based on binary discrete numbers.

The FNN is heavily dependent on the clustering of each dimension of input, also called

horizontal reduction. So the range of each input can be very large but the number of

input can not be too high because the algorithm’s time complexity is)(
11

TOIO
m

j
j

n

i
i ⋅⋅∏∏

==

,

where Ii stands for the number of linguistic labels for the ith input, Oj stands for the

number of linguistic labels of the jth output, and T stands for the number of training

examples. However, our binary application makes Ii = 2 for],1[ni ∈ and n linear to

network dimension, so that the complexity is exponential to the dimension.

Besides converting binary numbers into one decimal number, another way to tackle this

problem is to reduce the number of training examples. If we provide all possible cases of

input in the training set, then as the training time is linear to the training set size, it is

inevitable to suffer from)2(nO time complexity where n is the dimension of the network.

We have noted that in most cases, the routing decision in a network with faults is the

Page 35 of 215

same as that in the fault-free setting. The proportion of those decisions affected by faults

is so small that an FNN even neglecting them will also achieve a very high percentage of

correctness (asymptotically approaching 100%). Thus, to prepare the training set, we

choose a small proportion of those cases that are not affected by faults while recording all

the cases that are affected. The choice of the former is just by random. However, the

harvest is not significant. And the new problem is what proportion of the former cases

need to be preserved in order to reach the best performance.

3.6.3 Difficulty in discussion of non-fuzzy metrics

In network routing by FNN, the most important problem in theory is the discussion of

metrics of performance. For example, there can be no theoretical deduction of whether

the routing strategy is deadlock free or livelock free. We can’t prove how many faults

can be tolerated. It is also hard to derive in theory the upper bound of path found.

One way to deal with the problem is by simulation. But to compare with other routing

strategies, such an approach is not appropriate, because currently no routing strategy is

measured by how likely it will lead to deadlock or livelock. The occurrence of deadlock

and livelock might result from the routing decision of many packets at many nodes. So

such a benchmark is not easy. More importantly, there is no way to predict how many

faults can be tolerated. This will put the routing strategy at a disadvantage when high and

predictable reliability are desired.

3.7 A possible method for using FNN
For low dimensional networks, the FNN can be applied. But we have to be careful with

designing inputs and outputs of the fuzzy neural network. For example, at 000, if a

packet is to be sent to 111, then it can use any of the 3 dimensions. However, which one

Page 36 of 215

is adopted in training example is important because choosing randomly will lead to

inconsistent training examples.

The final approach used in implementing FPGA is not a direct routing strategy based on

FNN. At each node, it uses the FNN to estimate the distance of each neighbor to the

destination. And then choose the best one together with such considerations as not

immediately backtracking to the sender, and not using a faulty link. In other words, the

input of the FNN is:

(n bits for current address), (n bits for destination address), (n bits for current node’s

safety vector)

Output of FNN is the real distance between current node and the destination in the

presence of faulty components.

Note here, when using trained FNN to route, the ‘current address’ above is actually fed

by the neighbors address and ‘current node’s safety vector’ is actually fed by the

neighbor’s safety vector.

Page 37 of 215

. . .

FCn

22)(−− = nn HCnEFC

)(3 nEFCn−

)(1 nEFC

)(0 nEFC

. . .

FCn

22)(−− = nn HCnXFC

)(3 nXFCn−

)(1 nXFC

)(0 nXFC

Figure 4.1 Relationship between binary
hypercube, regular Fibonacci Cube and
Enhanced Fibonacci Cubes

Figure 4.2 Relationship between binary
hypercube, regular Fibonacci Cube and
Extended Fibonacci Cubes

Chapter 4: A Fault-tolerant Routing Strategy for

 Fibonacci-Class Cubes

4.1 Introduction

Fibonacci-class Cubes originate from Fibonacci Cube (FC) proposed by Hsu [12][13][16],

and its extended forms are Enhanced Fibonacci Cube (XFC) by Qian [14] and Extended

Fibonacci Cube (XFC) by Wu [15]. This class of interconnection network uses fewer links

than the corresponding binary hypercube, with the scale increasing slower because

Fibonacci number is of order)2())
2

31((nn OO <
+ . That allows more choices of network

size. In structural aspects, these two extensions virtually maintain all desirable properties

of FC and improve it by ensuring the Hamiltonian property [14][15]. Besides, there is an

ordered relationship of containment between the series of XFC and EFC, together with

binary hypercube and regular FC [15] as shown in Fig. 4.1 and 4.2:

Page 38 of 215

Lastly, they all allow efficient emulation of other topologies such as binary tree

(including its variants) and binary hypercube. In essence, Fibonacci-class Cubes are

superior to binary hypercube for low growth rate and sparse connectivity, with little loss

of its desirable topological and functional (algorithmic) properties.

Though Fibonacci-class Cubes provide more options of incomplete hypercubes to which

a faulty hypercube can be reconfigured and thus tend to find applications in fault-tolerant

computing for degraded hypercube computer systems, there are no existing fault-tolerant

routing algorithms. This is a common shortcoming of link-diluted hypercubic variants.

In this chapter, we propose a unified fault-tolerant routing strategy for Fibonacci-class

Cubes, named Fault-Tolerant Fibonacci Routing (FTFR). It has the following properties:

• It can be applied to all Fibonacci-class Cubes in a unified fashion, with only minimal

modification of structural representation.

• The maximum number of faulty components tolerable is the network’s node

availability [18] (the maximum number of faulty neighbours of a node that can be

tolerated without disconnecting the node from the network).

• Each node requires only one round of fault status exchange with its neighbours.

• For a n-dimension Fibonacci-class Cube, each node, with degree deg, maintains and

updates at most (deg)2+ n-bit vectors, among which: 1) a n-bit availability vector

indicates the local non-faulty links, 2) a n-bit input link vector indicates the input

message link, 3) deg copies of its deg neighbors’ n-bit availability vector indicate

dimension availability of its neighbors.

• Provided the number of component faults in the network does not exceed the

network’s node availability, and the source and destination nodes are not faulty,

FTFR guarantees a message path length not exceeding Hn + empirically and

Hn +2 theoretically, where n is the dimension of the network and H is the Hamming

distance between source and destination.

Page 39 of 215

• Generates deadlock-free and livelock-free routes.

• Can be implemented almost entirely with simple and practical routing hardware

requiring minimal processor control (refer to Chapter 7 for the FPGA

implementation).

The rest of this chapter is organized as follows. Section 4.2 reviews several versions of

definitions of Fibonacci-class Cube, together with comments and initial analysis. Section

4.3 presents a Generic Approach for Cycle-free Routing (GACR), which is used as a

component of the whole strategy. Section 4.4 develops the fault-tolerant routing

algorithm FTFR and Section 4.5 illustrates its application with an example. The design

of a simulator and simulation results will be presented in the Chapter 4 and 5 respectively.

Finally, the routing strategy is implemented on an FPGA chip. This is described

separately in Chapter 7.

Page 40 of 215

4.2 Definition and analysis
Though Fibonacci-class Cubes are very similar and are all based on a sequence with

specific initial conditions, they do have some different properties that call for special

attention.

4.2.1 Definitions of Fibonacci-class Cubes

We first quote the definition Fibonacci Cube proposed by Hsu [12].

(Definition 4.1) Fibonacci number

The well-known Fibonacci number is defined by: 2110 ,1,0 −− +=== nnn fffff for

2≥n .

(Definition 4.2) order-n Fibonacci code

The order-n Fibonacci code of integer)3(]1,0[≥−∈ nfi n is defined as Fn bbb),,,(231 ⋅⋅⋅−

where jb is either 0 or 1 for)1(2 −≤≤ nj and ∑
−

=

⋅=
1

2

n

j
jj fbi .

(Definition 4.3) Fibonacci Cube of order n (3≥n)

Fibonacci Cube of order n (3≥n) is a graph nFC = ><)(),(nn fEfV , where

}1,,1,0{)(−⋅⋅⋅= nn ffV and)(),(nfEji ∈ if and only if 1),(=FF JIH , where FF JI , are

the Fibonacci codes of i and j, respectively.),(FF JIH stands for the Hamming distance

between FI and FJ .

Another equivalent definition which is more unified with Enhanced Fibonacci Cube and

Extended Fibonacci Cube is:

Page 41 of 215

(Definition 4.3’) Fibonacci Cube of order n (3≥n) [12][14]

Let),(nnn EVFC = , then 21 ||10||0 −−= nnn VVV  for 5≥n , where || denotes the

concatenation operation. }0,1{3 =V , }10,00,01{4 =V . Two nodes in nFC are connected

by an edge in nE if and only if their labels differ in exactly one bit position.

 (Theorem 4.1)

Fibonacci Cube of order n (3≥n) can be equivalently defined as a graph whose node

addresses are)2(−n -bit binary number in which there are no two consecutive 1’s. Edges

exist between nodes whose Hamming distance is 1.

Proof:

Let 0143
' ...{ aaaaV nnn −−= | }1,0{∈ia , for]3,0[−∈ ni and for]4,0[−∈∀ nj , 111 ≠+ jj aa }.

Obviously, to prove Theorem 4.1, it is sufficient to prove that '
nn VV = because the

definition of link in Theorem 4.1 is the same as that in Definition 4.3’. First, it is obvious

that '
nn VV ⊆ . We prove '

nn VV ⊇ inductively. As the basis, it is clear that '
nn VV = for n = 3,

4. If '
nn VV = holds for kn < (4>k), then when kn = , for each binary address

'
0143 ... kkk Vaaaa ∈−− , we discuss two cases.

1) 03 =−ka . As '
1014... −− ∈ kk Vaaa , thus 1014... −− ∈ kk Vaaa . Then =−− 0143 ... aaaa kk

 kkk VVaaa ⊆∈ −− 1014 ||0...0 .

2) 13 =−ka . Then 04 =−ka . As '
2015... −− ∈ kk Vaaa , thus 2015... −− ∈ kk Vaaa . Then

 kkkkk VVaaaaaaa ⊆∈= −−−− 20150143 ||10...10... .

Combine 1), 2), we get '
nn VV ⊇ . So '

nn VV = holds for kn = . Theorem 4.1 is proved. g

Page 42 of 215

The definition in Theorem 4.1 is more suitable for discussing routing strategies in

Fibonacci Cube.

Enhanced Fibonacci Cube and Extended Fibonacci Cube can be defined in a similar way:

(Definition 7.4) Enhanced Fibonacci Cube of order n (3≥n) [14]

Let ><= nnn EVEFC , denote the Enhanced Fibonacci Cube of order n, then

4422 ||0101||||0100||10||00 −−−−= nnnnn VVVVV  . Two nodes in nEFC are connected

by an edge in nE if and only if their labels differ in exactly one bit position. As initial

conditions for recursion, }0,1{3 =V , }10,00,01{4 =V

}010,000,100,101,001{5 =V and

}1001,1000,1010,0010,0000,0100,0101,0001{6 =V .

(Definition 7.5) Extended Fibonacci Cube series of order n [15]

A series of Extended Fibonacci Cubes is defined as { 1, ≥kXFCk }, where

)}(),({)(nEnVnXFC kkk = .)2(||10)1(||0)(−−= nVnVnV kkk  for 4+≥ kn . Two nodes

in)(nXFCk are connected by an edge in)(nEk if and only if their labels differ in exactly

one bit position. As initial conditions for recursion, }1,0{|{)2(011 ∈⋅⋅⋅=+ − ikk aaaakV for

]1,0[−∈ ki }, }1,0{|{)3(01 ∈⋅⋅⋅=+ ikk aaaakV for],0[ki ∈ }.

4.2.2 Comments and Analysis

The following property is important for our routing algorithm. Let current node address be

u and destination node address be d, then each dimension corresponding to 1 in u ⊕ d is

Page 43 of 215

called preferred dimension, where ⊕ stands for bitwise XOR operation. Due to the

definition of Fibonacci-class Cubes, when a packet is routed in the network, it is quite

likely that links in one or more preferred dimensions are not available at current node. But

the following Theorem 4.2 guarantees that in a fault-free setting, there is always at least one

preferred dimension available at its present node. Unlike binary hypercube, this is not a

trivial result.

(Theorem 4.2)

In a fault-free Fibonacci Cube, Enhanced Fibonacci Cube or Extended Fibonacci Cube,

there is always a preferred dimension available at the packet’s present node before the

destination is reached.

Proof :

Suppose we are discussing an n-dimension Fibonacci-class Cube. This means that we are

discussing FC, XFC and EFC of order 2+n . Let the binary address of current node be

011 aaan ⋅⋅⋅− and the destination be 011 dddn ⋅⋅⋅− . Let the rightmost (least significant) bit

correspond to dimension 0 while the leftmost bit correspond to dimension 1−n .

Case I: Fibonacci Cube 2+nFC . Obviously, if the destination has not been reached, there

is always a preferred dimension]1,0[−∈ ni . If 1=ia and 0=id , then there is always a

preferred link available at dimension i because changing one ‘1’ in a valid address into 0

always produces a new valid address. So we only need to consider 0=ia and 1=id .

When 3≤n , Theorem 4.2 can be easily proven by enumeration. So now suppose 4≥n .

Obviously, if]2,1[−∈ ni , then 01 =−id , 01 =+id . If 11 =−ia , then 1−i is an available

preferred dimension. If 11 =+ia , then 1+i is an available preferred dimension. If

Page 44 of 215

011 == +− ii aa , then dimension i is an available preferred dimension because inverting ia

to 1 will not produce two consecutive 0’s in the new nodes address. This satisfies the

precondition of Theorem 4.1, so that the new address is ensured to be a valid node

address. If 0=i , then 01 =d . If 11 =a , dimension 1 is an available preferred dimension.

If 01 =a , then dimension 0 is an available preferred dimension for the same reason as in

]2,1[−∈ ni . If 1−= ni , then 02 =−nd . If 12 =−na , then dimension n-2 is an available

preferred dimension. If 02 =−na , then dimension 1−n is an available preferred

dimension for the same reason as for]2,1[−∈ ni . In whatever case, Theorem 4.2 holds.

Case II: Extended Fibonacci Cube)2(+nXFCk

Suppose there is a preferred dimension i. If ki < , then it always produces a valid

address if we invert ia . If ki ≥ , the discussion is the same as case I.

Case III: Enhanced Fibonacci Cube 2+nEFC .

The discussion is similar to case I. We only need to pay attention to the leftmost

preferred dimension. Please refer to Appendix I for detailed proof. g

Theorem 4.2 implies that whenever a spare dimension is used, either a faulty component

is encountered or all neighbors on preferred dimensions have been visited before. For the

latter case, all such preferred dimensions must have been used as spare dimensions before.

So both cases can be boiled down to the encounter of faulty components.

Theorem 4.2 implies the possibility that FTFR can be applied to all type of networks

which can always ensure the existence of at least one preferred dimension. Actually, we

Page 45 of 215

applied FTFR to all Fibonacci-class Cubes and find that it works well in all cases,

including binary hypercube.

4.3 A Generic Approach for Cycle-free Routing (GACR)

4.3.1 Overview

This approach aims at providing a way of avoiding cycles in routing by checking the

traversal history. The most valuable strength is that the algorithm only takes)1(O time

to check whether a neighbor has been visited before, and only)1(O time to update the

coded history record. Other advantages include its wide applicability and easy hardware

implementation. It applies to such routing algorithms that deal with a network in which

links only connect node pairs whose Hamming distance is 1 (called Hamming link). All

networks constructed by node or link dilution meet the requirement. An extended version

of the algorithm can be applied to those networks which have)1(O types of non-

Hamming links at each node. Thus, such networks as Folded Hypercube, Enhanced

Hypercube and Josephus Cube can also use this algorithm.

The weakest point of this approach lies in the size of message overhead)log(nLO m ,

where n is the dimension of the network and mL is the maximum length of a path a

packet can traverse. However, in most cases, it is still within an acceptable bound [19].

4.3.2 Basic GACR

Page 46 of 215

The traversal history is effectively an

ordered sequence of dimensions used

when leaving each visited node. For

example, in Figure 4.3, the route that

originates from 000 can be recorded as:

1210121. An obvious equivalent

requirement for cycle-freeness is that:

if ‘(’ and ‘)’ are inserted into the

sequence, then for any combination of

the places of ‘(’ and ‘)’ (as long as

‘(‘ precedes ‘)’), there must be at least

one number between the brackets

which appears for an odd number of times. Put it another way, the equivalent condition

for a route to contain cycle is: there exists a way of inserting ‘(’ and ‘)’ into the sequence

such that each number in () appears for an even number of time.

For example, in 1(21012) , 0 appears only one time, which is an odd number. In

(1210121), 1 and 2 appear for an even time but 0 still appears for an odd number of time.

So neither forms a cycle. But for a sequence of 1234243, there must be a cycle:

1(234243). Suppose at node p, the history sequence is naaa ⋅⋅⋅21 , and it is guaranteed

that no cycle exists hitherto, then to check whether using dimension 1+na

will cause any cycle, we only need to check whether in)(1+nnaa ,)(112 +−− nnnn aaaa ,

)(11234 +−−−− nnnnnn aaaaaa … each number will appear for an even time. Here we can

omit dimension na because immediate backtrack will certainly cause cycle.

Figure 4.3 Example for routing history

d0

d1 d2

Page 47 of 215

We first introduce the basic form of this algorithm that applies only to networks

constructed by node/link dilution from binary hypercube. This algorithm is run at each

intermediate node so as to ensure that no cycle is formed.

(Algorithm 4.1) Basic GACR

The data structure is a simple array: port[], with each element composed of  nlog bits.

port[i] records the port used when exiting the node that the packet visited 1+i hops ago.

So when a packet leaves a node, it only needs to append the dimension adopted to the

head of the array port[]. As each node has only n ports and the meaning of dimension is

common at all nodes, that is, dimension c at node a has the same meaning at node b,

obviously only  nlog bits are necessary for representing these n possibilities. At the

source node, the array port[] is null.

Suppose at node x, the length of the array is L. After running the following short code

segment, each 0 in mask corresponds to a dimension, the using of which will cause an

immediate cycle. Thus, the test time only takes one clock cycle.

unsigned Preprocess(unsigned port[], int L)
{

unsigned dim, mask = 0, history = 1 << port[0];
int k, flag = 1;
for (k = 1; k < L; k++)
{
 dim = 1 << port[k];
 history ^= dim;
 if (! flag) // flag ensures that OnlyOne is called every other time

{
 if (OnlyOne (history)) // check if history has only one 1
 mask |= history;
 flag ++;
}
else
 flag --;

Page 48 of 215

}
return ~mask;

}

For instance, for the dimension sequence 875865632434121 from source to present, the

mask is: 000010011. Because in 875865632434121 a , there is a cycle formed when a =

2, 3, 5, 6, 7, or 8.

The operations in this algorithm are all basic logic operations. The OnlyOne function

which tests whether history has and only has one 1 is also easy to implement such that

only one clock cycle is required. Suppose 0121 xxxxhistory nn ⋅⋅⋅= −− (}1,0{∈ix for

),0[ni ∈), then OnlyOne (history) =

 0121 xxxx nn ⋅⋅⋅−− + 0121 xxxx nn ⋅⋅⋅−− +⋅⋅⋅+ 0121 xxxx nn ⋅⋅⋅−− + 0121 xxxx nn ⋅⋅⋅−− ,

The implementation of this only costs n AND gates and 1 OR gate, taking only one clock

cycle. But in software simulation, it takes)(nO time. Attention should be paid to this

problem. The logic circuit of function OnlyOne is drawn in Fig. 4.4.

 AND gate

 OR gate

 Inverter

Figure 4.4 Logic circuit of function OnlyOne

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

x1

x2

xn

Y

Page 49 of 215

Another strength of this algorithm is that the time for running the code above can be

reduced to nearly zero because it is orthogonal to the routing algorithm. This makes

parallelism and pipelining possible. At first sight, the time complexity is)(maxLO , where

maxL is the length of the longest path the packet can traverse. In a network with heavy

load, this preprocess of calculating mask can be done when the packet is still waiting in

the buffer.

4.3.3 Extended GACR

If the network has)1(O number of non-Hamming link types at each node and these links

can be represented by a common and uniform way, then Algorithm 4.1 can be easily

extended. For example, in Josephus Cube)(nJC [64], we denote the complementary

link as dimension n and the Josephus link as dimension 1+n . Then the function of

Preprocess can be modified into the following form:

(Algorithm 4.2) Extended GACR

void Preprocess(unsigned port[], int L, unsigned *mask1, unsigned *mask2,

unsigned *mask3)

{

unsigned dim, history = 1 << port[0];

*mask1= *mask2 = *mask3 = 0;

for (int k = 1; k < L; k++)

{

 if (port[k] < n)

dim = 1 << port[k];

 else if (port[k] == n)

Page 50 of 215

 dim = ((1<<n) – 1);

 else dim = (unsigned) 3;

 history ^= dim;

if (OnlyOne (history)) // check if history has only one 1

*mask1 |= history; // for cycle caused by Hamming link

 else if (AllOne(history)) // check if history has straight 1’s

 *mask2 = 1; // for cycle caused by complementary link

 else if (history == (unsigned) 3) // check the rightmost two bits

 *mask3 = 1; // for cycle caused by Josephus link

}

*mask1 = ~(*mask1);

}

mask2 = 1 represents that the use of complementary link will result in a cycle, while

mask3 = 1 stands for the fact that using Josephus link will bring about a cycle. The

meaning of mask1 remains the same as mask in the basic algorithm.

It might be noticed that the biggest shortcoming lies in the size of message overhead. For

most routing algorithms,)(nOLm = thus)log()log(nnOnLO m = . However, this is still

within the acceptable bounds in most applications. For example, the “visited stack” used

by [19] incurs message overhead of (n+ 1)  n2log bits for an n-dimension binary

hypercube.

Page 51 of 215

4.4 Fault-Tolerant Fibonacci Routing (FTFR)

4.4.1 Definition and notation

In a Fibonacci-class Cube of order n + 2 (n-dimensional), each node’s address is an n-bit

binary number where n > 0. Let the source node, u, be identified by (an-1 … a1a0), where

ai ∈ {0, 1} for all 0 ≤ i < n, and the destination node, v, by (bn-1 … b1b0), where bj ∈ {0, 1}

for all 0 ≤ j < n. Then, the identity of the neighboring node of u along the dth dimension,

is)(du for any 0 ≤ d < n, where)(ku means inverting the kth bit of the binary address of

node u.

(Definition 4.5) route vector

When a packet reaches current node c, four r-bit route vectors are calculated as follows:

 cdR &~1 = , dcR &~2 = , dcR &3 = ,)|(~4 dcR =

Here, ‘|’, ‘&’, ‘~’ represent OR, AND and bitwise NOT operation, respectively.

Obviously, nRRRR 1||| 4321 = , 0& =ji RR for all 4,1 ≤≤ ji ji ≠ , where n1 stands

for a sequence of 1 with the length of n.

(Definition 4.6) availability vector

At each node x, the n-bit binary number availability vector (AV(x)) records a bit string,

indicating by ‘1’ what dimensions are available at x, and by ‘0’ what dimensions are

unavailable.

Page 52 of 215

Here a dimension d is available means there is a nonfaulty link at x to)(dx . For example,

in Figure 4.5, node 1001 and link (0000, 0001) are faulty. The availability vector of each

node is listed in Table 4.1:

node AV node AV node AV

0000 1110 0100 0101 1001 0000

0001 0100 0101 0101 1010 1010

0010 1010 1000 1010

Availability vector is crucial for generalizing the applicability of the routing algorithm to

other Fibonacci-class Cubes. It is effectively a distributed representation of the network

topology, connectivity and fault distribution.

(Definition 4.7) input link vector

An n-bit input link vector at node w is defined as I(w) = [ln-1 … l1 l0], where li = 0 if the

message arrives at w along the dimension i link, otherwise li = 1 for 0 ≤ i < n. Setting the

Table 4.1 availability vector for Fig. 4.5

Figure 4.5 Example of availability vector

0
2

1

3

Page 53 of 215

corresponding bit to 0 for a used input link prevents the link from being used again

immediately for message transmission, causing the message to “oscillate” back and forth.

An input link vector has all n bits set to ‘1’s for a new message generated at the node and

after transmission of a received message.

(Definition 4.8) mask vector

To prevent cycles in the message path and to restrict the freedom of selecting output port,

it is also necessary to keep track of link dimensions traversed. As part of the message

overhead, a mask vector may be defined as DT =][011 tttn ⋅⋅⋅− . At source node, we clear

DT = [1 … 11]. After that, whenever a spare dimension is to be used, it must be

guaranteed that the corresponding bit in DT is 1. But the use of preferred dimension is

never restricted. Different from many existing algorithms, each originally preferred

dimension (preferred dimension at the source) can be used more than once. When it is

used for the first time, DT doesn’t record it. But at the second time when it is to be used

as a spare dimension, its corresponding bit in DT is masked, so that it can’t be used as a

spare dimension again. It will then be used as a preferred dimension. Any 0-bit in DT

cannot be set back to 1. As for originally spare dimensions, they can be used for at most

two times, which is ensured by masking the corresponding bit in DT the first time it is

used.

(Definition 7.9) neighbor condition vector array (NCk)

Each node periodically exchanges its own availability vector with all neighbors. So it

costs at most)(2nO space to store the neighbor condition. The availability vector of the

neighbor on dimension k is denoted as NCk .

Page 54 of 215

4.4.2 Detailed description of FTFR

Empirically, the number of faults FTFR can tolerate is the network’s node availability.
There is an intricate mechanism in choosing candidate dimension when more than one
preferred dimension are available, or when no preferred but several spare dimensions are
available. First of all, the GACR is used to generate a mask
M. Only those dimensions whose corresponding bit in (M AND I (w) AND AV) is 1 are

further investigated. These dimensions are called available. To illustrate the algorithm,

the following Figure 4.6 is useful. In Figure 4.6, ‘s’ stands for spare dimension or

neighbors on it, while ‘p’ stands for preferred dimension.

We divide our discussion into two cases.

(Case I)

We first check the 1’s in 21, RR (preferred dimensions). If there are several available

preferred neighbors (like A and B), we compare which one has the largest number of

non-faulty preferred dimensions. If tie, then compare their number of non-faulty spare

dimension. If still tie, choose the lowest dimension. Actually, the value to compare is

Decision
made here

s

p

p

p

s

Deadlock (ignore)

p p

p

s

s
s

s

s A

B M

C

D

E

Figure 4.6 Illustrative example of FTFR

Page 55 of 215

given by ⋅n (No. of prefer) + (No. of spare). Here, For A, ⋅n (No. of prefer) + (No. of

spare) = 22 +n , while for B, the value is 3+n . So A is chosen.

(Case II)

If at current node M, there are no preferred dimensions available, spare dimensions have

to be used, like D and E. Firstly, the eligibility is checked by DT. Then just like in case I,

we compare ⋅n (No. of prefer) + (No. of spare). After one spare dimension is finally

chosen, its corresponding bit in DT is masked to 0, so that it will not be used as spare

dimension again.

In Case II, if all spare dimensions are masked by DT, the algorithm has to abort.

The ⋅= nm (No. of prefer) + (No. of spare) is a heuristic metric. After extensive

experimentation, it is found that small modifications can be made to m so as to improve

the performance of FTFR. Suppose the dimension under consideration is i and inverting

the ith bit of destination d produces d’= d XOR 0n-i10i-1. If d’ is a valid node address in

that Fibonacci-class Cube, attaching some priority to dimension i will be helpful in

reducing the number of hops. Hence, we add the value of node availability of the

network to m for that dimension in such case. In Enhanced Fibonacci Cube, this is an

indispensable measure for the algorithm to generate a path to destination when the

number of faults in the network is no more than its node availability.

The following are two core routing functions. They are very easy to understand.

// this function is run at M, which looks ahead at A, B, C, D and E

// available =)(MAV AND)(MI AND (mask generated by GACR)

// source and destination are both in Fibonacci code
unsigned EnhFibCube::GetNext(unsigned int source, unsigned int destination,

unsigned int available, unsigned int *DT)

Page 56 of 215

{
 int max1, max2;
 unsigned x2, temp1, temp2;

 if (source == destination)
 return DEST_REACH;

 // first get preferred 1->0 dimensions
 x2 = (~destination & source);
 x2 &= available;
 max1 = -1;

 if(x2) // if there exists some available 1->0 preferred dimensions,

 // choose the one that has the largest
// n*(No. of // prefer) + (No. of spare),
// the value is recorded in max1 (called by reference).

 temp1 = OneBest(source, destination, x2, *DT, &max1);

 // check preferred 0->1 bits
 x2 = (~source & destination);
 x2 &= available;
 max2 = -1;

if(x2) // such a dimension exists
 temp2 = OneBest(source, destination, x2, *DT, &max2);

 if(max1 > max2)
 return temp1;
 else if(max1 < max2)
 return temp2;
 else if(max1 != -1)
 return temp1;

 // check spare 1->1, now make 1->0
 x2 = (source & destination);
 x2 &= available;
 x2 &= *DT;
 max1 = -1;
 if(x2)
 temp1 = OneBest(source, destination, x2, *DT, &max1);

Page 57 of 215

 // check spare 0->0, now make 0->1
 x2 = ~(source | destination);
 x2 &= available;
 x2 &= *DT;
 max2 = -1;
 if(x2)
 temp2 = OneBest(source, destination, x2, *DT, &max2);

 if(max1 > max2)
 {
 *DT ^= (1 << temp1); // remember to mask spare dimension once used
 return temp1;
 }
 if(max1 < max2)
 {
 *DT ^= (1 << temp2);
 return temp2;
 }
 if(max1 != -1)
 {
 *DT ^= (1 << temp1);
 return temp1;
 }
 return ABORT;
}

// each running of this function corresponds to the neighbors of A, B, C, D, E…

// each 1 in x2 corresponds to the candidate dimensions waiting to be tested

// m records the largest n*(No. of prefer) + (No. of spare)

// the return value indicates the selected dimension.

// If all neighbors in x2 are leading to deadlocks or these neighbors have no nonfaulty

// links, m is set to -1 (unchanged as before calling OneBest) and return INFINITY.
unsigned EnhFibCube::OneBest(unsigned int source, unsigned int destination, unsigned
int x2, unsigned int DT, int *m)
{
 unsigned x1, mask, neighbor, prefer, spare, i;
 int max, temp, total;

Page 58 of 215

 mask = 1;
 max = 0;

 for(i=0; i < Num_Bits ; i++) // iterate for each dimension
 {
 if(x2&mask)
 {
 neighbor = source ^ mask; // get the neighbor (A, B, C, D…)
 temp = Fib2Dec(neighbor); // get the array index of neighbor
 prefer = neighbor ^ destination; // relative address.
 if(!prefer) // the neighbor is destination
 {
 *m = 0x7fffffff; // set m to INFINITY
 return i; // return corresponding dimension
 }

 total = CalOnes (prefer & Node[temp].avaiVector & ~mask) *Num_Bits;

// how many preferred dimensions are available at the neighbor

 spare = (~prefer & DT & Node[temp].avaiVector& ~mask);

 total += CalOnes(spare);

// how many spare dimensions are available at the neighbor

 if (CheckValid(destination ^ mask, Num_Bits))
 total = total + Node_Availability;

 if(total > max) // record the max value
 {
 max = total;
 x1 = i; // record the corresponding dimension
 }
 }
 mask <<= 1;
 }

 if(max == 0) // return no qualified dimension is found
 return INFINITY;
 *m = max; // record the max value
 return x1; // record the corresponding dimension
}

Page 59 of 215

4.5 An illustrative Example:

In an 9-dimension Regular Fibonacci Cube F11 :

It can tolerate at most 1
3

29
−



 + = 2 faulty components

Faulty Node: 000001000 and 000000001

Faulty Link: none

Now we want to go from 101010100 to 000001001

The path selected is:

 Step 876543210 Dimension Used

101010100

è 100010100 6

è 000010100 8

è 000010101 0

è 000000101 4

è 000000100 0

è 000000000 2 meet 000001000, 000000001.

è 100000000 8

è 100000001 0

è 100001001 3

è 000001001 8

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Page 60 of 215

At step (1), a preferred dimension 6 is used. There are 4 1->0 preferred dimensions

available then, namely 2, 4, 6, 8. The metric ⋅n (No. of prefer) + (No. of spare) is

4*9+1, 3*9+2, 3*9+2, 4*9+0, 4*9+0, respectively. After updated for dimensional

availability at destination, the final score is 37, 29, 39, 39, respectively. Thus dimension

6 or 8 can be chosen. Here we choose the smaller one. Before step 7, we can always find

a 1->0 preferred dimension. At 000000000, neither of the two preferred dimensions (3

and 0) is available because each will lead to a faulty node. So spare dimension has to be

used then. The input dimension is 2 and using dimension 4 will lead to deadlock.

Therefore, there are only 5 possible dimensions, namely 1, 5, 6, 7, 8. The score they get

are (including the possible addition of node availability) are: 14, 25, 25, 25, 27,

respectively. So dimension 8 is chosen. Note, now dimension 8 is used as spare

dimension and its corresponding bit in DT will be masked. It will never be used as spare

dimension again. Afterwards, three preferred dimensions are used successively.

Note here, each faulty component is not encountered twice. The final route is short.

Actually, in the 9-dimension Fibonacci Cube with 2 faulty nodes, the longest possible

route found by FTFR is 10.

Page 61 of 215

Chapter 5: Exchanged Hypercube

5.1 Introduction

One important means of improving computation speed is by breaking the problem into

subcomputation and execute concurrently with multi-processors. In this setting, the

communication between processors is crucial. A number of interconnection networks

have been designed to deal with the problem. One of the most researched as

interconnection network is the binary hypercube [8][9].

The binary hypercube, however, scales too rapidly as its dimension n increases. The

more serious problem is the number of edges: 12 −nn , which grows more drastically than

the number of nodes: n2 . Some variants have been proposed to remove as large a

fraction of edges as possible, while, at the same time, preserve the desirable topological

properties of the binary hypercube. Examples are Gaussian Hypercube [1] and Reduced

Hypercube [10]. Nevertheless, when edges are diluted, some usefulness of a richer

connectivity disappears. Routing between nodes becomes a serious problem, particularly

when faulty components exist in the network.

The Exchanged Hypercube proposed in this chapter is based on link removal from binary

hypercube, possessing only
n
1 of the number of links in the latter topology with the same

number of nodes, where n is the dimension of the network. It is defined with two

parameters, which provide more flexibility of network structure. What is more, it

maintains virtually all of the desirable properties of the binary hypercube, such as

Page 62 of 215

Hamiltonian property (which ensures the optimal embedment of ring), uniform node

degree, low diameter, and various possibilities of decomposition.

An interesting point is that an Exchanged Hypercube is isomorphic to a Gaussian Cube.

It near-optimally emulates binary hypercube. Besides, it can embed meshes with

reasonable efficiency (dilation 2, expansion 2, loading 1 and congestion 2). Being

Hamiltonian, the Exchanged Hypercube can optimally embed linear arrays and rings.

The Extended Binomial Tree, which is proved to be the spanning tree of the Exchanged

Hypercube, preserves many desirable properties of the original Binomial Tree, with only

some minor variations in the initial conditions. This provides a necessary framework for

solving many applications such as broadcasting, prefix sum computing and load

balancing in Exchanged Hypercube.

Finally, a fault-tolerant routing strategy is proposed. For link-diluted hypercubic variants,

the common nightmare is the low node availability (the maximum number of faulty

neighbours of a node that can be tolerated without disconnecting the node from the

network [18]). With refined analysis of the location of faulty components, our algorithm

can tolerate more faults than the trivial bound of node availability. Besides, it is livelock

free and generates deadlock free routes. It also ensures that a message path length never

exceeds 2F longer than the optimal path found in a fault-free setting, provided the

distribution of faulty components in the network satisfies the precondition of Theorem

5.1.

The rest of the chapter is organized as follows. In Section 5.2, we define the Exchanged

Hypercube, discuss its structural properties including Hamiltonian property and present

results of its diameter, node degree, node and link complexities. In Section 5.3, the

Page 63 of 215

embeddings of Gaussian Cube, ring, mesh, binary hypercube are studied. In Section 5.4,

we define the Extended Binomial Tree, together with its labeled form: Exchanged Tree.

The good properties of these trees and their relationship with Exchanged Hypercube are

discussed. In Section 5.5, we describe a fault-tolerant routing strategy.

Page 64 of 215

5.2 The Exchanged Hypercube

5.2.1 Definition and Construction

(Definition 5.1) Exchanged Hypercube

The Exchanged Hypercube is defined as),(tsEH =),(EV (1,1 ≥≥ ts), where

)},0[),,0[}1,0{,,|{ 0101 tjsiforcbacbbaaV jits ∈∈∈⋅⋅⋅⋅⋅⋅= −−

|),{(21 VVvvE ×∈= where 121 =⊕ vv

 or 1]0[]0[,1])1:[],1:[(],1:[]1:[212121 ===++=++ vvtvtvHttsvttsv

 or 0]0[]0[,1])1:[],1:[(],1:[]1:[212121 ===++++= vvttsvttsvHtvtv }

Here,]:[yxv represents the bit pattern of v between dimension y and x inclusive (we borrow

the syntax of Handel-C [11]). Let),(yxH represent the Hamming distance between x and y,

where VVyx ×∈),(.

)2,1(EH is shown in Fig. 5.1:

 0001 0011

0101 0111

1001 1011

1101 1111

1000

0000

1100

0100

1110

0110

1010

0010

Figure 5.1)2,1(EH

Page 65 of 215

The dashed links correspond to 121 =⊕ vv . The solid links correspond to

1]0[]0[,1])1:[],1:[(],1:[]1:[212121 ===++=++ vvtvtvHttsvttsv and the bold links to

0]0[]0[,1])1:[],1:[(],1:[]1:[212121 ===++++= vvttsvttsvHtvtv .

5.2.2 Structural Properties

(Property 5.1)

),(tsEH is isomorphic to),(stEH . This means Exchanged Cube is symmetric.

),(tsEH can be decomposed into two copies of),1(tsEH − or)1,(−tsEH .

Let ∂T represent the smallest change in the number of network components (nodes or

links) needed to increase the existing number of components T in a network while

retaining its topological characteristics.
T
TIE ∂

= measures the incremental expandability

of the network. We use IEnode and IElink to differentiate between node and link

incremental expandabilities.

(Property 5.2)

),(tsEH has tsts ts +−− ++ 222 11 links and 12 ++ ts nodes. Node incremental

expandability is 1 and link incremental expandability is also approaching 1.

Proof. 1
2

22
1

111
=

−
=

∂
= ++

+++++

ts

tsts

node

node
node T

TIE ,

tsts

tss

tsts

tstststs

link

link
link ts

s
ts

tsts
T
TIE +−−

+−

+−−

+−−++−+−

++
++

=
++

++−+++
=

∂
=

222
22)2(

222
)222(222)1(

11

1

11

111111

 = ,1
122

12)2(
11

1
→

++
++

−−−−

−−

st

t

ts
s as +∞→s and/or +∞→t .

Page 66 of 215

number of links for),(tsEH

number of links for 1++ tsB

(Property 5.3)

The number of links in),(tsEH is
1

1
+n

 to
2
1 of that of (s+t+1)-dimension n-cube 1++ tsB .

1++ tsB has tsts +++ 2)1(links. The ratio of the number of links between),(tsEH and

1++ tsB can be evaluated in the following way:

Without loss of generality, suppose ts ≥ , let tsn += , tsm −= . Define

 = ts

tsts

ts
ts

+

+−−

++
++

2)1(
222 11

 = n

n
mnmn

n

mnmn

2)1(

22
2

)(2
2

)(22

+

+
+

+
−

+−

 =
1

12
2

)(2
2

)(22

+

+++−
−−−

n

mnmn nmmn

To calculate the range of r, we have

)
2
2ln2

2
2

2
1

2
2ln2

2
2

2
1(

1
1 2222

nmnmmnmn mnmn
nm

r −−−−−−
+

++
−−

+−
+

=
∂
∂

))2ln)(2)(12(2ln2(2
)1(4

1 12 mnm
n

mm
mn

−+−+
+

= +
−−

As 12 ≥m for 0≥m and mn > , 0>
∂
∂
m
r for 0>m and 00 =

∂
∂

=mm
r .

It is easy to see that with a fixed n, r increases as m increases. So 0min | == mrr =
1

12 2

+
+

−

n
n

n

,

r =

Page 67 of 215

which approaches
1

1
+n

 when n is large enough. On the other hand, 2max | −== nmrr

=
1

2
12 1

+

−
++−

n

nn

, which approaches
2
1

1
1

2
1

→
+
−

⋅
n
n as n approaches infinity. In conclusion,

)
2
1,

1
1(
+

∈
n

r . A useful rule is that the smaller the difference between s and t is, the better

is the proportion of links reduced.

(Property 5.4)

For 0-ending nodes, the node degree is 1+s while the node degree of 1-ending nodes is

1+t .

Proof: This is obvious from the definition of Exchanged Hypercube.

(Property 5.5)

Routing in),(tsEH is straightforward. If source and destination differ in the leftmost s

bits, then it must reach a 0-ending node from which the difference can be offset by routing

in the subgraph of 0-ending nodes. If source and destination differ in the middle t bits, then

it must reach a 1-ending node from which the difference can be offset by routing in the

subgraph of 1-ending nodes. Which one is done first depends on the rightmost bit of

source and destination. For example, in)2,2(EH , if we want to go from 00000 to 10100,

then we must use spare dimension 0 twice: 00000→ 10000 → 10001 → 10101 → 10100. If

we want to go from 00001 to 10101, then go: 00001 → 00101 → 00100 → 10100 → 10101.

(Property 5.6)

The distance between each node pair is in [H, H+2], where H is their Hamming distance.

According to Property 5.5, the detailed conclusion is listed in table 5.1. Suppose source is

cbbaas ts 0101 ⋅⋅⋅⋅⋅⋅= −− and destination is ''''' 0101 cbbaad ts ⋅⋅⋅⋅⋅⋅= −− .

Page 68 of 215

 No. 0101 '' aaaa ss ⋅⋅⋅=⋅⋅⋅ −− 0101 '' bbbb ss ⋅⋅⋅=⋅⋅⋅ −− c 'c distance

 1 Yes Yes any any H

 2 Yes No 0 0 H + 2

 3 Yes No 0 1 H

 4 Yes No 1 0 H

 5 Yes No 1 1 H

 6 No Yes 0 0 H

 7 No Yes 0 1 H

 8 No Yes 1 0 H

 9 No Yes 1 1 H+2

 10 No No 0 0 H+2

 11 No No 0 1 H

 12 No No 1 0 H

 13 No No 1 1 H+2

For example, the 9th case means if 0101 '' aaaa ss ⋅⋅⋅≠⋅⋅⋅ −− , 0101 '' bbbb ss ⋅⋅⋅=⋅⋅⋅ −− , 1=c and

1'=c , then the distance between s and d is H+2, where H is the Hamming distance between

s and d. The +2 is because it has to use dimension 0 (originally spare) twice: 1->0 and 0->

1, for changing the first s bits. From Table 5.1, since for all rows in which distance equals

H+2, c equals c’ so tsH +≤ , the distance is no more than 2++ ts . For other rows,

distance is 1++≤ tsH . Thus, the diameter of),(tsEH is 2++ ts .

(Property 5.7)

),(tsEH is Hamiltonian, with a closed cycle encompassing all nodes only once.

Table 5.1 Node distance in Exchanged Cube

Page 69 of 215

0001 0011

0101 0111

1001 1101

1101 1111

1000

0000

1100

0100

1110

0110

1010

0010

We prove the property of Hamiltonian by induction on s and t. As),(tsEH is

isomorphic to),(stEH , we only need to take induction on s. As a basis, we show that

)2,1(EH and)2,2(EH are Hamiltonian in Fig. 5.2 and 5.3 respectively.

Figure 5.3 Hamiltonian cycle in)2,2(EH

10000 11000

00000
01000

00001 00011

00101
00111

00100 01100

10100
11100

10101 10111

10001 10011

10010 11010

00010 01010

01001
01011

01101
01111

00110
01110

10110
11110

11101
11111

11001 11011

 Figure 5.2

 Hamiltonian
 cycle in

)2,1(EH

 Figure 5.3

 Hamiltonian
 cycle in

)2,2(EH

Page 70 of 215

Assume that for)1(≥≤ kks ,),(tsEH is Hamiltonian. Then when 1+= ks , we

decompose),1(tkEH + into two subgraphs:),(1 tkG and),(2 tkG .

>=<),(),,(),(111 tkEtkVtkG where

}1,0{,,|0{),(0210211 ∈⋅⋅⋅⋅⋅⋅= −−−− cbacbbbaaatkV jittkk for]1,0[],1,0[−∈−∈ tjki }

)},(,|),1(),{(),(121211 tkVvvtkEHvvtkE ∈+∈=

>=<),(),,(),(222 tkEtkVtkG where

}1,0{,,|1{),(0210212 ∈⋅⋅⋅⋅⋅⋅= −−−− cbacbbbaaatkV jittkk for]1,0[],1,0[−∈−∈ tjki }

)},(,|),1(),{(),(221212 tkVvvtkEHvvtkE ∈+∈=

Obviously,),(1 tkG and),(2 tkG are both isomorphic to),(tkEH . Based on the induction

assumption, there must be a Hamiltonian route 1R in),(1 tkG from tku += 0101 to

2
1 0 ++= tkv , where 0l represents a sequence of 0s with length)0(≥ll . Similarly, there must

also be a Hamiltonian route 2R in),(2 tkG from 1
2 10 ++= tku to tkv += 1102 .

As),(211 uve = and),(122 uve = are both edges in),1(tkEH + , we now find a Hamiltonian

cycle: 1R || 1e || 2R || 2e , where || denotes a concatenation operation. g

Actually, in previous Figure 5.3, the Hamiltonian cycle found in)2,2(EH is constructed by

the method in the proof. The path from 01000 to 00000 connected by is effectively

1R and the path from 10000 to 11000 connected by is 2R . The two links represented

by correspond to 1e and 2e . 1R and 2R are mapped from the Hamiltonian cycle in

)2,1(EH demonstrated above.

Page 71 of 215

5.3 Embedding other networks

(Property 5.8)

),(, tsEHBB ts ⊂ 1++⊂ tsB .),(tsEH can also be decomposed into s2 tB and t2 sB

simultaneously. The 0-ending nodes (denoted as)),((tsEHVs) together with the links

connecting in between (denoted as)),((tsEHEs) comprise t2 s-dimension binary

hypercubes (denoted as)),((tsEHBs collectively), while 1-ending nodes ()),((tsEHVt)

together with the links connecting in between ()),((tsEHEt) comprise s2 t-dimension

binary hypercubes ()),((tsEHBt). And links in)),((0 tsEHE = }1|),{(2121 =⊕ vvvv span

between these two classes of binary hypercubes.

(Property 5.9)

),(ssEH is isomorphic to)2,12(+sGC .)1,(−ssEH is isomorphic to)2,2(sGC . Here

),(MnGC stands for a Gaussian Cube. For)2,(αnGC , it can embed simultaneously

{),(kk tsEH |)2,0[α∈k }, where

),(1
2

1
αδα kknsk −+



 −−

= , kk snt −−= α , 0:1?),(ααδ <= kk .

This property will be proved in the following Chapter 6, which is about Gaussian Cube.

Applications emulation performance is a measure of how efficiently an application

expressed as a guest network may be represented or mapped onto a host network. The

embedding results demonstrate two important factors: the computational equivalence (or

non-equivalence) between networks of different topology and the efficiency of the

simulation of algorithms designed for the guest network on the host network [56].

Page 72 of 215

(Definition 5.2)

Let the guest and host networks be denoted as Gg = (Vg, Eg) and Gh = (Vh, Eh),

respectively. An injective embedding of Gg onto Gh is a one-to-one mapping that assigns

every node and edge of Gg to a node and path, respectively, of Gh. Given an embedding,

the dilation is the maximum distance in Gh between two adjacent nodes in Gg. The

expansion is the smallest number of nodes in Gh that is required to map all the nodes in

Gg. Loading is the maximum number of nodes in Gg mapped to the same node in Gh

while congestion is the maximum number of edges in Gg mapped to the same edge in Gh.

For optimal embedding, dilation = expansion = loading = congestion = 1.

(Property 5.10)

),(tsEH can optimally embed a ring network of the same size.

Proof: This property is ensured by Property 5.7 that),(tsEH is Hamiltonian.

(Property 5.11)

),(tsEH can embed a mesh of size 11 22 +− × ts or 11 22 −+ × ts with dilation 3, expansion 2,

loading and congestion 1, or with dilation 2, expansion 2, loading 1 and congestion 2.

Before presenting the strategy for embedment, we first define a subgraph)2,2(12 −+ tsGM of

),(tsEH by removing part of its links.)2,2(12 −+ tsGM is like a mesh, though two

intermediate nodes may be inserted between two neighboring nodes in the same column of

the mesh. The Figure 5.4 below demonstrates)2,16(GM and how a 31 22 × mesh is

Page 73 of 215

embedded into it. The nodes with double cycle are images of the guest network: mesh of

82× .

The procedure of constructing)2,2(12 −+ tsGM is as follows. Since n-dimension binary

hypercube nB is Hamiltonian, there is a sequence of node address in 1−sB and tB such that

the Hamming distance between neighboring addresses is 1. Denote the sequence as

{ 1210 1,,, −−⋅⋅⋅ saaa } and { 1210 ,,, −⋅⋅⋅ tbbb }. Then the first row of)2,2(12 −+ tsGM is:

00,,00,00 0120100 1 bababa s −−⋅⋅⋅ , where 00 0bai means concatenating 0, ia , 0b and 0. They

are all connected to 10 0bac ii = respectively. But ic and 1+ic (]22,0[1 −∈ −si) are not

neighbors, though they are all neighbored by 10 1bad ii = , which is in turn neighbored by

01000

01001

01011

01010

11010

11011

11111

11110

01110

01111

01101

01100

11100

11101

11000

11001

Figure 5.4)2,16(GM and how 31 22 × mesh is embedded into)2,2(EH

00000

00001

00011

00010

10010

10011

10111

10110

00110

00111

00101

00100

10100

10001

10000

10101

Page 74 of 215

00 1bae ii = . Now, ie and 1+ie are connected for]22,0[1 −∈ −si . They form the second

horizontally connected row of)2,2(12 −+ tsGM . Moreover, ie has a link to 01 1baf ii = ,

which are also sequentially connected and form the third row of the mesh. This process

continues on until the 12 +t
th row is formed.

It is obvious that a ts 22 × mesh can be embedded into)2,2(1 tsGM + and)2,2(1+tsGM .

For example, the embeddings of 84× mesh into)8,8(GM with dilation 2, expansion 2,

loading 1 and congestion 2, and with dilation 3, expansion 2, loading 1 and congestion 1

are shown in Fig. 5.5 and Fig. 5.6 respectively. The nodes represented by serve as

images of the guest mesh, while the stands for those nodes in the host network that are

not images of any node in the guest mesh.

Figure 5.5 Embedment with dilation 2,
expansion 2, loading 1 and congestion 2

Figure 5.6 Embedment with dilation 3,
expansion 2, loading 1 and congestion 1

Page 75 of 215

1−nEBT
1−nEBT

nEBT

5.4 Extended Binomial Tree

In binary hypercubes, many applications such as broadcasting, prefix sum computing and

load balancing can be solved with the aid of Binomial Trees (special spanning trees of

hypercube). For the Exchanged Cube, we introduce the Extended Binomial Tree. It is very

similar to the Binomial Tree, with only a small change in the initial condition. It is proved

later that the labeled form of Extended Binomial Tree, Exchanged Tree, preserves many

desirable properties of Binomial Tree.

(Definition 5.3) Extended Binomial Tree

Extended Binomial Tree is defined by induction. For 3≥n , an Extended Binomial Tree of

dimension n (nEBT) is formed by two copies of 1−nEBT , where the root of one 1−nEBT

(randomly chosen) becomes the root of nEBT and root of the other 1−nEBT becomes the

child of the root of the former 1−nEBT . 2EBT and 3EBT are defined in Figure 5.7:

Extended Binomial Tree maintains several good properties of Binomial Tree as follows:

(Property 5.12)

There are 2n nodes in nEBT for 2≥n . This can be simply proved by induction on n.

 Figure 5.7 2EBT and 3EBT EBTn

Page 76 of 215

(Property 5.13)

The height of nEBT is 1+n for 2≥n .

(Property 5.14)

For 2≥n , the root of nEBT has degree 1−n , which is the largest among all nodes.

(Property 5.15)

In nEBT (2≥n), there are exactly 2
11

−
−− += i

n
i
n

i
n CCa nodes at depth i for i = 0, 1, 2, ….,

1+n . Here,
)!(!

!
mnm

nC m
n −

= , where 1)1(! ⋅⋅⋅−= nnn , for],1[nm∈ , Nnm ∈, . 10 =nC

for all }0{Nn∈ . For all other cases, 0=m
nC . The depth of root is 0.

Proof: (By induction on n)

For 3,2=n , this proposition is true based on the Figure 5.7 above. It is easy to see that

due to the construction of nEBT , for all 2≥n , 1,1 10 == +n
nn aa , i

n
i
n

i
n aaa 1

1
1 −

−
− += for

],1[ni ∈ . Suppose the proposition is true for)2(≥≤ kkn . Then when 1+= kn , for

]1,1[+∈ ki :

⋅⋅⋅=+++=++=+= −
−−

−
−

−−
−−

−−
+)()(1

22
1
1

11
11

11
1

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k

i
k aaaaaaaaaa

 = 11
1

1
1

1
1

−−
+

−
−

−
− +⋅⋅⋅++++ i

k
i
i

i
i

i
i

i
i aaaaa

 =)()()()(3
1

1
1

3
1

1
1

2
22

3
2

1
2

−
−

−
−

−
−

−
−

−
−−

−
−

−
− ++⋅⋅⋅++++++ i

k
i
k

i
i

i
i

i
i

i
i

i
i

i
i CCCCCCCC

 =)()(3
1

3
2

3
3

1
1

11
1

−
−

−
−

−
−

−
−

−−
− +⋅⋅⋅++++⋅⋅⋅++ i

k
i
i

i
i

i
k

i
i

i
i CCCCCC (2

2
3
3

−
−

−
− = i

i
i
i CC)

 = 2−+ i
k

i
k CC .

The last step used the conclusion that:

Page 77 of 215

 n
kn

n
n

n
n

n
n CCCC +++ +⋅⋅⋅+++ 21

 = n
kn

n
n

n
n

n
n CCCC +++

+
+ +⋅⋅⋅+++ 21

1
1

 = n
kn

n
n

n
n

n
n CCCC +++

+
+ +⋅⋅⋅+++ 32

1
2

 = n
kn

n
n

n
n

n
n CCCC +++

+
+ +⋅⋅⋅+++ 43

1
3

 = ……

 = n
kn

n
kn CC +

+
+ +1

 = 1
1

+
++

n
knC (0,1 ≥≥ kn) g

This property shows that the name Extended Binomial Tree is justified for the tree

constructed here.

(Property 5.16)

For 3≥n , nEBT embeds the Binomial Tree of order 1−n , with dilation 1, congestion 1,

load 1 and expansion 2.

In the following, we introduce Exchanged Tree),(tsET , which is actually a labeled

Extended Binomial Tree.

(Definition 5.4): Exchanged Tree

Exchanged Tree),(tsET is constructed by the

following sequence:

⋅⋅⋅→→→)3,1()2,1()1,1(ETETET

),(),2(),1(tsETtETtET ⋅⋅⋅→→→ .

)1,1(ET is demonstrated in Figure 5.8:
Figure 5.8)1,1(ET

000

001

011

010

110

100

101

111

000

001 100

011

111

101

110

010

Figure 5.8)1,1(ET

Page 78 of 215

0000

0001

0011

0010

1010

1000

1001

1011

0100

0101

0111

0110

1110

1100

1101

1111

Figure 5.9)2,1(ET

Given),1(tET ,)1,1(+tET is defined as:

Let 1G and 2G be two),1(tET s. We re-label 1G by inserting one 0 between the left first

and second bits of original node labels. Formally, it is a mapping 1
1f :

cbbbacbbba tttt 02100210 0 ⋅⋅⋅→⋅⋅⋅ −−−− .

Then re-label 2G by inserting one 1 between the left first and second bit. Formally, it is a

mapping 2
1f : cbbbacbbba tttt 02100210 1 ⋅⋅⋅→⋅⋅⋅ −−−− .

Finally, make the root of 2G the rightmost son of 1G ’s root.)2,1(ET is illustrated in

Figure 5.9.

Given),(tsET ,),1(tsET + is defined by:

Let 1G and 2G are two),(tsET s. We re-label 1G by adding one 0 to the leftmost bit.

Formally, it is a mapping 1
2f : cbbbaaacbbbaaa ttssttss 021021021021 0 ⋅⋅⋅⋅⋅⋅→⋅⋅⋅⋅⋅⋅ −−−−−−−− .

Page 79 of 215

Then re-label 2G by adding one 1 to the leftmost bit. Formally, it is a mapping 2
2f :

cbbbaaacbbbaaa ttssttss 021021021021 1 ⋅⋅⋅⋅⋅⋅→⋅⋅⋅⋅⋅⋅ −−−−−−−− .

Finally, make the root of 2G the rightmost child of 1G ’s root.)2,2(ET is demonstrated

in Fig. 5.10.

Based on the procedure of constructing Extended Binomial Tree),(tsET , it is obvious

that),(tsET is an Extended Binomial Tree 1++ tsEBT . So it inherits all good properties of

1++ tsEBT . However, it also has some additional properties related to),(tsEH .

(Property 5.17)

For all 1, ≥ts , the root of),(tsET is 0s+t+1. This is guaranteed by the procedure of

construction.

(Property 5.18)

),(tsET is a spanning tree of),(stEH .

00000

00101

01101

01100

11111

00010

01010 01100

10000

01111

00100

11100 10011

10001

11010

11000

11101

00111

11010

10101

10111 10110

11110

00011 11000

Figure 5.10)2,2(ET

01000

01001

01011

00001

01110

11011

10110

Page 80 of 215

Proof:

This property can be proved by induction. Firstly, it is obvious that all nodes in),(stEH

are covered by),(tsET . Then due to Property 5.17 and the fact that 0s+t+1 and 10s+t are

neighbors, it is guaranteed that each edge in),(tsET is also in),(stEH .

(Property 5.19)

Suppose the pre-order of),(tsET is { 1210 1,,, −++⋅⋅⋅ tsaaa }.

Define ii ab = AND 00011 11 −− ts . Then, { 1210 1,,, −++⋅⋅⋅ tsbbb } is non-decreasing.

Proof:

Recall the sequence of construction:

),(),2(),1()3,1()2,1()1,1(tsETtETtETETETET ⋅⋅⋅→→→⋅⋅⋅→→→ . When

constructing)1,1(+tET from),1(tET , we place the new graph built by adding 1 the

rightmost son of the root of its counterpart, which is built by adding 0. When constructing

),1(tsET + from),(tsET , the rule is followed too. These facts ensure this property of

order. Masking three bits is due to the initial condition.

Property 5.19 provides a good way of routing in),(tsET . Suppose the source is s and

the destination is d. We first find a path to 00011 11 −−= tsANDsx . This is simple

because it is equivalent to routing in small-scaled)1,1(ET , which can be accomplished

by rote. Then from x, it is easy to find a path to dy = AND 00011 11 −− ts . Thanks to the

ordering property, this is equivalent to routing in a Binomial Tree. Finally, a path is

found from y to d.

Page 81 of 215

5.5 Fault-tolerant routing in Exchanged Hypercube

We now present a fault-tolerant routing algorithm in),(tsEH . It categorizes faulty

components so as to produce a better result than tolerating merely as many faults as node

availability. This approach is also applicable to the class of hypercube variants formed by

link dilution.

As stated above, there are t2 s-dimension binary hypercubes embedded in),(tsEH . They

are denoted as)),((tsEHBs collectively. More specifically, for any)2,0[tk ∈ ,

denote as)),,((ktsEHBs the binary hypercube whose nodes comprise the following set:

)},0[),,0[}1,0{,,|0{)),,((010101 tjsibakbbbbaaktsEHV jittss ∈∈∈=⋅⋅⋅⋅⋅⋅⋅⋅⋅= −−− .

If)),,((ktsEHVx s∈ and pttsx =++]1:[, we denote such nodes as),),,((pktsEHVs .

Likewise, there are s2 t-dimension binary hypercubes embedded in),(tsEH . They are

denoted as)),((tsEHBt collectively.)),,((ltsEHBt is defined as the hypercube whose

nodes are composed of: }1,0{,,|1{)),,((010101 ∈=⋅⋅⋅⋅⋅⋅⋅⋅⋅= −−− jistst balaabbaaltsEHV

)},0[),,0[tjsi ∈∈ ()2,0[sl ∈). If)),,((ltsEHVx t∈ and qtx =]1:[, we denote such node

as),),,((qltsEHVt . Obviously,]1:)[,),,((tspktsEHVs + =]1:)[,),,((tskptsEHVt + .

Suppose there are sF faulty components in)),((tsEHBs , and tF faulty components in

)),((tsEHBt . Let)),((0 tsEHE = 1|),(),{(2121 =∈ vXORvtsEHvv }. Suppose there are

0F faulty links in)),((0 tsEHE \ |),(),{(21 tsEHvv ∈ 1v or 2v is faulty}. We have:

Page 82 of 215

 In the other case, if by looking up its local table, r finds that the 0-dimension link of

),),,((00 lktsEHBs is faulty, then there must be a nonfaulty neighbor of r whose 0-

dimension link is also nonfaulty. This is guaranteed by sFFs <+ 0 . Denote it as

(Theorem 5.1)

If sFFs <+ 0 and tFFt <+ 0 , there is a deadlock-free and livelock-free routing algorithm

that can deliver messages from a nonfaulty source r to a nonfaulty destination d in no more

than 2)(2),(+++ ts FFdrH hops.

This theorem is evident from the following algorithm:

(Algorithm 5.1) Fault-tolerant Routing in),(tsEH (FREH)

(Case I)

Suppose),),,((10 lktsEHBr s= and),),,((10 kltsEHBd t= . Since sFFs <+ 0 , it is

affordable to communicate within each)),,((ktsEHBs in the initialization phase, so that

each node in it knows and records the set of nodes in)),,((ktsEHBs whose link in

)),((0 tsEHE (i.e. in dimension 0) is faulty.

In one case, if r finds that),),,((00 lktsEHBs ’s link in dimension 0 is non-faulty, it sends

the packet within)),,((0ktsEHBs to),),,((00 lktsEHBs . This is guaranteed to succeed

because)(0kFs < s and there are a lot of existing deadlock-free and livelock-free routing

algorithms (including my FTFR) that work well in s-dimension hypercube in the face of no

more than 1−s faulty components. After that,),),,((00 lktsEHBs sends the packet to

),),,((00 kltsEHBt via the link in dimension 0. Finally, the packet is sent in

)),,((0ltsEHBt to),),,((10 kltsEHBt , which is guaranteed by tFFt <+ 0 .

Page 83 of 215

),),,((20 lktsEHBs . So the packet is sent to),),,((20 lktsEHBs , which in turn, sends the

packet to),),,((02 kltsEHBt . Now there must be a nonfaulty neighbor of

),),,((02 kltsEHBt in)),,((2ltsEHBt whose 0-dimension link is also nonfaulty. If there is

such a neighbor in preferred dimension, then use it. Otherwise, use the spare dimension

and mask it so that it will not be used again. After going back to)),((tsEHBs , the process

above repeats and finally the packet reaches d.

Obviously, deadlock-freeness is still guaranteed. Since faulty components might cause the

use of a spare dimension, which brings about for and pro between)),((tsEHBt and

)),((tsEHBs , the number of hops is bounded by)(2),(ts FFdrH ++ .

(Case II)

If),),,((10 kltsEHBr t= and),),,((10 lktsEHBd s= , due to the symmetricalness of

Exchanged Hypercube, the algorithm is the same as case I.

(Case III)

Suppose),),,((00 lktsEHBr s= and),),,((11 lktsEHBd s= . If 01 kk = , then it is routing

in s-dimension binary hypercube. Otherwise, the packet is sent to)),,((0ktsEHBt via the

0-dimension link of r or one of its neighbors in)),,((0ktsEHBs . Then the problem is the

same as in case I. But now, the number of hops is bounded by 2)(2),(+++ ts FFdrH .

(Case IV)

Suppose),),,((00 kltsEHBs t= and),),,((11 kltsEHBd t= .

This case is handled in the same way as in case III. g

Page 84 of 215

Apart from the initialization cost)()),(max(nOtsO < , the algorithm is run at time cost

)1(O and message overhead)(nO . The most important thing is that both node faults

and link faults (including those spanning in dimension 0) can be tolerated.

Page 85 of 215

Chapter 6 A Fault-Tolerant Routing Strategy for

Gaussian Cube Using Gaussian Tree

6.1 Introduction

Gaussian Cubes (GCs) is a family of interconnection networks parameterized by a

modulus M and a dimension n [1][2]. Their desirable scalability makes possible

generalized analysis of interconnection cost, routing performance, and reliability.

Besides, such communication primitives as unicasting, multicasting, broadcasting/

gathering [7] can also be done rather efficiently in all GCs [1]. However, although

research achievements abound in routing in binary hypercubes, there are no existing

fault-tolerant routing strategies for GCs or for node/link dilution cubes. One of the

difficulties lies in the low network node availability (maximum number of faulty

neighbors of a node that can be tolerated without disconnecting the node from the

network). Thus, if the topology is fixed, new methods have to be employed to tackle this

intrinsic problem.

In this chapter, we present a new routing algorithm based on a new topology called

Gaussian Tree (GT). In)2,(αnGC , GT is dependent only on α and divides all the

nodes in)2,(αnGC into α2 classes according to their least significant α bits. So the

original problem is converted into first routing in GT (i.e. between different classes) and

then routing in one such class. The former is facilitated by the definite and predictable

routing in trees while the latter is actually routing in ordinary binary hypercube. Faults

encountered in different stages of this divide-and-conquer strategy lead to a new

categorization of faulty components, which enables to analyze the routing strategy in the

presence of far more faults than the network node availability. The encouraging result is

Page 86 of 215

demonstrated in the chapter. Methodologically speaking, this approach also opens

window to a brand-new way of analyzing network reliability, which is especially

valuable for incomplete networks.

The characteristics of our routing strategy for)2,(αnGC encompasses:

1) Incurs message overhead of only O(n).

2) The computation complexity for intermediate nodes is at most)log)((ααα −nO .

3) Guarantees a message path length not exceeding 2F longer than the optimal path

found in a fault-free setting, provided the distribution of faulty components in the

network satisfies the precondition of Theorem 6.3 and Theorem 6.4.

4) Each node requires at most 1
2

1
+



 −

α

n rounds of fault status exchange with its

neighbors.

5) Each node maintains and updates at most F n-bit node addresses, where F is the

number of faults related to nodes whose least significant α bits are same as the

current node.

6) Generates deadlock-free and livelock-free routes.

7) The number of faulty components tolerable is presented in Fig. 6.6 and Theorem

6.4.

The chapter is organized as follows. Preliminaries are given in Section 6.2 to

provide an equivalent definition of GC that facilitates the following discussion. Section

6.3 defines GT. The routing algorithm for the fault-free GC is described in Section 6.4

separately to make the subsequent section clearer. In Section 6.5, the fault-tolerant

routing strategy that deals with all categories of faults is studied.

Page 87 of 215

6.2 Preliminaries

6.2.1 Original Definition

(Definition 6.1) The binary Gaussian Cube is denoted by),(MnGC [1][2], where n

(network dimension) ≥ 0 and M (modulus) ≥ 1. It has 2n nodes that are identified with

unique n-bit labels. A link connects two nodes p and q if the following conditions are

both true:

1) The labels of p and q differ in the thc bit for some c, 0 ≤ c ≤ (n – 1).

2) p and q are in the congruence class [c]M ’ , where M’ = min {2c, M}.

The congruence class of c modulo M, [c]M, is the set }{ ZkckM ∈+ , where Z represents

the set of integer.

6.2.2 Transformation:

According to Definition 6.1, if node p = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− (}1,0{∈ia for]1,0[−∈ ni)

has a link to q = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− , then there must exist 1k and 2k , such that

0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− = k1 M’ + c (1)

0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− = k2 M’ + c (2)

(1) – (2) and take absolute value on both sides, we get:

 2c = '21 Mkk − (3)

Therefore, M’ must be the power of 2. Since M ’ = min {2c, M}, M must also be the

power of 2 if M < 2c. We examine two cases.

Page 88 of 215

α
αα 2%021 caaa =⋅⋅⋅−− if),(nc α∈

caaa cc =⋅⋅⋅−− 021 if],1[α∈c

1. M is not power of 2. If M ≥ 12 −n , since 1−≤ nc and M’ = min {2c, M} = 2c, it

makes no difference to the original network if we set M = 12 −n . So we assume M < 2n-1 .

In this case, there will be no link spanning in dimension c, where c is larger than  Mlog .

Effectively, the network is separated into  Mn log12 −− disconnected subnetworks, with each

combination of the first  Mn log1−− bits representing one such subnetwork. Formally,

GC (n, M) =
 

 12
0

log1 −

=

−− Mn

i iG . Each subnetwork Gi is composed of <Vi , Ei>, where

 Vi =         },log0},1,0{{ 02log0log02log iaaaMjbbbbaaa iMnjjMiMn =⋅⋅⋅⋅⋅⋅≤≤∈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ −−−−

 Ei = },|),{(2121 ii VvVvEvv ∈∈∈ , where E is the set of edges in the original network.

Obviously, for  )2,0[, log1 Mnji −−∈∀ and ji ≠ , =ji VV  Ф, Φ=ji EE  . So routing

can be done within the subnetwork Gi if the source and destination both belong to Gi, or

fails otherwise. Furthermore, as Gi is isomorphic to GC ( Mlog +1,  Mlog2), this

situation is covered in the following case, where M is power of 2.

2. M is power of 2. Denote α = M2log , and α∈Z. We have the following theorem,

which can be viewed an equivalent definition of Gaussian Cube.

(Theorem 6.1)

In)2,(αnGC , node p = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− (}1,0{∈ia for]1,0[−∈ ni) has a link in

dimension c (]1,1[−∈ nc) if and only if:

where x%y represents the modulus of x divided by y, like in C/C++. And each node has

a link in dimension 0.

Page 89 of 215

Proof: We prove Theorem 6.1 by considering three cases.

(Case I)),(nc α∈ .

(Necessary)

According to Equation (1), 0121 aaaaa nn ⋅⋅⋅⋅⋅⋅−− α = k1 M + c.

Thus, ckaaaaaaa nn +⋅=⋅⋅⋅+⋅⋅⋅⋅ −−+−−
α

αα
α

αα 22 1021121 .

Take the modulus of α2 on both sides and due to the fact that α
αα 2021 <⋅⋅⋅−− aaa , we

obtain α
αα 2%021 caaa =⋅⋅⋅−− .

(Sufficient)

If α
αα 2%021 caaa =⋅⋅⋅−− , then caaaaaa nn −⋅⋅⋅⋅⋅⋅ −−− 01121 αα can be wholly divided by

α2 . Define Zcaaaaak cnn ∈
−⋅⋅⋅⋅⋅⋅

= −−
α2

0121
1 and

Then, cMkckckaaaaa c
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 1110121

αα

and cMkckckaaaaa c
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 2220121

αα

In other words, according to the original definition, 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− has a link in

dimension c.

(Case II)],1[α∈c .

(Necessary)

According to Equation (1), 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− = ck c +⋅ 21 .

Thus, ckaaaaaaa c
cc

c
ccnn +⋅=⋅⋅⋅+⋅⋅⋅⋅ −−+−− 22 1021121 .

2k =

α−+ ck 21 if 0=ca

α−− ck 21 if 1=ca

Page 90 of 215

In other words, according to the original definition, 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− has a

link in dimension c.

By taking the modulus of c2 on both sides and due to the fact that c
cc aaa 2021 <⋅⋅⋅−− and

cc 2< for 1≥c , we obtain caaa cc =⋅⋅⋅−− 021 .

(Sufficient)

If caaa cc =⋅⋅⋅−− 021 , then caaaaa cnn −⋅⋅⋅⋅⋅⋅−− 0121 can be wholly divided by c2 .

Define Zcaaaaak c
cnn ∈

−⋅⋅⋅⋅⋅⋅
= −−

2
0121

1 and

Then, cMkckckaaaaa cc
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 1110121

α

and cMkckckaaaaa cc
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 2220121

α

(Case III) 0=c .

For any M ≥ 1, M’ = min {2c, M } = 1. For any integer p and q, they must be in the

congruence class [c]M ’ = [0]1 . So each node has a link in dimension 0.

Since the case of M not being the power of 2 can be solved once we have a routing

strategy for M being power of 2, in this paper, we only discuss the latter situation, i.e.

assuming α = M2log ∈Z.

2k =
11 +k if 0=ca

11 −k if 1=ca

Page 91 of 215

6.3 Gaussian Tree
According to Theorem 6.1, we can see that whether a packet can be forwarded through

dimension c at node p, is entirely irrelevant to αaaa nn ⋅⋅⋅−− 21 , regardless of whether c > α

or not. So the last α bits in nodes’ address is of more importance. We define a Gaussian

Graph based on these α bits.

(Definition 6.2): Gaussian Graph

We call the undirected graph nG (2≥n) Gaussian Graph if it is composed of

<Vn, En>, where: Vn = { 0121 aaaa nn ⋅⋅⋅−− |]1,0[},1,0{ −∈∈ niforai }

En = {(0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− , 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−) |

 c=0 or c∈[1, n-1] and 0121 aaaa cc ⋅⋅⋅−− = c}.

The Figure 6.1 below demonstrates the topology of 2G , 3G , and 4G . They can be

generated easily by adding edges, according to the definition of nE , to the original graph

which is composed only of nodes.

2G :

3G :

00 00 01 11 10

000 001 011 010

100 101 111 110

 (a)

 (b)

Page 92 of 215

0000

0001

1011

1010

1110

1001

1000

1111

1101

1100

0010

0110

0111

0101

0100

0011

 4G :

Lemma 1: (Equivalent definition of Tree)

Suppose graph G has n vertices (nvvv ,,, 21 ⋅⋅⋅) and e edges. G is a tree if and only if G is

connected and 1−= ne .

Proof: A tree is defined as a connected graph which contains no cycle.

(Sufficient) We prove the proposition by induction on n. Clearly, this proposition

holds for 2,1=n . Assume that it is true for all kn ≤ (2≥k). When 1+= kn , since G

is connected, so there is no isolated vertex (vertices whose degree is 0). If there is no

Figure 6.1 (a) 2G , (b) 3G , and (c) 4G

 (c)

Page 93 of 215

end-vertex (vertices whose degree is 1) in G, then ∑
+

=

=
1

1
)deg(

2
1 k

i
ive 12

2
1 1

1
+=≥ ∑

+

=

k
k

i
,

which contradicts with the fact that kne =−= 1 . So there must be an end-vertex v.

Remove v and its only edge from G, we get a subgraph G’, which has k vertices and 1−k

edges. Since v is an end-vertex, G’ is still connected. Based on the induction assumption,

G’ is a tree. Obviously, constructed by adding an end-vertex to G’ together with its only

edge, the graph G is still a tree.

(Necessary)

This is an apparent property of tree. So the proof is omitted here. g

(Theorem 6.2) nG is a tree.

Proof. We prove Theorem 6.2 in three steps.

1. nG is connected.

We prove this proposition by induction on n. Clearly, this proposition holds for 4≤n

based on the figures above. Assume that it is true for all kn ≤ . Suppose when 1+= kn ,

1+kG is not connected. Then there must be two vertices 01 uuuu kk ⋅⋅⋅= − and

01 vvvv kk ⋅⋅⋅= − (}1,0{, ∈ii vu for],0[ki ∈) between which there is no path. Let c be the

dimension of the leftmost 1 in vu ⊕ (],0[kc ∈) and 021 aaac cc ⋅⋅⋅= −− (}1,0{∈ia for

]1,0[−∈ ci). Clearly, edge

102110211),()','(+−−−−−− ∈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅== kccckkccckk Gaaauuuaaauuuvul . We define a

subgraph of nG as >=< ','' EVG , where

}1,0{|{' 0211 ∈⋅⋅⋅⋅⋅⋅= −−− iccckk xxxxuuuV for]1,0[−∈ ci }

',|),{(' 2121 VvvvvE ∈= and),(21 vv is an edge in nG }.

Page 94 of 215

Since the connectivity in dimensions less than c is not influenced by the bit value of

dimensions no less than c, G’ is isomorphic to cG . As kc ≤ , based on the induction

assumption, there is a path in 1+kG which connects u and 'u . Likewise, there is also a

path in 1+kG which connects v and 'v . As)','(vu is an edge in 1+kG , by concatenation,

a path is found in 1+kG that connects u and v, which contradicts the assumption that there

is no path between them. Therefore, 1+kG is a connected graph.

2. There are n2 nodes in nG . (Obvious)

3. There are exactly 12 −n edges in nG .

We denote the number of links spanning in dimension i as En (i) (]1,0[−∈ ni).

According to Theorem 6.1, each node has a link in dimension 0, so En (0) = 12 −n .

A node has a link on dimension 1 if and only if its rightmost bit is 1. Such links only

connect nodes in the form of (121 xaa nn ⋅⋅⋅−− , 121 xaa nn ⋅⋅⋅−−). So En (1) = 22 −n .

A link spanning in dimension 2 can only connect node pairs in the form of:

(1021 xaa nn ⋅⋅⋅−− , 1021 xaa nn ⋅⋅⋅−−)

So En (2) = 32 −n .

Likewise, it is easy to prove that En (i) = 12 −−in .

Thus | En | = ∑
−

=

1

0
)(

n

i
n iE = ∑

−

=

−−
1

0

12
n

i

in = 12 −n .

Combining 1-3 and applying Lemma 1, we can conclude that nG is a tree. g

Page 95 of 215

From now on, we denote nG as nT to emphasize this property. We denote the node k in

nT as)(kTn . The existence of such a tree is crucial for our algorithm because, for each

source and destination pair in a tree, there is a set of nodes, which the packet must come

across in its journey, and which can be calculated at the source. This makes routing

much more definite and predictable.

6.4 Routing Strategy for Fault-free Gaussian Cube

6.4.1 Introduction

We first develop an algorithm which ensures optimal routing in a fault-free Gaussian

Cube)2,(αnGC . The algorithm has the following properties:

1) It generates the shortest path for any (source, destination) pair.

2) The computation complexity is)log)((ααα −nO at only several nodes on the

path, the exact number of which is bounded by 



 −

α2
1n

.

3) The message overhead is)(αnO . We have good methods to compress the overhead.

Page 96 of 215

Prior to the discussion of our routing algorithm in fault-free Gaussian Cube, two

fundamental algorithms are introduced. To begin with, the following one aims at finding

a route from)(sTα to)(dTα in αT , whenα , s, and d are given.

6.4.2 Routing in Gaussian Tree

(Definition 6.3) k-Ending Class

In Gaussian Cube)2,(αnGC , for]12,0[−∈∀ αk , we call the following set),,(knEC α

k-ending class:

}),,0[},1,0{|{),,(0101121 kaaniaaaaaaaknEC inn =⋅⋅⋅∈∈⋅⋅⋅⋅⋅⋅= −−−− αααα

For simplicity, we abbreviate it as)(kEC when the Gaussian Cube is given. One

obvious conclusion, according to Theorem 6.1, is: if a link (21 ,vv) spans in dimension

α≥c , then 21 ,vv)2%(αcEC∈ .)(kEC corresponds to)(kTα in Gaussian Tree αT .

Note these concepts are all independent of n. Let the dimensions no less than α in which

each node of)(kEC has a link comprise set Dim(n, α, k), then Dim(n, α, k) =

αα 2][]1,[kn − .

To begin with, we briefly introduce the basic ideas underneath this algorithm. Suppose

the source is s and the destination is d. Denote R = s ⊕ d. If there is a 1 in R and its

dimension c is no less than α, then the path from s to d must cover at least one node x,

such that x)2%(αcEC∈ . Viewed in αT , that means the path must begin from)2%(α
α sT ,

end at)2%(α
α dT and must pass all nodes in S = {)2%(α

α kT | 02&, ≠≥ kRk α }.

Since the problem has now been mapped to a tree, with the starting and ending nodes as

well as the intermediate nodes given, it is simpler to find an optimal route.

Page 97 of 215

(Algorithm 6.1) Path Construction Algorithm (PC)

Let 0121 sssss ⋅⋅⋅= −− αα and 0121 ddddd ⋅⋅⋅= −− αα . We first find the leftmost ‘1’ in R = s ⊕

d. Suppose it corresponds to dimension c. If c = 0, then s and d are neighbors and (s, d)

can be appended to the path. If 0≠c , as it must reach a node in αT whose last c bits

caaa cc =⋅⋅⋅−− 021 , we first go to the node 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α . We can add link l =

(011 aass cc ⋅⋅⋅⋅⋅⋅ −−α , 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α) to the final path. Then the algorithm runs

recursively on PC (0121 ssss ⋅⋅⋅−− αα , 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α) and PC (011 aass cc ⋅⋅⋅⋅⋅⋅ −−α ,

0121 dddd ⋅⋅⋅−− αα). The recursion must be able to terminate because the leftmost ‘1’

moves at least one bit rightward after one recursion, until it reaches dimension 0 when the

source and destination will be neighbors. Finally, l concatenates the two paths found.

Since it is obvious that the path will not go to one node more than once and we are

routing in a tree, the resultant route must be optimal. Besides, such a recursion will go no

deeper than α. The implementation of this algorithm has been put in Appendix II. g

In our real implementation, we do not use recursive function. Instead, We use an array

and a pointer to simulate a stack. Given the nature of double side recursive function, we

cannot generate a route sequentially from source to destination. Therefore additional

attention should be paid to the labeling of each link, so that we can find the correct order

of links on that path by a simple sort on the labels with time complexity)log(ααO .

As the algorithm finds the path link by link, the complexity (both spatial and computational)

is dependent on the diameter of αT (maximum distance between node pairs). A program is

written to calculate diameter of the tree, denoted as)(αTD . The principle idea of the

program is that),(vud , the distance between node u and v in αT , equals),(),(vpdpud + ,

Page 98 of 215

where p is the deepest common ancestor of u and v. Please refer to Appendix III for the

source code. The result shows that)(αTD is)(αO . See Figure 6.2 below.

Granted, in real practice, we will almost never use α larger than 10 for reasonable node

availability. Here we calculated α up to 25 only with an eye to showing that)(αTD is

)(αO . So the time complexity for running the Path Construction Algorithm is

))(log)()((ααα TDTDTDO + =)log(ααO .

Secondly, we introduce an algorithm for arranging multi-destination routing from a tree

root. Several nodes belonging to the tree need to be visited and then the packet must go

back to the root. It is easy to find that as long as the following principle is met, the path

generated must be optimal: if the packet is currently at node p, it can never backtrack to

the parent unless no destination still exists in the subtree of p.

(Algorithm 6.2) Closed-Traverse Algorithm in tree (CT)

 7α

Figure 6.2 Diameter of αT versus α

α

Page 99 of 215

Suppose we are at the root 0121 rrrrr ⋅⋅⋅= −− αα where }1,0{∈ir for all]1,0[−∈ αi . We are

to visit D = { nddd ,,, 21 ⋅⋅⋅ } whose members are all nodes in the tree and finally go back to

r. The prototype of the algorithm is

),(DrCT . We first pick up randomly one

Dd ∈ and use Algorithm 6.1 to find a

route L from r to d. Then for each Ddi ∈ , if

id is covered by L, we only need to

record that fact. But if it is not covered,

we will use the technique in Algorithm 6.1

(PC) to find a node in L at which the

packet must branch away from

L. For example, in the tree shown in Fig.

6.3, the bold line represents L, and to

reach id , the route must branch at ib .

However, to calculate ib , we do not need to find the complete path from r to id . Similar

to Algorithm 1, we first find the leftmost ‘1’ in R = r ⊕ id . Suppose it corresponds to

dimension c. If c = 0, then r and id are neighbors and ib = r. If 0≠c , as it must reach a

node in αT whose rightmost c bits caaa cc =⋅⋅⋅−− 011 , we now check link (21,vv) =

(011 aarr cc ⋅⋅⋅⋅⋅⋅ −−α , 011 aarr cc ⋅⋅⋅⋅⋅⋅ −−α). If 1v belongs to L while 2v does not, then ib = 1v .

If both 1v and 2v belong to L, the algorithm only needs to search the branch point

between 2v and id . If neither 1v nor 2v belongs to L, then the branch point must lie

between r and 1v . So the process can proceed in a recursive way and terminates within α

r

d

id

Branch point

for id

bi

jd

Figure 6.3 Example for CT algorithm

Page 100 of 215

steps after finding the branch point. Since a node in L might serve as branch point for

more than one destination in D, we use a table to record it. We denote the mapping as

)(⋅B . For example, in the Figure 6.3, ib is the branch point for id and jd , so)(ibB =

{ id , jd }.

After all members in D are processed and table)(⋅B is obtained, we can begin to go from

r to d by following L. Once we arrive at a node p where Φ≠)(pB , we only need to run

this algorithm again by calling))(,(pBpCT . After this call returns, we proceed along L,

until d is reached. Then we only need to go back to r in a reverse direction of L. Since

this is a distributed algorithm, CT is not recursive as it appears here. g

It can be easily confirmed that the rule stated above is obeyed in CT, so the route is optimal.

The conclusion about the complexity of this algorithm is: suppose we are routing in αT and

|D| = m<n for the original D, the space cost is at most)(2nO to run CT at each necessary

node and time complexity is)(αnO . The overhead of packet is)(αnO .

The message overhead ()(αnO) is a little bit large. We have effective ways to compress

it by increasing computation. The major overhead cost lies in recording each branch

points p and)(pB . But if we calculate)(pB again at each node p at the computation

cost of))((αα −nO , the size of overhead can be reduced to)(nO . Therefore, the

resultant overall gain depends on which part is bottleneck, processor’s speed or

transmission rate.

Page 101 of 215

We have also noticed that the degree of each node in αT is tightly bounded. This provides

a compact way to record L in CT, thus reducing the overhead size. It is unnecessary to

record the sequence of node address. Instead, we only need to know through which port to

go ahead. Moreover, if the degree of current node is 1, then it must backtrack. If the

degree is 2, then it must go with the dimension not used in entering the node. So for both

cases we don’t need to record where to go next. It is calculated that the degree of about

81% nodes in αT is less than 3. See Figure 6.4.

Even if a node’s degree is larger than 2, we still need only to record which link to use.

For α < 11, the maximum degree is 3, and for α in a practical range, 2 bits is enough for

indicating which link to use.

percentage of degree=1, 2

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

o

pe
rc

en
ta

ge

degree=2 degree=1 total

Figure 6.4 Percentage of nodes with degree 1, 2

dimension

Page 102 of 215

6.4.3 Routing in Fault-free Gaussian Cube

Finally, we present the complete routing algorithm for fault-free Gaussian Cube, by

combining Algorithm 6.1 (PC) and Algorithm 6.2 (CT).

(Algorithm 6.3) Fault Free Gaussian Cube Routing (FFGCR)

The input of FFGCR is: n and α for)2,(αnGC , source 0121 sssss nn ⋅⋅⋅= −− and destination

0121 ddddd nn ⋅⋅⋅= −− .

Firstly, we map the problem from)2,(αnGC to αT . Let p = s ⊕ d. We denote:

 P = { 02&|]1,[≠−∈ ipni α } D = { PxxT ∈|)2%(α
α }

By viewing in αT , we are routing from s’ =)2%(α
α sT to d’ =)2%(α

α dT and we

must cover all nodes in the set D.

At s’, we use Algorithm 6.1 to find a path αTL ⊂ to d’. Then we use the technique in

Algorithm 6.2 to find the branch point for all members in D. Go along L. This means

traversing by using the least significant α dimensions in the original)2,(αnGC . Once

we reach a branch point b, use Algorithm 6.2 to traverse all nodes whose branch point to

L is b. Whenever the packet reaches a node x whose corresponding node in αT is a

member of D, it will go through all preferred dimensions αα 2][]1,[xnc −∈ . g

Obviously, FFGCR finds the shortest route from s to d. Denote)(αTDH = . The time

complexity is)log)(log(HnHHHO αα−++ , where each item stands for:

Page 103 of 215

Table 6.1 Components of computation complexity

H:
Picking up links that comprise the path L from s’ to d’ (not necessarily

in the order of from source to destination)

HH log Sorting the links to reorganize the path from s’ to d’

Hn log)(αα− : Time for finding branch point. There are at most α−n preferred

dimensions in]1,[−nα . Search in Algorithm 6.2 takes at most α rounds

of recursion. Each round involves a look-up in H sorted nodes in L.

Since)(αOH = , the total complexity is)log)((ααα −nO . Such an amount of

computation is carried out at the source and all branch points.

The space required for each node to run the algorithm is)())((nOHnO =+−α .

The message overhead is:)(αnO . It can be reduced if the method proposed in section

6.4.2 (after the introduction of Algorithm 6.2) is adopted.

Up to now, the routing problem in fault-free Gaussian Cube has been completely solved.

It will be shown later that Algorithm 6.3 serves as a basis for our fault-tolerant routing

strategy in Gaussian Cube and it contributes to the theoretical completeness of routing in

Gaussian Cube.

Page 104 of 215

6.5 Fault-tolerant Routing in Gaussian Cube

6.5.1 Introduction

When we go ahead to fault-tolerant routing strategy design, we have to take some

practical considerations. The most important one is that node degree in)2,(αnGC is

mostly about 2
2

+
−

α

αn . The minimum node degree is 1
2

+





α

n , occurring at nodes

whose address is multiple of 2α. So a natural bound is that)2,(αnGC cannot tolerate over







α2
n faulty components. It is clear that once α reaches 3 or more, the network is very

likely to be disconnected and suffer from intrinsically poor fault tolerance ability. There

are two approaches to tackle this problem. A natural idea is to restrict α to be small.

When α = 0,)2,(αnGC is effectively a binary hypercube. If we restrict α to within [0,

2], the problem will be very uninteresting and αT will degrade to a linear array.

Therefore, some novel notions and metrics must be used in this new setting. In this

chapter, a new approach to classify errors is introduced and the influence of errors is

analyzed. We first discuss the basic form of the fault-tolerant routing strategy, which

disposes of faulty links only. The extended form, which completely solves the fault

tolerant routing problem, will be presented in the last section with close relationship to

Exchanged Cube.

Page 105 of 215

6.5.2 Basic Fault-tolerant Routing Strategy

Firstly, a categorization of faulty components will be useful.

(Definition 6.4) A-category (link) fault

If a link error occurs at a dimension α≥c , it is called A-category (link) fault.

(Definition 6.5) B-category fault

If all link failure(s) incurred by an error are in dimension(s) less than α, then the error is

called B-category fault.

Note: unlike A-category fault which can occur only in the form of link error, B-category

faults can be both link error and node error, as long as that node has no link spanning in a

dimension α≥c . A link error is either A-category or B-category.

(Definition 6.6) C-category (node) fault

If a node error implies break down of links in dimensions both smaller and no smaller

than α, it is called C-category (node) fault.

A node error is either B-category or C-category because each node has one link spanning

in dimension 0. In short, all faulty components must belong to one and only one of the

three categories.

In Gaussian Cube)2,(αnGC , for]12,0[−∈∀ αk , we have defined k-ending class:

=)(kEC }},1,0{|{),,(0101121 kaaaaaaaaaknEC inn =⋅⋅⋅∈⋅⋅⋅⋅⋅⋅= −−−− αααα

The following definition decomposes k-Ending class into further refined classes.

Page 106 of 215

(Definition 6.7) k-Ending-t-Equivalent Class

In k-ending class),,(knEC α , for]12,0[|)(| −∈∀ −− kDimnt α , we call the following set

),,,(tknEEC α k-Ending-t-Equivalent Class

),,,(tknEEC α ={ |),,(011 kanECaaaan ∈⋅⋅⋅⋅⋅⋅ −− αα bits other than

]−1 [0,α Dim (k) comprise value t}

We define k-Ending-t-Equivalent Graph),,,(tkanGEEC as ><),,,(),,,,(tkanEtkanV ,

where

),,,(tkanV =),,,(tknEEC α

),,,(tkanE = {(), 21 vv | ∈21,vv),,,(tknEEC α , Evv ∈),(21 }

 (E is the edge set of)2,(αnGC)

The following theorem is obvious, but it gives an insight into the advantage of

categorizing faulty components.

 (Theorem 6.3)

If only A-category faults exist in)2,(αnGC , and in each),,,(tknGEEC α

(]12,0[−∈ αk ,]12,0[|)(| −∈ −− kDimnt α), the number of faulty component is less than

|Dim (k)| =),(1
2
1

αδα kkn
−+



 −− (0:1?),(ααδ <= kk), there is a fault-tolerant and

cycle-free routing strategy for any source and destination pair.

Proof.

Obviously,),,,(tkanGEEC is a binary hypercube embedded in)2,(αnGC . There are

many existing routing algorithms, including FTFR I proposed, that ensure a packet to be

Page 107 of 215

sent from any non-faulty source to any non-faulty destination in a deadlock-free fashion,

as long as the number of faulty links is less than the dimension of the hypercube and no

node fault exists.

In FFGCR for)2,(αnGC , let source be s and destination be d. Let p = s ⊕ d. We denote:

P = { 02&|]1,[≠−∈ ipni α } D’ = { Pxx ∈|2% α } I = { '|)(DxxEC ∈ }

As there are only A-category faults, traversing through links spanning in the least

significant α dimensions is always successful. So it is guaranteed that for any member

)(kEC in I, a packet can reach at least one node in)(kEC . Suppose a packet reaches

IkEC ∈)(by arriving at node x and ∈x),,,(tknEEC α . The ,2),(αα +≥ kkifk

α
α

αα 2)
2

1,0max(,,23,22 ⋅



 −−

+⋅⋅⋅⋅+⋅+
knkkk bits of x and d are 1|)(|10 −⋅⋅⋅ kDimxxx

and 1|)(|10 −⋅⋅⋅ kDimddd respectively. Then we can focus on routing in binary hypercube

),,,(tknGEEC α from 1|)(|10 −⋅⋅⋅ kDimxxx to 1|)(|10 −⋅⋅⋅ kDimddd , which is guaranteed by

existing algorithms and the precondition of the theorem. All the bits in α2][k are set to be

same as d, we can use links spanning in the last α dimensions to go to another member in

I, and finally we get to the destination d. g

Suppose |D’| = m, and in the k-Ending-t-Equivalent class which is encountered at the ith

time, there are iF A-category faults. Then the resultant route is at most ∑
=

⋅
m

i
iF

1
2 longer

than the optimal route found in a fault free setting.

Page 108 of 215

Eq. (4)

The following figures demonstrate the trend of))2,((αnGCT with respect to n, when α = 1,

2, 3, and 4.

Now we can conclude that in)2,(αnGC , if there are only A-category faults, then the

maximum number of fault tolerable is:

∑
−

=

−− −=
12

0
)0,1max(2))2,((

α

αα

k
k

tn tnGCT k

 where),(1
2

1
αδα kkntk −+



 −−

=

To make the figure clearer, we use))2,(((log2
αnGCT for comparison.

Figure 6.5))2,((αnGCT ~ n

Page 109 of 215

An interesting observation is that when α increases,))2,((αnGCT decreases for small n and

increases for large n. We can see that when α = 3, the jump point of the line corresponding

to 3=α is after n = 8 = 2α, and when α = 4, the jump point is delayed by 4 from n = 16 =

2α. This is because only after the dimension of a network becomes large enough, can it

tolerate faults. In Equation (4), ∑
−

=

−− −=
12

0
)0,1max(2))2,((

α

αα

k
k

tn tnGCT k and

),(1
2

1
αδα kkntk −+



 −−

= , only when α2≥n can some 0≠kt and thus

0))2,((≠αnGCT . The delay is caused by),(αδ k , because the dimension of embedded k-

Ending-t-Equivalent Graph must go larger than 1. As for large n, when α increases, kt

decreases, so that ktn −−α2 grows exponentially which makes))2,((αnGCT larger. In other

Figure 6.6)))2,(((log2
αnGCT ~ n

Page 110 of 215

words, it is the exponentially increasing number of embedded k-Ending-t-Equivalent

Graphs that makes))2,((αnGCT also grows exponentially.

Another interesting property of this algorithm lies in the influence of each A-category fault.

If there exists an),,,(tknGEEC α in which the number of A-category fault is over

),(
2
1

αδα kkn
−



 −− , routing will still be guaranteed to be successful if source and

destination do not differ in any dimension αα 2][]1,[knc −∈ .

Since A-category fault excludes the possibility of node faults, we need an algorithm to deal

with B-category and C-category faults as well. The following section 6.5.3 deals with this

problem. The discussion of that algorithm is closely related to Exchanged Cube.

6.5.3 Extended Fault-tolerant Routing Strategy

Suppose in)2,(αnGC ,)(pTα and)(qTα are neighbors in αT . For each

]12,0[|)(||)(| −∈ −−− qDimpDimnk α , we define graph =),,,,(kqpnG α <),,,,(kqpnV α ,

),,,,(kqpnE α >, where),,,,(kqpnV α is the set of nodes in)2,(αnGC whose bits in

dimensions other than Dim (p) Dim (q)]1,0[−α comprise value k and whose rightmost

α bits represent p or q.),,,,(kqpnE α is the subset of links in)2,(αnGC which connect

nodes in),,,,(kqpnV α . If the last α bits are viewed as one dimension that can take value

only in {p, q}, then),,,,(kqpnG α is effectively isomorphic to Exchanged Cube

Page 111 of 215

|))(||,)((| qDimpDimEH . (Note: we do not use |))(||,)((| pDimqDimEH though both can

do.) Denote the number of faulty component in)),,,,((kqpnGBt α as),,,,(kqpnet α , and

that in)),,,,((kqpnGBs α as),,,,(kqpnes α . The number of link faults in

)),,,,((0 kqpnGE α is denoted as),,,,(0 kqpne α .

(Theorem 6.4)

In)2,(αnGC , for all)(pTα and)(qTα which are neighbors in αT , as long as

),,,,(kqpnes α +),,,,(0 kqpne α < |)(| pDim and),,,,(kqpnet α +),,,,(0 kqpne α <

|)(| qDim for all]12,0[|)(||)(| −∈ −−− qDimpDimnk α , there is a fault-tolerant and cycle-free

routing strategy for any nonfaulty source and destination pair.

Proof. (Outline)

The algorithm used in Theorem 6.3 fails only when a link in dimension [0, 1−α] is broken.

With our discussion about the fault tolerant routing in Exchanged Cube, such a problem is

solved once the fault number is restricted by the precondition of Theorem 6.4. g

Unfortunately, different from Theorem 6.3, if there exists a),,,,(kqpnG α in which the

number of faulty component violates the restriction in the precondition of Theorem 6.4,

routing might fail even if source and destination do not differ in any dimension ∈c Dim (p)

 Dim (q). That is because the B-category and C-category faults influence the routing in

Gaussian Tree αT , where many dimensions other than the preferred dimensions will be

used more than once.

Page 112 of 215

Up to now, we have completely solved the problem of fault tolerant routing in Gaussian

Cube. We used a new method to categorize faulty components so our approach is more

meaningful than dealing with the trivial bound of network node availability. For

hypercubes constructed by link dilution, this approach to analyzing routing algorithms’

ability of tolerating faults is novel and useful because it is expected that this kind of

topology will lose in traditional metric: node availability. The tree structure is very helpful

to make the problem more deterministic and controllable.

Page 113 of 215

Chapter 7: Simulator

In this part, a software simulator is constructed to imitate the behavior of the real network,

and thus test the performance of FTFR. The current simulator model is mainly based on

the work of Wong Chuen Vong [20]. In this project, we point out some rectifications and

improvements to the model, both technical and theoretical. Special attention was paid as

to how to efficiently simulate an incomplete network.

7.1 Overview of the Simulator

In this simulator, packets can traverse the network and reach the destination, with routing

decisions made at each intermediate node. There are three important components in the

simulator: j topology of the network; k implementation of the routing strategy; l

timing methods to measure the useful metrics and statistical analysis of the result.

There are nine basic assumptions in this simulator:

Ø Fixed packet-sized messages are used.

Ø Source and destination nodes must be nonfaulty.

Ø Destination node must not be source node.

Ø Packet reaching destination is absorbed

Ø Eager readership is employed where packet service rate is faster than packet

arrival rate.

Ø A node is faulty when all of its incident links are faulty.

Ø A node knows status of its links to its neighboring nodes and faulty nodes in the

network

Ø No packet is generated for faulty nodes.

Ø All faults are fail-stop.

Page 114 of 215

Start

Read user inputs

Setup network

Setup faulty components

Simulation
duration
elapsed?

Process transit
buffer quque

Process output
buffer quque

Generate Packets

Simul

Simulation
counter

reached?

Output results to files

End

Yes No

No Yes

Figure 7.1 Simulation
Design Flow Chart

The simulation model is composed of several functional modules, with their relationship

shown Fig. 7.1:

 Simulation Counter ++

Page 115 of 215

7.2 Analysis of simulator components

This part describes in detail the components in Fig. 7.1. Some rectifications and

improvements are mentioned in this section that are made to the previous design. Two of

them are of great significance to the final result. There are also some original proposals

for implementing incomplete networks. For simplicity, we take the regular Fibonacci

Cube of order 2+n , for instance (1≥n).

7.2.1 Setup Network

In addition to initializing network parameters such as node availability and total number

of nodes and links, the major task in this stage is initializing the node array, which is the

physical representation of the whole network. The number of nodes can be calculated by

the sequence presented in [12][13][14][15]. The number of links can also be easily

obtained by induction introduced in [12][13][14][15]. The data structure of a node is as

follows:

class CNode

{

public:

 unsigned avaiVector; // availability vector

 CQueue *NodeQueue; // point to first packet in node queue (injection queue)

 CQueue *TransitQueue; // point to first packet in transit queue (input queue)

 CQueue *OutputQueue; // point to packet in Output Queue

 CPacket *CentralBuffer; // point to packet in Central Buffer

}

Page 116 of 215

Various numbers of buffers are allocated to each queue at each node. There is only one

injection queue assigned to each node and with unlimited size (which is acceptable for

simulation). Depending on the topologies employed and the dimensions of the network,

each node will have node degree number of transit queues and output queues, 10 packet

buffers per transit queue and 1 packet buffer per output queue. (Refer to Figure 7.2)

In our simulation model, there is no data structure for links or edges. Instead, each output

queue and transit queue at the neighbor correspond to one link connection in between. A

network can obtain message from either its injection queue or transit queue. New packets

are injected into the injection queue and packets received from neighboring nodes are

queued in the transit buffer. To make routing decision, packets must be transferred to

central buffer one by one. Then it is routed to the next node’s transit queue via a certain

Figure 7.2 Node model

Page 117 of 215

dimension if destination is not reached, or the output queue if next node’s transit queue

for that dimension is full, or injection queue if even the local output queue is full.

An intricate problem for incomplete cube is that not all dimensions are available at each

node, even in a fault-free setting. In nFC , the node degree varies from 



 −

3
2n to 2−n

[12]. In nEFC , the node degree varies from 




4
n to 2−n [14]. In)(nXFCk , the node

degree varies from 1
3

)1(
−+



 −− kkn to 2−n [15]. Thus, we have to calculate the

availability vector beforehand. Unlike the former model, we don’t construct the queues

until the faulty components are selected. The benefit is we need not allocate memory

space for these faulty links, though we still allocate memory for faulty nodes. As a result,

the availability vector at a node contains all the information about the available

dimensions.

7.2.2 Setup faulty components

Faulty components consist of either faulty nodes or faulty links or both. The

determination of number of faulty nodes and links is:

FC = FN + FL

FC is the number of faulty components, FN is the number of faulty nodes and FL is the

number of faulty links. A faulty node will render all its incident links faulty.

We can specify both FN and FL. We can also specify FC only, with FN and FL

determined by random selection as long as FC = FN + FL. The selection of the location

of faulty components is same as the previous model, with careful avoidance of duplicate

selection and picking non-existent components.

Page 118 of 215

Ø Normal distribution

Ø Log normal distribution

Ø Poisson distribution

Ø Weibull distribution

Ø Erlang distribution

7.2.3 Gather global network status

In FTFR, each node needs to know the availability vector of all its neighbors. However,

this process of exchanging information is omitted here for two reasons.

Firstly, this is a simple duplication costing one hop time with no calculation.

Secondly, there is no point in allocating space locally at each node since the information

is available in global data structure. Consequently, a large amount of space is saved.

7.2.4 Generate Packets

New packets are generated at every node if the total allowable number of packets is not

exceeded. The total allowable packet number is defined as:

(Total Links – Faulty Link – Number of links incident to Faulty Nodes)×Buffer Size

Buffer size is the size of transit queue of a node at each dimension. In our test, it is set to

10.

The generation of packets follows the trend in the selected probability distribution

function. Ten choices of distribution functions are provided in the program:

Ø Uniform distribution

Ø Bernoulli distribution

Ø Beta distribution

Ø Binomial distribution

Ø Exponential distribution

As global information is easily accessible in the simulation tool, it is easy to ensure the

assumption that destination is not a faulty node.

Page 119 of 215

7.2.5 Process output buffer queues

Packets waiting in the output buffer queues are sent to their respective neighbors via the

corresponding links. The transmission is considered as one hop. If the transit buffer

queue of the neighbor is full, the packet will remain in the current node’s output buffer

queue. All output buffer queues are processed in round robin fashion.

However, unlike binary hypercube, in incomplete cubes, the packet stored in the output

queue OutputQueue[i] (which means it will use the ith
 available dimension at current

node), might not be expected to be sent to the neighbor’s TransitQueue[i], because that

dimension will possibly no longer stand as the ith
 available dimension there. For example,

for node 100 in a 3-dimension regular Fibonacci Cube, dimension 2 is the second

available dimension since 110 is not a valid Fibonacci address. But at the corresponding

neighbor, 000, dimension 2 will be the third available dimension. So we need a

translation table at each node, the ith item of which records such a change in the ith

available dimension. The value can be calculated by utilizing the availability vector of

the current node and its neighbors. In real implementation, we save that huge space by

re-calculating it at each iteration. The result shows that this O(n) computation costs only

a very small fraction of total simulation time. The main advantage is the saving of a

significantly large amount of memory space, which enables us to test networks of higher

dimension.

7.2.6 Process transit buffer queues

If packets are available in transit buffer queues, it is transferred to the central buffer

where routing algorithm is applied and determined whether this packet has reached its

destination or needs to be routed. If the packet is destined for the current node, it is

absorbed (deleted or de-allocated). Otherwise, it is sent to the next node’s transit buffer

Page 120 of 215

queue (if there is available buffer space) or transferred to current node’s output buffer

queue (again, if space is available) or appended to the injection buffer queue. All transit

buffer queues are processed in round robin fashion.

7.2.7 Process injection buffer queue

Similar to the processing of transit buffer queues, packets generated that are waiting in

the input buffer queue are transferred to the central buffer and routing algorithm is

applied there. Then the packet is sent to the next nodes’ transit buffer queue (if there is

available buffer space) or transferred to current node’s output buffer queue (again, if

space is available) or appended to the injection buffer queue.

7.3 Special problems and solutions

In this section, we focus on some special problems for simulating incomplete hypercubes.

These include an efficient way of storing the incomplete network, and the intrinsic timing

problem of using a single processor to simulate the parallel architecture. The precision

problem is also recapitulated.

7.3.1 Efficient Storage

Fibonacci-class cubes are incomplete cubes, so if we use the binary value of a node’s

address as index of the node array, a lot of space will be wasted. Therefore, we need a

function that efficiently maps between the order of a node and the node’s address.

An interesting property of Fibonacci code is that each integer]1,0[2 −∈ −nfN has a

unique order-n Fibonacci code. This can be attributed to the greedy approach used in

conversion. First, find the greatest Fibonacci number kf ≤ N, and assign a “1” to the bit

Page 121 of 215

that corresponds to kf . Then, proceed recursively for kfN − . The unassigned bits are

0’s. In a Fibonacci code, the least significant bit is 2f rather than 1f .

The set of Fibonacci number ⋅⋅⋅⋅⋅⋅ ,,,, 32 nfff is not linearly independent on {0,1}, that is,

any if (4≥i) can be expressed by the linear combination of other Fibonacci numbers

with coefficients taken in {0,1}, given]1,0[−∈ nfi . Thus, there are more than one

Fn bbb),,(23,1 ⋅⋅⋅− such that jb is either 0 or 1 for)1(2 −≤≤ nj and ∑
−

=

⋅=
1

2

n

j
jj fbi . In

Fibonacci Cube, it is the greedy approach that guarantees this inner-product-like mapping

to be a bijection between [0,]12 −−nf and the node address in Fibonacci Cube nFC .

This property makes it possible to use an array in the size of nf to simulate the Fibonacci

Cube of order n. In the simulator, function Fib2Dec() can convert a)2(−n -bit binary

address Fn bbb),,(23,1 ⋅⋅⋅− into a decimal number i by applying ∑
−

=

⋅=
1

2

n

j
jj fbi . The

inverse function is implemented by Dec2Fib().

Unfortunately, as the variants of Fibonacci Cube don’t employ greedy approach, different

nodes might represent the same integer. E.g. in 8EFC , 100000 and 010110 are both

valid addresses. But (1,0,0,0,0,0) Tfff),,,(267 ⋅⋅⋅⋅ = 13 = (0,1,0,1,1,0) Tfff),,,(267 ⋅⋅⋅⋅ .

Hence, to simulate these cubes of order n without the loss of their foremost advantage:

low expandability, we have to find a one-one bijection which can efficiently map

between a valid node address and [0, F-1] where F is the total number of nodes in the

Page 122 of 215

network. Otherwise, it is inevitable to use an array of length 22 −n . Before presenting

this interesting method, it is better to see an algorithm that maps an n-bit Fibonacci code

‘original’ to an integer]1,0[2 −∈ +nfx . The result is the same as what the greedy

approach produces. To use it, call Fib2Dex (x, 2−n).

// x is a (digit)-bit Fibonacci Code
unsigned Fib2Dec(unsigned x, unsigned digit)
{
 unsigned mask, top;

 if(digit > 1)
 {
 mask = (1 << (digit - 1));
 if(x & mask) // test whether the highest two bits are ‘10’
 return FibNum[digit + 1] + Fib2Dec(x, digit - 2);

 // FibNum[digit+1] stores Fibonacci number Fdigit+1
 else
 return Fib2Dec(x, digit - 1);
 }
 else
 return x & 1;
}

Denote the mapping as)(⋅G . The principle underneath it is:

If }1,0{∈ia for]1,0[−∈ ni ,

It can be easily proved that this algorithm is equivalent to the greedy approach. However,

it opens a window to finding a one-one bijection for other Fibonacci-class cubes. The

following demonstrates an algorithm that works for Enhanced Fibonacci Cube of order n.

To use the algorithm, call Fib2Dec (x, n–2).

)(0121 aaaaG nn ⋅⋅⋅−− =

)(012 aaaG n ⋅⋅⋅− if 01 =−na

)(0131 aaaGf nn ⋅⋅⋅+ −+ if 1021 =−− nn aa

Page 123 of 215

unsigned Fib2Dec(unsigned x, unsigned digit)
{
 unsigned mask, top;

 if(digit > 4)
 {
 top = x >> (digit - 2); // test the leftmost 2 bits
 if(top == 0) // if they are 00
 {
 mask = (1 << (digit - 2)) - 1;
 return Fib2Dec(mask & x, digit - 2);

// extract the last digit – 2 bits for recursion

 }
 else if(top == 2) // if they are 10
 {
 mask = (1 << (digit - 2)) - 1;
 return 2 * FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & x,

digit - 2); // extract the last digit – 2 bits for recursion
 }
 top = x >> (digit - 4); // test the leftmost 4 bits
 if(top == 5) // if they are 0101
 {
 mask = (1 << (digit - 4)) - 1;
 return FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & x,

digit - 4);
 }
 else // if they are 0100
 {
 mask = (1 << (digit - 4)) - 1;
 return FibNum[digit] + Fib2Dec(mask & x, digit - 4);
 }
 }

 // the following disposes of the initial conditions
 else if (digit == 4)
 {
 if(x<3)
 return x;
 else if(x>7)
 return x-3;

Page 124 of 215

 else
 return x-1;
 }
 else if(digit==3)
 {
 if(x<3)
 return x;
 else
 return x-1;
 }
 else
 return x;
}

A weak point of the algorithm above is that it is recursive, which is not suitable for

hardware implementation. Thanks to the left-induction nature of Fibonacci Cube’s

definition, we can simply convert it into a non-recursive function. Please refer to

Appendix IV for these algorithms.

It is easy to extend this method to Extended Fibonacci Cubes. It is also straightforward

to design an algorithm that maps an integer back to a Fibonacci code. For details, please

refer to Appendix IV.

Now, we have found an efficient bijection which will help us save a lot of memory space

in simulation. As is shown later, we can safely simulate Fibonacci-Class cubes to

dimensions over 20. This is worthwhile because the scale of n-dimensional Fibonacci-

Class Cube is about the same as a binary hypercube with dimension n/1.46. Here,

2
)31(

246.1
+

≈ .

Page 125 of 215

The discussion above also gives a valuable hint that if we want to study Fibonacci-Class

Cubes in a unified way, it is better to focus on node labels’ bit pattern, instead of their

corresponding decimal numbers.

7.3.2 Timing strategy

In actual communication network, routing is performed in a distributed fashion by all

processors in parallel. As only one processor is available for simulation, special

approaches must be adopted for conversion. Actually, two metrics are related to timing:

packet latency and throughput time. The latter will be discussed in 7.3.3. As for the

former, the elapsed time for a node to service a packet is recorded. For the serviced

packet and other packets in the current node’s queues except the injection buffer queue,

the recorded elapsed time is added to their accumulated time. This recorded elapsed time

is not added to the accumulated time for other packet in other nodes’ queues. The time to

generate a packet will not be included in the elapsed time of that packet. Hence, the total

accumulated time for each packet is dependent on the time it is being serviced and the

time it is waiting in queue of a node while that node is servicing another packet. By

using accumulation of elapsed time for packets, it seems like all packets are processed in

nodes concurrently.

To control the total simulation time, a timer is used to record the time passed since the

beginning of simulation. Each node is processed in a round robin fashion and it

processes output queue, transit queue and injection queue successively. At the end of the

node’s process, the timer is checked to see whether the total elapsed time has exceeded

the specified simulation duration.

Page 126 of 215

7.3.3 Timing precision issue

The library function provided by system can measure time by milliseconds. However, if

we use that ‘large’ unit, the result will be all zero. To achieve the accuracy at

microsecond level, a set of assembly directives were written, which can make timing

accuracy up to the level of processor clock cycle number. The contribution of the project

is to encapsulate the original approach into a separate class, providing P() and V()

methods for measuring time. Its usage is like a stop watch, with P() starting it and V()

stopping it. For example, after executing the sequence: Reset, P1, V1, P2, V2, . . . , Pn, Vn,

the value returned by calling getDuration() is ∑
=

n

i
ii PVd

1
),(, where),(ii PVd represents the

time passed between Vi and Pi . Besides, the implementation is more efficient, with the

use of ULONGLONG data type, which is far faster than computing by ‘double’ type.

Please refer to Appendix V for the details of implementation.

7.3.4 Two Improvements

Firstly, the original throughput time is calculated in a very inaccurate way. There, the

start and end time of processing each node are recorded. After all nodes have been

iterated, the latest end time among all nodes is subtracted from the earliest start time

among all nodes. This produces the processing time of all nodes processing packets in

parallel which is then accumulated.

However, it uses a random number generator to produce the start time for each node:

StartNode_Time = (double) rand()/(double)(RAND_MAX * SCALE_FACTOR);

Page 127 of 215

Here, SCALE_FACTOR is set to 1000.0. The scale of StartNode_Time is about
1000

1 of

the unit of throughput time. So after the accumulation of hundreds of thousands of

rounds, it was detected to be the major contribution to the throughput time. In other

words, in the expression
PT
DPTP = , where TP, DP, and PT are the throughput of network,

number of packets that have reached destination, and the total processing time taken by

all nodes, respectively, the result is mainly composed of the accumulation of difference

of randomly generated numbers. Some statistical variables were added to measure the

time contributed by random number generator, and the result confirms this conclusion.

To patch up the problem, a new method is used in this project. It records the total time of

processing all nodes. Let it be T. Then the throughput time is calculated as
N
T , where N

is the total number of nodes. Here, T is effectively the simulation time specified in the

input file. Maybe in the final iteration, some nodes have been processed while some have

not. However, as the total number of iteration is very large, such a minor difference can

be neglected. The experimental result shows that as long as the simulation time is long

enough and thus
N
T is large enough, the throughput fluctuates in a very small range, such

that no result is discarded by the 95% confidence interval technique (see Section 7.4).

The assumption underlying this model is that all nodes always run in parallel.

The second problem is that nearly 10 percent of the packets are lost halfway. Actually,

when the neighbor’s transit queue and local output queue are both full, the packet is not

added to the injection queue due to a mistake in programming. The prototype of the

function is: void Requeue(CPacket *Target,CPacket **Packet) and it is called by:

Requeue (Node[CurrentNode].NodeQueue->Packet, &(Node[CurrentNode].

CentralBuffer));

Page 128 of 215

Obviously, the pointer to central buffer is copied to the formal parameter of Requeue,

instead of the real parameter Node[CurrentNode].NodeQueue->Packet. This causes the

loss of packet and leakage of memory. A simple way to fix the problem is to call by

reference the first parameter of Requeue, i.e. the prototype is changed into:

void Requeue(CPacket *&Target, CPacket **Packet).

Now, the debugger of Visual C++ reports no memory leakage and the batch mode

proposed by Yan Yan [22] can be run safely.

7.4 Filter of simulation results
The confidence interval check is used in processing the simulation results. This

technique is more necessary in incomplete cubes than in binary hypercube, Folded Cubes

or Josephus Cube. The reason is that the incomplete cubes are not stable networks. Here

stable network is defined as follows:

(Definition 7.1) Stable Network

For any node address p in network N, if all nodes Nx ∈ are re-labeled as pXORx , the

new network pN is isomorphic to the original one, then we call network N as Stable

Network.

Obviously, binary hypercube, Folded Cubes or Josephus Cube are all stable networks.

As most routing algorithms are based on XOR operation, it can be easily proved that in

stable networks, for any node address p, a faulty node located at x is equivalent to being

located at pXORx , while any faulty link (x, y) is equivalent to (x XOR p, y XOR p).

Page 129 of 215

Thus, the location of faulty components is less important for stable networks than for

Fibonacci-class Cubes. In other words, in the latter class of networks, simulation result

might change noticeably due to the location of faulty components. Therefore, the

confidence interval check is more useful to ensure the result is representative of the given

situation setting.

An example in point is node 0n in an n-dimensional Fibonacci Cube. The main idea of

routing in FC is basically as follows: invert all 1’s in preferred dimensions to 0 and then

invert all 0’s in preferred dimension to 1 [13]. As such, if node 0n is faulty, the influence

will be far more significant than if node 2)10(
n

 is faulty.

Each time simulations runs, five sets of results are generated with each simulation run

and each set of result takes about 60 seconds. Each set of result is generated by different

simulated network that has random distribution of faulty nodes and/or faulty links if the

total number of faulty components is specified.

A 95% confidence interval is based on the n results. Denote the n results as nxxx ,,, 21 ⋅⋅⋅ .

Then define the mean of them as ∑
=

=
n

i
ix

n 1

1
µ , and standard deviation ∑

=

−=
n

i
ix

1

2)(µσ .

The simple z-test is by defining
n

xxz
/

)(
σ

µ−
= .

As for 95 % confidence interval, define a real number 95.0z such that

dxe
z

z

x

∫−

−95.0

95.0

2

2 = 0.95

Then, the 95% confidence interval is defined as }|)(||{ 95.0zxzRx <∈ , or equivalently,

(
n

z
n

z σ
µ

σ
µ 95.095.0 , +−). Here 96.195.0 =z . The consequence is:

Page 130 of 215

for),(95.095.0 n
z

n
zx σ

µ
σ

µ +−∈∀ , the probability)96.1
/

96.1(<
−

<−
n

xP
σ

µ >0.95.

To analyze the result, we discard all results that are located outside the 95% confidence

interval.

7.5 Comments from the perspective of Software

Engineering

The new simulator is organized in a very different way from the original version. In one

word, it is object oriented. That brings a lot of convenience for programming because the

routing strategy is unified for all Fibonacci-Class Cubes. To demonstrate the benefit, it is

good to see the definition of class: CExtFibCube, which is a class for Extended Fibonacci

Cube.

class CExtFibCube : public EnhFibCube // inherit from Enhanced Fibonacci Cube
{
public:

CExtFibCube(int dim, int sub, int nodeFault, int linkFault, int distribution,

CString *Doc);

 virtual ~CExtFibCube();

protected:
 virtual bool CheckValid(unsigned x, int digits = Num_Bits);
 virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits);
 virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits);

Page 131 of 215

 unsigned k; // subscript of XFCk(n)
};

Only four functions need to be overridden for this new class inherited from Enhanced

Fibonacci Cube. They are CheckValid, Fib2Dec, Dec2Fib, and the construction function.

All other functions that are not ‘virtual’ can be inherited and used with no change. See

the definition of EnhFibCube below.

class EnhFibCube
{
public:

 EnhFibCube (int dim, int nodeFault, int linkFault, int distribution, CString *Doc);
 virtual ~EnhFibCube();
 void Run(CWnd *win,CDC *pDC);

protected:

 // Shared functions
 void Clear();
 unsigned OneBest(unsigned source, unsigned destination, unsigned x2, unsigned

DT, int *m);
 unsigned GetNext(unsigned int source, unsigned int destination, unsigned int

available, unsigned int *DT);
 void BuildPacket(void);
 unsigned char CalDimOrder(unsigned current, unsigned char *orderDim,

unsigned char *inverseDim);
 void Initialise_Dimmap(unsigned current, unsigned char *mapDim, unsigned

char total, unsigned char *map);
 void Simulate(CDC *pDC);
 unsigned countPos(unsigned current);
 void Initialise_Node(void);
 void Initialise_StatParams(void);
 void BuildFault(void);
 unsigned GetNeighbor(unsigned available, int dimension);
 void Initialise_Network(void);

 // Only three virtual functions that need to be overriden by sub-classes

Page 132 of 215

 virtual bool CheckValid(unsigned x, int digits = Num_Bits);
 virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits);
 virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits);

protected:

 // attritbutes
 CString *report;
 unsigned *Link1;
 unsigned *Link2;
 unsigned *Fault;
 unsigned * FibNum;
 unsigned Node_Availability;
};

The structure of the whole program is therefore more streamlined and modular. Actually,

it can serve as a base class for many incomplete hypercubes. Besides, the code is now

scattered in several files and classes thus it is more convenient to manage.

Another improvement of organization is extracting all globally accessed variables and

functions such as random distribution functions into one file (Common.h). Then it can be

included into the implementation file (.cpp files) of other classes if necessary.

Page 133 of 215

Chapter 8: Analysis of Simulation Results

8.1 Introduction

Using the completed simulation tool, the performance of FTFR in term of network

efficiency, can be measured by network efficiency. This chapter summarizes the

simulation procedure, analyses and compares performance in terms of average network

latency, mean throughput with respect to network dimension, network topology and

faulty component number. The raw data collected are placed in Appendix VI.

Comparison diagrams illustrated in this chapter comply with the raw data.

To make a fair comparison, several factors are fixed concerning the simulation procedure,

environment and result selection:

Ø All simulations must be run on a same computer. In this experiment, the Intelligent

System Laboratory PC 8, DELL CPU 2.0GHz and Physical Memory 512MB is used.

Ø During the simulation process, all other non-system applications must be shut down.

The network line is also disconnected to ensure no hidden CPU uses of Internet

applications.

Ø Each set of input parameters must ensure that the CPU is running at 100% usage.

This is to ensure that no swap in and out for virtual memory occurs. Otherwise, the

timing will be very inaccurate because communicating with hard disk is of several

orders slower than accessing physical memory. The upper bound of dimension is

determined by this requirement.

Ø Each set of input parameters is simulated for 5 times, with each time lasting 60

seconds for network communication. Note, the 60 second is not how long the

Page 134 of 215

simulation program runs, because of the overhead for simulation tool in addition to

the useful communication simulated for the network.

Ø Uniform probability distribution is adopted for packet injection probability function

and applies to all cases.

Ø The average network latency and mean throughput for the 5 simulations are

calculated at the end of the program, together with their respective standard

derivation.

Ø Simulation starts from network with dimension n = 5, since we are not interested in

small size networks.

Ø The 95% confidence interval or 5% significance level is used for filtering undesired

or deviating results.

8.2 Technical considerations for accurate simulation

8.2.1 Traits of expected result

Since we are simulating a very large number of packets within one round, it is naturally

expected that the result of 5 rounds for a given set of input parameter should not fluctuate

too much, i.e. the standard deviation should not be too large. Secondly, with dimension

increasing, the network latency is to increase due to the longer path while the network

throughput is also supposed to increase thanks to the increasing parallelism available.

Thirdly, with the number of faulty components increasing, the latency is to increase and

throughput to decrease. These are expected results and we will verify them in the

following sections.

Page 135 of 215

8.2.2 Buffer size

The current buffer size is set to 10, i.e. the maximum length of the transit queue for each

dimension at every node is 10. This number is closely related to the likelihood of

deadlock occurrence. If it is set to be small, it is more likely to bring about deadlock

while setting it too big will cost more memory space because more packets will be

generated. The influence of buffer size will be further discussed later.

8.2.3 Hop time

The hop time can be specified in the input file. However, in all our simulations, it is set

to 500ns for a fair comparison. This value is determined empirically based on C104.

Similar trends are also observed by varying hop times. In the network routing problem,

there is a trade off between the path length and time for making routing decisions. The

more intricate the decision making process is, the more time it takes, but possibly the

shorter the final path will be. Conversely, a decision made quickly tends to result in

longer path. If we set the hop time longer, the final result will more reflect the difference

in path length while setting it smaller will make the time for running the routing

algorithm more dominant. In FTFR, the routing algorithm is fixed, so the choice of hop

time will not influence the final result much. If we set hop time longer, the difference

between the decision making time for using spare dimensions and using preferred

dimensions will be less significant.

8.2.4 Simulation duration time

How long the simulation should run is an important problem. In our simulation, the

maximum possible number of allowable packets is:

(Total Links – Faulty Links – Number of links incident to Faulty Nodes)×Buffer Size.

For small and medium sized networks, they get saturated with packets shortly after the

Page 136 of 215

Log2(Throughput) - Dimension

0

5

10

15

20

25

30

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Dimension

Lo
g2

(T
hr

ou
gh

pu
t)

Regular Enhanced Extended Binary

beginning of simulation. Before saturation, the latency must be shorter than the stable

value and the throughput lower. However for large sized networks, the network gets

saturated very slowly. It was observed that after 60 seconds, the metrics do not converge.

Setting the simulation duration longer will alleviate the problem. However, since one

simulation duration is applied to all cases, it is not worthwhile to double or even triple the

simulation time just for a few extremely large dimensions. Thus, for such irregular cases,

they are deleted from the final valid data set. This point will be discussed later.

8.3 Comparison of FTFR’s performance on various network

sizes

In this section, FTFR is applied to fault-free regular Fibonacci Cube (FC), Enhanced

Fibonacci Cube (EFC) and Extended Fibonacci Cube (XFCk) and binary hypercube. The

throughput and latency of them are shown in Figure 8.1 and 8.2 respectively.

Figure 8.1 Throughput (logarithm) of Fault-free Fibonacci-class Cubes

Page 137 of 215

In Figure 8.1, it is demonstrated that the throughput of all networks is increasing as the

dimension is increased from 12 to over 20. This is due to the parallelism of the networks

and the increase in the number of nodes (where n is the dimension) that can generate and

route packets in the network, is faster as compared to the time complexity of O(nn log).

By increasing the network size, the number of links is also increasing at a higher rate than

the node number. This in turn increases the total allowable packets in the network. With

parallelism, more packets will reach destination in a given duration. For the same reason

mentioned in the previous discussion of latency, Enhanced Fibonacci Cube has the

largest throughput among the three types of Fibonacci-class Cube. An interesting

observation is that for dimensions between 11- 13, the throughput decreases for a two

dimensions and increases again afterwards. One possible explanation is: the complexity

of FTFR is O(nlogn). For large n, the variation in nlog is small compared to the case of

small n. Thus the difference brought by nlog will be small and the trend of throughput

is the same as what an)(nO routing algorithm produces. For small n, however, the

contribution of logn is comparable with the increase rate of networks size, which leads to

the seemingly irregularity. On the other hand, when dimension is small, the network

scale is too small to display that characteristic. For Fibonacci Class Cube, the irregular

range is 11-13, while for binary hypercube, such a range is 8-9. This again accords with

2
31:25.8:12 +

≈ . Note the simulation for binary hypercubes with dimension over 15 is

not carried out because there is no enough physical memory on the computer.

It is guaranteed that FTFR is cycle-free. But in the face of concurrency, does it guarantee

deadlock-freeness? It is clear that if we decrease the parameter BUFFER_SIZE, the

deadlock problem will become more evident if the routing algorithm is not deadlock free.

When BUFFER_SIZE is set to 10, the irregular range is 11-13. When BUFFER_SIZE is

Page 138 of 215

reduced, the range will move leftward (decrease). When BUFFER_SIZE is 1, such an

irregular phenomenon will disappear. These reflect that FTFR is possibly NOT

deadlock-free. As the BUFFER_SIZE is reduced, networks of even smaller dimensions

will suffer from deadlock. Once deadlock occur, it will make a significant contribution to

the packet latency. This in turn will make the irregular range caused by)log(nnO

complexity less apparent.

In Figure 8.2, it can be observed that the average latency of regular/ Enhanced/ Extended

Fibonacci Cubes increases as the networks dimension increases below 19. As the

network size increases, the diameter of the hypercube also increases. A packet to be

transmitted has to take a longer path to reach its destination, resulting in a higher average

latency. The Enhanced Fibonacci Cube has the highest latency among three because

when dimension is large enough, the number of nodes in Enhanced Fibonacci Cube is the

largest among regular/Enhanced/Extended Fibonacci Cubes of the same dimension.

Latency-Dimension

0

50

100

150

200

250

300

350

400

450

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Dimension

La
te

nc
y

(u
s/

pa
ck

et
)

Regular Enhanced Extend Binary

Figure 8.2 Latency of Fault-free Fibonacci-Class Cubes

Page 139 of 215

After the dimension reaches 19 or 20, the latency decreases. This is because the scale of

the network becomes so large that the simulation time is insufficient to saturate the

network saturated with packets. This is evident from the fact that for those dimensions,

the number of packets reaching destination is lower than the total allowable packet

number. So the packets in these networks spend less time waiting in output queue or

injection queue, while that portion of time (incurred by concurrency) comprises a large

part of latency for low dimensional networks that get saturated with packets in the

simulation duration. A straightforward solution is to increase the simulation time.

However, to make comparisons fair, the simulation time for other cases should also be

increased proportionally. This will double or even triple the total time for simulation. As

19-20 dimension is already adequate for demonstrating the performance of FTFR, this

effort is spared. Binary Hypercube, a special type of Extended Fibonacci Cube,

demonstrates a similar trend, with latency beginning to decrease since 15. This also goes

well with the fact that the number of nodes in Fibonacci-class Cube is))
2

31((nO + and

the node number of binary hypercube is)2(nO . 20:152:
2

31
≈

+ . Note here that due

to the insufficiency of physical memory, no simulation is carried out for binary

hypercubes with dimension over 15.

Page 140 of 215

8.4 Comparison of FTFR’s performance on various

numbers of faults

In this section, the performance of FTFR is measured by the varying the number of faulty

components in network.

The result for)14(13XFC is as follows:

14-Dim Extended Fibonacci Cube XFC13(14)

100

110

120

130

140

150

160

170

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Faulty Nodes

La
te

nc
y

(u
s/

pa
ck

et
)

20

22

24

26

28

30

32

34

36

38

Th
ro

ug
hp

ut
(p

kt
s/

s)

Latency Throughput(log)

It is clear that when the number of faults increases, the trend of average latency is to

increase while the throughput is to decrease. This is because when more faults appear,

the packet is more likely to use spare dimensions which makes the final route longer. In

consequence, the latency increases and throughput decreases. However, there are some

exceptional cases when the existence of faults reduces the number of alternative output

Figure 8.3 Latency and Throughput (logarithm) of 14-dim Extended Fibonacci Cube

Page 141 of 215

port available, and thus expediate the routing decision. The influence of different faults

number is more evident when the network size is small. With fixed number of faults,

there are fewer paths available for routing in smaller networks than in larger ones. Thus

making some of the paths unavailable will bring about more significant influence on the

former. While in large networks, with the total number of nodes in n-dimension network

being))
2

31((nO + and maximum faulty component number tolerable being O(n), the

influence of faulty components will bring about less and less significant influence on the

overall statistical performance on the network. That explains why the throughput and

latency fluctuate in Fig. 8.3. Nevertheless, the overall trend is still correct despite the

glitches.

However, as the number of faults tolerable in Fibonacci-class Cubes of order n is

approximately 




3
n or 




4
n [12][14][15], we have to use networks of large dimension to

provide a large enough number of faults for comparison. That makes the underlying

trend less likely to be evident in the experimental results. The following figures present

the result for 20-dimension regular Fibonacci Cube, 19-Dim Enhanced Fibonacci Cube,

18-Dim Extended Fibonacci Cube.

Page 142 of 215

20-Dim Regular Fibonacci Cube

200

215

230

245

260

275

290

305

320

335

350

0 1 2 3 4 5 6

Number of Faulty Nodes

La
te

nc
y(

us
/p

ac
ke

t)

10

15

20

25

30

35

40

45

50

Th
ro

ug
hp

ut
(p

ac
ke

ts
/s

)

Latency Throughput(log)

Figure 8.4 Latency and Throughput (logarithm)
of faulty 20-Dim regular Fibonacci Cube

Figure 8.5 Latency and Throughput (logarithm)
of faulty 19-Dim Enhanced Fibonacci Cube

19-Dim Enhanced Fibonacci Cube

350

355

360

365

370

375

380

385

390

395

400

0 1 2 3 4 5

Node of Faulty Nodes

La
te

nc
y

(u
s/

pa
ck

et
)

16

19

22

25

28

31

34

37

Th
ro

ug
hp

ut
(p

kt
s/

s)

Latency Throughput

Page 143 of 215

The fluctuation of the result is actually needs to be examined carefully. For example, the

latency in Figure 8.6 varies only in the range of below 1%. We know that with different

simulation reading, the fault location is randomly distributed. Similarly, messages

generated have different destinations based on the uniformly distributed packet

destination. If we examine the standard deviation of the result, it is shown that such a

small variation in Figure 8.6 is not too much outside the 95% confidence interval for any

situation. Thus, it is more reasonable to focus on the trend of the statistical results,

instead of the exact number.

Figure 8.6 Latency and Throughput (logarithm) for
faulty 18-Dim Extended Fibonacci Cube

18-Dim Extended Fibonacci Cube EFC1

257

257.5

258

258.5

259

259.5

260

260.5

261

1 3 5

Number of Fault

La
te

nc
y

(u
s/

pa
ck

et
)

25.7725

25.773

25.7735

25.774

25.7745

25.775

25.7755

25.776

Th
ro

ug
hp

ut
 (p

ak
ce

ts
/s

)

Latency Throughput

Page 144 of 215

Figure 8.7 Average Latency and log2(Throughput) versus dimension for GC(n,1)

8.5 Results of Gaussian Cube

The simulation results of Gaussian Cubes display very similar trend and properties as in

Fibonacci-class Cubes. Thus in this section, we only present the Figures that are drawn

based on the simulation result. The only thing that deserves attention is that the location

of faults in the Gaussian Cube is very important. So different from the simulation

scheme in FTFR in which we only specify the number of faults and randomly distribute

the faults, now we specify the location of the faults. In this simulation test, we see how

the faulty node located at 0n influence the system performance.

Since the algorithm’s complexity includes a term logα and does not include log n, it is

satisfying to see that the temporary decrease interval for average latency does not appear

Latency & Throughput ~ Dimension for GC(n,1)

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12 13 14 15

Dimension

A
ve

ra
ge

 L
at

en
cy

18

20

22

24

26

28

30

Lo
g2

(T
hr

ou
gh

pu
t)

Average Latency Log2(Thoughput)

Page 145 of 215

in Figure 8.7. However, such an interval does appear again in Figure 8.8, where the x-

axis is α.

The following two figures (Figure 8.9 and 8.10) illustrate the influence of faulty node 0n

on the network average latency and throughput, respectively. The discussions (including

the effect of glitch) in FTFR also apply to Gaussian Cube.

Latency & Throughput ~ alpha

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

alpha

A
ve

ra
ge

 L
at

en
cy

20

21

22

23

24

25

26

27

28

lo
g2

(T
hr

ou
gh

pu
t)

Average Latency log2(Throughput)

Page 146 of 215

Figure 8.9 Influence of faulty node 0n on network average latency

Figure 8.10 Influence of faulty node 0n on network throughput

Average Latency ~ Dimension

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12 13 14

Dimension

A
ve

ra
ge

 L
at

en
cy

One Faulty Node Fault Free

log2(Throughput) ~ Dimension

0

5

10

15

20

25

30

4 5 6 7 8 9 10 11 12 13 14

Dimension

lo
g2

(T
hr

ou
gh

pu
t)

One Faulty Node Fault Free

Page 147 of 215

 Figure 9.1 DK1 Design Flow

Chapter 9: FPGA Implementation of FTFR

9.1 Background

From the experience of software simulation, it is evident that the strength of software

applications is the ability to be easily changed to suit customer demands. However,

inevitably, hardware applications of the same are always much faster, but the tradeoff is

its lack of programmability and reconfigurability. With the advent of high-density, high-

performance and low-cost Field Programmable Gate Array (FPGA) that can be easily

reconfigured, the situation had since changed. It promises to give vendors an added edge

in supplying custom-made applications to suit the customers’ varied requirements in

shorter product development cycles and lower costs substantially, by using the latest

software technology and design flows such as Celoxica DK1 [71]. The commercial

potential is indeed enormous. Figure 9.1 demonstrates the design flow of DK1 software-

compiled system design [65].

Page 148 of 215

• PS/2 connectors (Mouse and Keyboard)

• CPLD

• LEDs

• Two 7 segment displays

• Two SSRAM banks

• Flash RAM (8M Bytes)

• Video DAC

• Video Input Decoder

Celexica DK1 Design Suite, which is used in this project, enables direct migrating

designs to hardware without requiring the generation, simulation, or synthesis of

hardware description language. It uses the unique language Handel-C and the design

suite focuses on the design, validation, iterative refinement and implementation of

complex algorithms in hardware. Handel-C, an ISO/ANSI-C based programming

language can be used to express algorithm without worrying about how the underlying

computation engine works [66]. This philosophy makes Handel-C a programming

language rather than a hardware description language. In some senses, Handel-C is to

hardware what a conventional high-level language is to microprocessor assembly

language. The output of the compiler is an architecture optimized EDIF netlist

appropriate for FPGA or PLD devices, or RTL VHDL for existing tool suites. Thus, due

to its high level nature, Handel-C has made it possible for the same person to do both

software and hardware implementation, which greatly reduces the manpower and

development costs.

Besides, a readily available development board, the RC100, also made by Celoxica, can

be used to physically implement and test the designed router for this project. It features a

high-performance Xilinx Spartan-II FPGA, with 200,000 system gates, 5,292 logic cells

and 1,176 CLBs. It has a maximum of 284 user I/O and 56K block Ram Bits. System

performance is supported up to 200MHz. As the centerpiece of the board and main

reconfigurable logic that users can target, the FPGA is directly connected to [67].

The Xilinx CoolRunner CR3128XL CPLD, which is used to configure the FPGA from

various data sources and implement other glue logic, can configure the FPGA

Page 149 of 215

with data received from host PC via File Transfer Utility or with a configuration file

retrieved from the Flash RAM. The structure of RC100 board is showed in Figure 9.2-

9.3 below.

Figure 9.2 RC100 Board Components

Figure 9.3 RC100 Development Board

Page 150 of 215

Via parallel port cable, the File Transfer Utility can be used to [69]:

Ø Transfer Xilinx BIT files to the FPGA

Ø Transfer files or raw data from PC to a specified location in the Flash RAM

Ø Transfer files or raw data from the Flash RAM to PC

9.2 Overview of Experimental Methodology

Our objective is to obtain a circuit that implements FTFR correctly and efficiently.

Obviously, two aspects are of our major interest:

Ø Correctness. The router must produce the correct decision that FTFR generates.

Ø High performance. This involves DK1 gate count, number of logical components

(Luts and FFs), number of Slices/Routes, PAR timing and maximum clock

frequency.

Therefore, we divide the experiment into two stages, namely software simulation stage

and hardware implementation stage.

In the software simulation stage, we focus on programming the design in DK1, using

Handel-C. It is easy to check the result because chanin and chanout can now be

extensively utilized to show the value of critical variables directly, making debugging

and verification of code correctness very simple. This stage is just like software

development, with focus on the correctness of our program. Besides, DK1 Waveform

Analyzer [72] can now be used to roughly estimate and analyze the performance of our

router. Also the result of DK1 compilation can give the raw image of the relationship

between total gate number and port number.

Page 151 of 215

In the hardware implementation stage, the Celoxica DK1 Design Suite had to be set to

compile the output file in EDIF format. When compiling in EDIF mode, DK1 would

optimize away all unused code, i.e. those code that do not affect the final output.

Similarly, if no meaningful output were specified, i.e. no I/O bus or Flash Ram specified,

the design would not generate any EDIF files. Statements that could not be implemented

in hardware such as chanin and chanout are required to be removed as well for error-free

compilation. With optimized number of gates and LUTs (Look Up Tables), the

generated EDIF file can be used by Xilinx Design Manager to generate BIT files, which

is in turn downloaded onto the RC100 Development Board using Celoxica RC100 File

Transfer Utility.

The performance indexes are easily available from the report of Xilinx Design Manager’s

implementation. However, without the availability of chanin and chanout, two problems

arise: 1) how to initialize the data variable, 2) how to verify that the FPGA router was

working correctly.

On the first issue there are three foreseeable solutions. Comparison is outlined in Table

9.1 [67][69].

S/No. Input
Method

Implementation
Difficult

Additional Gate
Counts Multiple Test Data

1 Hardcoding Easy Negligible Limited and Inflexible

2 Keyboard Medium Very Significant Unlimited

3 Flash Ram Hard Acceptable Nearly Unlimited

Since we are only testing the implementation, the number of additional gate count is of

less importance because it will be finally removed after verification. If hardcoding is

Table 9.1 Comparison of Input Methods

Page 152 of 215

used, then each time we want to test for a new set of data, the EDIF and BIT file will

have to be regenerated, which costs a lot of time and thus inflexible. For keyboard, it

needs the manpower of input each time. Flash memory can provide 8M byte space,

which is enough for testing. If more testing cases are required, it is easy to transfer the

testing data to RC100 again via FTU, which is far simpler and quicker than regenerating

EDIF and BIT file. The strength of testing with Flash memory is that the process is

automatic. A large amount of test can be carried out with no human interference. As for

difficulty, both keyboard and Flash memory need additional conversion functions to

change the data into binary or integer format for the router to execute, because these

forms of input were in ASCII format, i.e. 0x30 represents 0b00, which is zero in integer

terms. Furthermore, for numbers above 9, e.g. 10 that is 2 ASCII numbers of 1 and 0 in

consecutive locations, a function would be needed to concatenate to their true value of 10.

In view of all, it was decided that Flash Memory is used for inputting the testing data.

However, after the correctness is ensured, we have to remove the part for Flash Memory

and adopt the real form of input. It is only at that stage can we take a fair comparison

between the performance and scale of the router with respect to the port number.

Moreover, it should be noted that due to the nature of DK1, designs of varying sizes

would be generated for differing sets of data because of the optimization process. Thus, a

fixed test case (extensible over various port sizes) would be hardcoded into routers of

different port sizes so as to compare them in terms of gate counts, delay and maximum

operating speed.

Going on to the issue of verification of the workings of the FPGA router, we need to be

able to collect the output data generated by it. Five methods are proposed and the

comparisons between them had been tabulated in Table 9.2.

S/No. Output Method Implementation

Difficulty

Additional Gate

Counts

Multiple Results

Page 153 of 215

1 Direct File Output Very Hard Indeterminate Indeterminate

2 VDU Display Hard Very Significant Unlimited

3 Flash Ram Medium Acceptable Limited by RAM size

4 Pin Outputs Easy Negligible Unlimited

5 7 Segment Display Easy Negligible Limited by display

Similar to the analysis before, taking account of the advantages and disadvantages of

each method, it is decided that the Flash Ram Output option would be most suitable for

use in saving multiple test results for routers of differing sizes. However, one would

expect that the additional gate counts would limit the router that can be implemented on

the FPGA.

Again, after the verification of the design, the Flash Ram functionality would be removed

and replaced with the Pin Output options. This was because this option adds the least

gates to the design and would be suitable when making comparisons for routings of

differing port sizes in terms of gate counts, display and maximum operating speed.

9.3 Testing scheme

First, routers of different dimension will be compiled into different BIT files before the

demo. It can be transferred to the RC100 by File Transfer Utility during the test.

For a fixed dimension, several testing cases can be designed in the input file. Then, they

are transferred to RC100’s Flash Memory. After the router makes decision, the result

will also be recorded in the RC100’s Flash Memory. Then, we use File Transfer Utility

Table 9.2 Comparison of Output Methods

Page 154 of 215

again to transfer the result to PC and check the correctness. The format of input file that

stores testing cases is as follows: (take a 3-dimension router as an example)

000 110 101

(Current node address) (the availability vector for current node) (input mask)

010 101 (the availability vector of the neighbors of the current node)

(the total number equals the number of 1’s in the availability vectorof current node)

111 000

(destination) (DT of the packet)

1 0 1 # (the history, meaning that the packet used dimension 1, 0 and 1

successively, the ‘#’ signifies termination)

@ termination of the whole file

In real practice, the numbers above are in hexadecimal, so it is written as:

0 6 5

2 5

7 0

1 0 1 #

@

If several testing cases are to be used, the character ‘$’ is used for separating cases:

0 6 5

2 5

7 0

1 0 1 #

Page 155 of 215

$ // there is another testing case in the following

1 3 5

1 4

6 2

2 1 0 #

$ // there is another testing case in the following

0 5 5

3 4

3 1

0 2 1 #

@ // no more testing cases. File ends

The output will be arranged in the following format:

000 dimension = 2 DT = 0

001 Abort

002 Destination Reached

The first column is the testing case number. If the destination is reached, it will write

“Destination Reached”. If aborted, it writes ‘Abort’. Otherwise, it outputs the dimension

that is chosen to use, and the updated DT after the routing process.

Different testing cases can be posed and transferred to RC100 dynamically. This makes

testing more flexible.

9.4 Result of implementation

Page 156 of 215

 With Flash
Memory for I/O

Without Flash
Memory, use pin

NAND Gates after compilation 42558 11250
NAND Gates after optimization 32761 9627
NAND Gates after expansion 68997 36476
NAND Gates after optimization 15157 4039

 With Flash
Memory for I/O

Without Flash
Memory, use pin

NAND Gates after compilation 251952 226213
NAND Gates after optimization 117044 97743
NAND Gates after expansion 138142 109376
NAND Gates after optimization 48232 39285

9.5 Useful Tips for development

Although DK1 Development Suite provides a lot of freedom to FPGA design, its

compiler is far from perfect. Some procedural tips are drawn from experience and are

summarized in this section for future reference.

9.5.1 Error report problem

The errors reported by the compiler are very inaccurate, especially concerning the

location. Some times, the real location of error and the place reported by the compiler

may be a few hundred lines apart. To overcome this problem, the incremental debugging

Table 9.3 Comparison of NAND Gate Number between with/without Flash

 Memory for 4-dimension regular Fibonacci Cube using classical approach

Table 9.4 Comparison of NAND Gate Number between with/without

 Flash Memory for 4-dimension binary hypercube using FNN

Page 157 of 215

approach is used. First, comment out most of the suspected parts of the program, leaving

a small portion that is controllable. Now, it is easy to locate the problem and fix it in the

small range. After that, release the commented parts little by little, with each round

ensuring that no error occurs. The advantage is we can now focus the problems in the

newly released parts, no matter where the compiler reports that the error exists. This

method is proved very useful.

9.5.2 Runtime Error

This wired kind of error occurs during debugging. For example, if three sentences a, b, c

are to be executed successively. If we debug it step by step, then maybe when executing

b, a runtime error is reported. But if we place a breakpoint at c, then after executing a,

we use ‘go’ or press ‘F5’ to run to the nearest breakpoint, c, the runtime error doesn’t

occur. This problems shows that Handel-C must have not encapsulated the lower

hardware particulars completely, and problems in that level are looming in an

unpredictable way. As this problem does not influence the final result we only need to

pay attention to it and refrain from being stuck by this irregularity.

9.5.3 Compiling strategy

The time for compiling EDIF file is long for DK1. The time for Xilinx implementation is

even longer. Therefore, we should use the debug mode as much as possible. It is only

after ensuring that no logic error exists can we proceed to hardware implementation,

during which, the only possible problem left is concerning hardware interface, or I/O

utilities. This will be very helpful because debugging the program logic on RC100 is

impossible. To save some time, we can set the option in Xilinx Design Manager to

fastest, and then set it to optimal after ensuring no problem exists.

9.5.4 Programming methodology

Page 158 of 215

It is not wise to write Handel-C in an object-oriented thinking. So it is free to use global

variables. Besides, its unique macro expression is helpful in making the routine generic.

Another important method to minimize the changes necessary for different port size is

using macros like Num_Bits, Log_Num_Bits…. They can calculated the proper width of

variables with respect to the port size. It is found that Handel-C is not excellent in

processing stacks, so macro expressions is preferred to functions and recursion had better

to be avoided.

As for loops, the traditional ‘for(;;)’ format is not welcomed in Handel-C. We had better

use ‘while’. As we often deal with an array in a loop, the following problem looms. The

index for an array with the length of L is restricted to be log2(L). However, to control the

loop, we often need to use :

while(i < L)

{

do something on array[i].

i++;

}

This is improper when L is power of 2. For example, when L=4, then the bit width of i is

2, so when i =3, after i ++, i is 0. So i <L is always satisfied and a dead loop is formed.

If we set the bit width of i to 3, then it can’t be used as array’s index. One compromising

method is to set the width of the control variable i to log2(L+1). Then in the ‘while’ loop

body, use another variable of width log2(L), say ii, to index the array. At the beginning

of the loop body, let ii = i [log2(L) – 1: 0]. In this way, the problem is solved in a unified

fashion. If the first sentence of the body does not quote i, then the assignment can be

executed parallelly, incurring no extra time. To be economic, such a technique can be

used only for those arrays whose length is power of 2. For other cases, the control

variable with width log2(L) can be used as index without any problem.

Page 159 of 215

9.5.5 Design of common interface

To drive hardware on RC100 board, it is advisable to develop some higher-level interface

libraries. The primitives provided by the RC100 are not powerful and are unwieldy to

realize a useful function. It is helpful if some library functions or MFC-like encapsulated

hardware calls be designed so that the following developers can program on a higher

level and focus on problem-specific logics.

9.5.6 Floating point library

When implementing the router using fuzzy neural network, real numbers are used in

addition to integer. Thus, floating point library is incorporated [73]. However, the library

is not perfect and possibly contains bugs. One most significant problem is that when

using floating-point numbers, the resource consumption for compiling is very huge, both

in memory and in time, making it difficult to debug.

Thus, the strategy actually used in this implementation is scaling up. For example, if we

calculate 1.5/0.3, then the result is same as (1.5*10)/(0.3*10) = 15/3. Of course, there

exist some loss of precision if it is not wholly divided. This disadvantage is overcome by

delaying division operation to the last step, because addition, subtraction and

multiplication all result in no loss of precision. So avoiding division as intermediate

steps can eliminate the accumulation of error. Besides, we used a scaling factor of 1000,

as a result, the precision is very satisfactory.

Page 160 of 215

Chapter 10 Conclusion

This chapter concludes the report by discussing the accomplishment, project limitations,

and future work.

10.1 Conclusion

Fuzzy neural network has been successfully applied in many areas, such as clustering,

prediction of time series, traffic and stock market, as well as automated control of large,

complex systems. However, just as no model in artificial intelligence can apply to all

applications, so does FNN. The problem in nature is that the application of routing in

interconnection network is a based on binary discrete numbers. The FNN is heavily

dependent on the clustering of each input (horizontal reduction). So it works efficiently

in situations where the range of each input is large but the number of input is not too high.

However, our binary application makes each input attached with two linguistic labels and

the number of input is linear to network dimension. In consequence, the time and space

complexity is exponential to the dimension. If we combine several independent binary

inputs into one corresponding decimal value as input, then the number of linguistic labels

required for each input will grow exponentially with network dimension. So it does not

help.

On the other hand, an encouraging result is that efficient fault-tolerant routing strategies

have been designed for such link/node diluted hypercubic networks as Gaussian Cube

and Fibonacci-class Cube. They can tolerate more faults than the trivial bound of node

availability. The simulation result demonstrated the desirable properties of these

algorithms and the implementation on FPGA also shows the feasibility of physical

manufacture.

Page 161 of 215

Finally, it is proved theoretically that the Exchanged Hypercube can efficiently reduce

the number of links from binary hypercubes, preserving nearly all topological and

communication merits. The author believes that it is a promising type of network as a

substitute for binary hypercubes in many applications.

10.2 Accomplishments
In reviewing the purpose of this project as defined in section 1.2, the author has

illustrated that the fuzzy neural network is not suitable for the problem of routing in

interconnection network, at least at present. An encouraging result is that despite the

intrinsic low node availability in node/link diluted hypercubic networks, still a fairly high

number of faulty components can be tolerated by our fault-tolerant routing strategy. The

simulation result also shows that the performance of our algorithm is reasonable..

Besides, it is demonstrated that the implementation of it on hardware such as FPGA is

feasible.

The Exchanged Hypercube provides one more possible topology when constructing

multi-computer systems.

10.3 Project Limitations
Although extensive experiment on the Fault-tolerant Fibonacci Routing (FTFR)

algorithm finds on exception in which routing aborts when the number of faulty

components is less than the minimum node availability, it is extremely difficult to prove

it theoretically.

Furthermore, the simulation tool still has some deficiencies. The most important one is

how to simulate a parallel architecture with only on CPU. Some problem can and has

Page 162 of 215

been satisfactorily solved while some other problems, such as how to calculate the time

for the computation of throughput in the presence of unevenly distributed workload, still

leave much to be desired.

Last but not least, as the new approach of fault categorization is adopted in the discussion

of our routing algorithms, it is hard to compare our strategy with ordinary ones. Besides,

the comparison of reliability between different network topologies will also be difficult.

10.4 Future Work
The following are a number of areas where future work and research can be conducted

for this project.

Firstly, further investigation into the feasibility of applying FNN to fault-tolerant routing

can be conducted. There are two possible directions. If FNN is intrinsically inapplicable

to this application, then rigorous theoretical proof, may be based on Vapnik-

Chervonenkis dimension, need to be given. Otherwise, a new architecture of FNN or

pure artificial neural network should be designed for this kind of high-dimension binary

application. After that, the performance of fuzzy routing and traditional routing strategy

can be compared on various network topologies. Whether fuzzy routing can apply to a

wide variety of networks in a unified way is also worth research.

Then, it will contribute to desirable theoretical soundness if FTFR is proved to always

work properly given the restriction on the number of faulty components is met. Theorem

4.2 and the discussion after that have presented an initial and useful result that paves way

for a complete proof.

Page 163 of 215

Thirdly, the architecture of the simulator needs to be improved to achieve results of

higher accuracy. Multi-threaded or multi-process algorithms can be used to simulate the

concurrency in the real network. Although the simulator will still depend on time slicing,

the result can be possibly more accurate than the current model.

Lastly, new metrics for comparison of fault- tolerant routing strategies need to be

designed and introduced, especially for GC, Fibonacci-class Cubes and other node/link

dilution cubes. The author deems it advisable that three aspects about a faulty component

should be taken into consideration:

1) Number of faulty components;

2) Type: faulty node or faulty link.

3) Location: Similar to the discussion in GC. We should also discriminate

different types of fault distribution: evenly distributed or clustered.

Page 164 of 215

REFERENCES

[1] Hsu, W. J., Chung, M. J., and Hu, Z., "Gaussian Networks For Scalable distributed

Systems", The Computer Journal, Vol. 39, No. 5, pp. 417-426, 1996.

[2] Hsu, W. J., Chung, M. J. and Hu, Z. “A New Gaussian networks and Their Applications”

Int’l Symp. Parallel and Distributed Supercomputing, Japan, 1995.

[3] Douglas B. West, “Introduction to Graph Theory - Second edition” Chapter 2 N.J.:

Prentice Hall, 2001.

[4] Peter K. K. Loh, H. Schröder, W. J. Hsu, “Fault-tolerant routing on complete Josephus

Cubes”. Proc. 6th Australasian Conf. Computer systems architecture, IEEE Computer

Society Press. Queensland, Australia. pp. 95-104, 2001.

[5] Wu, Jie, “Reliable Unicasting in Faulty Hypercubes Using Safety Levels”, IEEE

Transactions on Computers, Vol. 46, No. 2, pp. 241-247, February 1997.

[6] Lan, Youran, “An Adaptive Fault-Tolerant Routing Algorithm for Hypercube

Multicomputers”, IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 11,

pp. 1147-1152, November 1995.

[7] D.P.Bertsekas and J.N.Tsitsiklis, “Parallel and Distributed Computation: Numerical

Methods”. Englewood Cliffs, NJ: Prentice-Hall, 1989, ch. 1, pp. 27–68.

[8] Y. Saad and M. H. Schultz, “Topological properties of the hypercubes,” IEEE

Transactions on Computer, vol. 37, no. 7, pp. 867-872, July 1988.

[9] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus

structures for a computer network,” IEEE Transactions on Computer, vol. C-33,

pp. 323-333, 1984.

[10] Ziavras, S.G., "RH: A Versatile Family of Reduced Hypercube Interconnection

Networks", IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 11, pp.

1210-1220, November 1994.

[11] Handel-C Language Reference Manual Version 3.1 (2002). Celoxica Limited.

Page 165 of 215

[12] Hsu, W.J., "Fibonacci Cubes-A New Interconnection Topology", IEEE Transactions on

Parallel and Distributed Systems, Vol. 4, No. 1, pp. 3-12, January 1993.

[13] Liu, J., Hsu, W.J., and Chung, M.J., "Generalized Fibonacci Cubes Are Mostly

Hamiltonian", Journal of Graph Theory, Vol. 18, No. 8, pp. 817-829, 1994.

[14] Qian, H. and Wu, J., "Enhanced Fibonacci Cubes", The Computer Journal, Vol. 39, No. 4,

pp. 331-345, 1996.

[15] Wu, Jie, "Extended Fibonacci Cubes", IEEE Transactions on Parallel and Distributed

Systems, Vol. 8, No. 12, pp. 1203-1210, December 1997.

[16] Hsu, W.J. and Chung, M.J., "Generalized Fibonacci Cubes", Proc. International

Conference on Parallel Processing, pp. 299-302, 1993.

[17] Gaber, J., Toursel, B., and Goncalves, G., "Embedding arbitrary trees in the

hypercube and the q-dimensional mesh", Proc. 1996 3rd International Conference on

High Performance Computing, HiPC, IEEE, Piscataway, NJ, USA, pp. 170-175, 1996.

[18] Fu, A. W. and Chau, S., “Cyclic-Cubes: A New Family of Interconnection Networks of

Even Fixed-Degrees”, IEEE Transactions on Parallel and Distributed Systems, Vol. 9,

No. 12, pp. 1253-1268, December 1998.

[19] Chen, M.-S. and Shin, K.G., “Depth-First Search Approach for Fault-Tolerant Routing in

Hypercube Multicomputers”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 1, No. 2, pp. 152-159, April 1990.

[20] Wong C. V., “Maze Exploration on a PC”, Nanyang Technological University, 2002.

[22] Yan Yan, “Design and Simulation of Fault-Tolerant Routing Algorithms”, Nanyang

Technological University, 2003.

[23] E.H. Mamdani & S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic

controller”, International Journal of Machine Studies, 7(1), 1975.

[24] T. Takagi & M. Sugeno, “Derivation of fuzzy control rules from human operator’s

control actions”, Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge

Representation and Decision Analysis, 55-60, July 1983.

Page 166 of 215

[25] T. Takagi & M. Sugeno, “Fuzzy identification of systems and its application to modeling

and control”, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132, 1985.

[26] M. Sugeno & K.T. Kang, “Structure identification of fuzzy model”, Fuzzy Sets and

Systems, 28, 1988.

[27] B. Kosko, “Fuzzy Engineering”, Prentice Hall, 1997.

[28] I. B. Turksen and Z. Zhong, “An approximate analogical reasoning schema based on

similarity measures and interval-valued fuzzy sets,” Fuzzy Sets Syst., vol. 34, pp. 323–

346, 1990.

[29] R. L. Mantaras, Approximate Reasoning Models. Chichester, West Essex, U.K.: Ellis

Horwood Limited, 1990.

[30] L. A. Zadeh, “Calculus of fuzzy restrictions,” in Fuzzy Sets and Their Applications to

Cognitive and Decision Processes. New York: Academic, 1975, pp. 1–39.

[31] W. L. Tung & C. Quek, “GenSoFNN: a generic self-organizing fuzzy neural network”,

IEEE Trans. on Neural Networks, 3(5), 1075-1086, 2002.

[32] K.K. Ang, C. Quek, M. Pasquier, “POPFNN-CRI(S): pseudo outer product based fuzzy

neural network using the compositional rule of inference and singleton fuzzifier”, to

appear in IEEE Trans. On Systems, Man, and Cybernetics (B), 2002.

[33] Peter, K K, Loh and W. J. Hsu, “Performance Analysis of Fault-tolerant Interval

Routing”, Proc. ISCA 11th International Conference on Parallel and Distributed

Computing Systems, Chicago, Illinois, USA, pp. 274-281, Sept. 1998

[34] Peter, K K, Loh and W. J. Hsu, “A Grouped Adaptive Packet-Switched Communications

Model”, Proc. IEEE Asia Pacific Conference on Communication / Singapore

International Conference on Communication Systems, Singapore, pp. 357-361. Nov. 1998

[35] NCUBE 6400 Processor Manual. NCUBE Company, 1990.

[36] J. Rattler, “Concurrent Processing: A New Direction in Scientific Computing,” Proc.

AFIPS Conf., vol. 54, pp. 157-166, 1985.

Page 167 of 215

[37] Wilkinson B. and Allen M., “Parallel Programming: Techniques and Applications Using

networked Workstations and Parallel Computers,” N.J.: Prentice Hall, Inc. 1999

[38] Ziavras, S.G., "RH: A Versatile Family of Reduced Hypercube Interconnection

Networks", IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 11, pp.

1210-1220, November 1994.

[39] Wu, J. and Huang, K., "The Balanced Hypercube: A Cube-Based System for Fault-

Tolerant Applications", IEEE Transactions on Computers, Vol. 46, No. 4, pp. 484-490,

April 1997.

[40] Mellor-Crummey, J.M., "Experiences with the BBN Butterfly", Digest of Papers –

Compcon Spring 88: Intellectual Leverage, 33rd IEEE Computer Society

InternationalConference, San Francisco, CA, USA, pp. 101-104, 1988.

[41] Preparata, F. and Vuillemin, J., “The cube-connected cycles: a versatile network for

parallel computation”, Communications of the ACM, Vol. 24, No. 5, pp. 300-309, May

1981.

[42] Stone, H., "Parallel processing with the perfect shuffle", IEEE Transactions on

Computers, Vol. C-20, No. 2, pp. 153-161, February 1971.

[43] Samatham, M.R. and Pradhan, D.K., "De Bruijn multiprocessor network: a versatile

parallel processing and sorting network for VLSI", IEEE Transactions on Computers,

Vol. 37, No. 7, pp. 567-581, July 1988.

[44] P.T. Gaughan and S. Yalamanchili, “Adaptive Routing Protocols for Hypercube

Interconnection Networks,” Computer, vol. 26, no. 5, pp. 12-24, May 1993.

[45] L.M. Ni and P.K. McKinley, “A Survey of Routing Techniques in

Wormhole Networks,” Computer, vol. 26, no. 2, pp. 62-76, Feb. 1993.

[46] Y. Saad and M.H. Schultz, “Data Communication in Hypercubes,” Technical Report

YALEU/DCS/RR-428, Dept. of Computer Science, Yale Univ., June 1985.

Page 168 of 215

[47] H. Sullivan, T. Bashkow, and D. Klappholz, “A Large Scale, Homogeneous,Fully

Distributed Parallel Machine,” Proc. Fourth Ann. Symp. Computer Architecture, pp. 105-

124, Mar. 1977.

[48] M.S. Chen and K.G. Shin, “Adaptive Fault-Tolerant Routing in Hypercube

Multicomputers,” IEEE Trans. Computers, vol. 39, no. 12, pp. 1,406-1,416, Dec. 1990.

[49] J.M. Gordon and Q.F. Stout, “Hypercube Message Routing in the Presence of Faults,”

Proc. Third Conf. Hypercube Concurrent Computers and Applications, pp. 251-263, Jan.

1988.

[50] T.C. Lee and J.P. Hayes, “A Fault-Tolerant Communication Scheme for Hypercube

Computers,” IEEE Trans. Computers, vol. 41, no. 10, pp. 1,242-1,256, Oct. 1992.

[51] C.S. Raghavendra, P.J. Yang, and S.B. Tien, “Free Dimension–An Effective Approach to

Achieving Fault Tolerance in Hypbercubes,” Proc. 22nd Int’l Symp. Fault-Tolerant

Computing, pp. 170-177, 1992.

[52] El-Amawy, A. and Latifi, S., "Properties and Performance of Folded Hypercubes", IEEE

Transactions on Parallel and Distributed Systems, Vol. 2, No. 1, pp. 31-42, January 1991.

[53] Tzeng, N.-F. and Wei, S., “Enhanced Hypercubes,” IEEE Transactions on Computers,

Vol. 40, No. 3, pp. 284-294, March 1991.

[54] J. Wu, “Adaptive Fault-Tolerant Routing in Cube-Based Multicomputers Using Safety

Vectors,” IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 4, pp. 321-

334, April 1996.

[55] Peter, K K, Loh and W. J. Hsu, “Fault-tolerant Communications on Hypercube-clusters,”

Journal of Interconnection Networks, Vol. 1, No. 4, pp. 315-329, December 2000.

[56] Schwabe, E.J., “On the computational equivalence of hypercube-derived networks”,

SPAA ‘90 – Proceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and

Architectures, pp. 388-397, 1990.

[57] Silberschatz, A., Peterson, J. L., Galvin, P. B., "Operating System Concepts, 3rd ed.",

Addison-Wesley, 1991.

Page 169 of 215

[58] M. D. Grammatikakis, Frank D. Hsu and M. Hraetzl, “Parallel System Interconnection

and Communications”, USA: CRC Press, 2001

[59] W. J. Dally and C. Seitz, “Deadlock Free Message Routing In Multiprocessor

Interconnection Networks,” IEEE Transaction on Computers, vol. C-36, no. 5, pp. 547-

553, 1987.

[60] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.

[61] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision

 processes”, IEEE Trans. On Systems, Man, and Cybernetics, vol. 3, no. 1, pp. 28-44,

 Jan. 1973.

[62] L. A. Zadeh, “Fuzzy logic”, Computer, vol. 1, no. 4, pp. 83-93, 1988.

[63] L. A. Zadeh, “A Theory of Approximate Reasoning,” Fuzzy Sets and Applications:

Selected Papers by L. A. Zadeh, John Wiley & Sons, 1979.

[64] Peter, K K, Loh and V. J. Hsu, “The Josephus Cube: A Novel Interconnection Network,”

Journal of Parallel Computing, vol. 26, pp. 427-453, Sept. 1999.

[65] HANDEL-C Language Overview, Celoxica Ltd., 2002.

[66] Handel-C Language Reference Manual Version 3.1, Celoxica Ltd., 2002.

[67] RC100 Hardware Manual, Celoxica Ltd., 2001.

[68] RC100 Installation Guide, Celoxica Ltd., 2001.

[69] RC100 Function Library Manual, Celoxica Ltd., 2001.

[70] RC100 Tutorial Manual, Celoxica Ltd., 2001.

[71] DK1 Design Suite User Manual Version 3.1, Celoxica Ltd., 2002.

[72] DK1 Waveform Analyzer Manual Version 1.0, Celoxica Ltd., 2001.

[73] Handel-C Floating-point Library Manual, Version 1.1, Celoxica Ltd., 2001.

[74] Tang Kong Choy, “Router Design for Regular Networks”, Nanyang Technological

University, 2002.

Page 170 of 215

 Appendix I Proof of Case III for Theorem 4.2

The case III for Theorem 4.2 is:

In a fault-free Enhanced Fibonacci Cube, there is always a preferred dimension available

at packet’s present node before the destination is reached.

Proof:

For convenience, the definition of Enhanced Fibonacci Cube is copied here.

Let ><= nnn EVEFC , denote the Enhanced Fibonacci Cube of order n, then

4422 ||0101||||0100||10||00 −−−−= nnnnn VVVVV  . Two nodes in nEFC are connected

by an edge in nE if and only if their labels differ in exactly one bit position. As initial

conditions for recursion, }0,1{3 =V , }10,00,01{4 =V ,

}010,000,100,101,001{5 =V and

}1001,1000,1010,0010,0000,0100,0101,0001{6 =V .

For Enhanced Fibonacci Cubes of low dimension, it is easy to prove the theorem by

enumeration. So now, we assume that dimension n is larger than 6. According to the

definition above, the leftmost four bits of any valid Enhanced Fibonacci Cube with

dimension over 6 can only be: 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010. Suppose

the address of current node is 0121 aaaa nn ⋅⋅⋅−− while the address of the destination node is

0121 bbbb nn ⋅⋅⋅−− . We prove the theorem by induction. Assume that the theorem hold for

dimensions less than n.

Page 171 of 215

1) If 4321 −−−− nnnn aaaa = 0000, then:

If 4321 −−−− nnnn bbbb = 0000, then either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 0001, then as 0143 aaaa nn ⋅⋅⋅−− and 0143 bbbb nn ⋅⋅⋅−− are valid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.

If 4321 −−−− nnnn bbbb = 0010, then dimension n-3 is an available preferred dimension.

If 4321 −−−− nnnn bbbb = 0100 or 0101, then dimension n-2 is an available preferred

dimension.

If 4321 −−−− nnnn bbbb = 1000, 1001 or 1010, then dimension n-1 is an available

preferred dimension.

2) If 4321 −−−− nnnn aaaa = 0001, then:

If 4321 −−−− nnnn bbbb = 0000, 0010 or 0100, then as 0143 aaaa nn ⋅⋅⋅−− and

0143 bbbb nn ⋅⋅⋅−− are valid (n-2)-dimension EFC addresses and they are different, we can

apply the induction assumption for dimension n-2.

If 4321 −−−− nnnn bbbb = 0001, then either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 1000, 1001 or 1010, then dimension n-1 is an available

preferred dimension.

If 4321 −−−− nnnn bbbb = 0101, then the analysis goes the following way:

As 4321 −−−− nnnn aaaa = 0001, thus 54321 −−−−− nnnnn aaaaa = 00010. If 6−na = 0, then

inverting 2−na to 1 will produce a new valid address and n-2 will be an available preferred

Page 172 of 215

 0 0 0 1 0 1 0 1 0 1 0 1 0

 0 1 0 1 0 1 0 0/1 0 1 0 0/1

……

Figure AI.2 Deduction flow for step 2

dimension. Otherwise, 6−na = 1, 654321 −−−−−− nnnnnn aaaaaa = 000101. So 6−nb must be 1,

otherwise dimension n-6 will be an available preferred dimension. Then, 5−nb must in turn

be 0 and 7−nb must be 0, according to the definition of EFC. 654321 −−−−−− nnnnnn bbbbbb =

010101. The deduction flow is illustrated in the following Figure AI.1. The 1 represents

that it is deduced by avoiding making dimension n-2 an available preferred dimension.

Then, 7−na must be 0, otherwise n-7 will be an available preferred dimension. If 8−na = 0,

then n-2 will be an available preferred dimension. So assume 8−na =1, 9−na = 0. If 10−na =

0, then n-2 will be an available preferred dimension. So assume 10−na = 1. If 10−nb = 0, then

n-10 will be an available preferred dimension. So assume 10−nb = 1. Thus, 9−nb = 0. The

deduction flow is illustrated in Fig. AI.2.

 0 0 0 1 0 1

 0 1 0 1 0 1 0

……

Figure AI.1 Deduction flow for step 1

Page 173 of 215

So for a, 0 and 1 appear alternately until the least significant four digits are met.

With careful analysis of the initial condition, it is easy to see that in such a worst case

studied above, n-2 will finally turn out to be an available preferred dimension.

3) If 4321 −−−− nnnn aaaa = 0010, then:

If 4321 −−−− nnnn bbbb = 0000, 0100, 0101, 1000 or 1001, then dimension n-3 is an

available preferred dimension.

If 4321 −−−− nnnn bbbb = 0001, then as 0143 aaaa nn ⋅⋅⋅−− and 0143 bbbb nn ⋅⋅⋅−− are valid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.

If 4321 −−−− nnnn bbbb = 0010, then either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 1010, then dimension n-1 is an available preferred dimension.

4) If 4321 −−−− nnnn aaaa = 0100, then:

If 4321 −−−− nnnn bbbb = 0000, 0001, 0010, 1000, 1001 or 1010 then dimension n-2 is

an available preferred dimension.

If 4321 −−−− nnnn bbbb = 0100, either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 0101, then dimension n-4 is an available preferred dimension.

5) If 4321 −−−− nnnn aaaa = 0101, then:

If 4321 −−−− nnnn bbbb = 0000, 0010, 0100, 1000 or 1010, then dimension n-4 is an

available preferred dimension.

Page 174 of 215

 0 1 0 1 0 1 0 1 0 1 0 1 0

 1/0 0 0 1 0 0/1 0 1 0 0/1 0 1 0

……

Figure AI.3 Deduction flow for case 5

If 4321 −−−− nnnn bbbb = 0101, then either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 1001 or 0001, then the proof is similar to the proof for

4321 −−−− nnnn aaaa = 0001 and 4321 −−−− nnnn bbbb = 0101. Here, we only show the deduction

flow in Figure AI.3.

6) If 4321 −−−− nnnn aaaa = 1000, then:

If 4321 −−−− nnnn bbbb = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an

available preferred dimension.

If 4321 −−−− nnnn bbbb = 1000, then either destination is reached or apply the induction

assumption for dimension n - 4.

If 4321 −−−− nnnn bbbb = 1001, then as 0143 aaaa nn ⋅⋅⋅−− and 0143 bbbb nn ⋅⋅⋅−− are valid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.

If 4321 −−−− nnnn bbbb = 1010, then dimension n-3 is an available preferred dimension.

Page 175 of 215

7) If 4321 −−−− nnnn aaaa = 1001, then:

If 4321 −−−− nnnn bbbb = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an

available preferred dimension.

If 4321 −−−− nnnn bbbb = 1000 or 1010, then as 0143 aaaa nn ⋅⋅⋅−− and 0143 bbbb nn ⋅⋅⋅−− are

valid (n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.

If 4321 −−−− nnnn bbbb = 1001, then either destination is reached or apply the induction

assumption for dimension n - 4.

8) If 4321 −−−− nnnn aaaa = 1010, then:

If 4321 −−−− nnnn bbbb = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an

available preferred dimension.

If 4321 −−−− nnnn bbbb = 1000 or 1001, then dimension n-3 is an available preferred

dimension.

If 4321 −−−− nnnn bbbb = 1010, then either destination is reached or apply the induction

assumption for dimension n - 4.

With all the situations considered carefully, we have completely proved the case III of

Theorem 4.2, and thus Theorem 4.2.

Page 176 of 215

Appendix II

Implementation Code for algorithm 6.1:

int getPath(unsigned from, unsigned to) // Assume from != to
{
 int top, bottom, current; // current stack is from 0 to top-1, current available

// record index is last;
 unsigned x1, x2, mask, diff, mid1, mid2;

 result[0].from=from;
 result[0].to = to;
 result[0].top1 = n; // dimension is from 1 to n
 result[0].index = 0;

 top = 0;
 bottom = last;

 while (top >= 0)
 {
 x1 = result[top].from;
 x2 = result[top].to;
 current = result[top].top1;
 mask = 1 << (result[top].top1 - 1);
 diff = x1 ^ x2;

 while(1) // it is guaranteed that no item in result array

// has same from and to
 {
 if (mask & diff)
 break;
 mask >>= 1;
 current --;
 }

 // x1 and x2 are different in dimension 'current' (1 to n)
 if (current == 1)
 {
 result[bottom].from = x1;
 result[bottom].to = x2;

Page 177 of 215

 result[bottom].index= result[top].index + 1;
 bottom --;
 top --;
 continue;
 }
 else
 {
 top--;
 mask = (1<<(current - 1)) - 1;
 mid1 = x1 & (~mask);
 mid1 |= (current - 1);
 mid2 = x2 & (~mask);
 mid2 |= (current - 1);

 result[bottom].from = mid1;
 result[bottom].to = mid2;
 result[bottom].index= result[top+1].index + (1<<current);
 bottom --;

 if(mid1 != x1)
 {
 top ++;
 result[top].to = mid1;
 result[top].top1 = current - 1;
 }

 if(mid2 != x2)
 {
 top ++;
 result[top].from = mid2;
 result[top].to = x2;
 result[top].top1 = current - 1;
 result[top].index = result[bottom+1].index;
 }
 }
 }

Sort(bottom + 1, last)
 return bottom + 1;
}

Page 178 of 215

Appendix III Program that calculates the diameter of αT

class entry
{
public:
 unsigned content;
 entry *previous;
};

class Stack
{
public:
 entry *current;
 Stack()
 {
 current=NULL;
 }

 void Push(unsigned i)
 {
 if(!current)
 {
 current = new entry;
 current->previous=NULL;
 current->content=i;
 }
 else
 {
 entry *temp;
 temp = new entry;
 temp->previous=current;
 temp->content=i;
 current=temp;
 }
 }

 unsigned Pop()
 {
 if(!current)
 return INFINITY;

Page 179 of 215

 unsigned result;
 entry *pre=current->previous;
 result=current->content;
 delete current;
 current = pre;
 return result;
 }

 bool Empty()
 {
 if(current)
 return false;
 else
 return true;
 }
};

class node
{
public:
 bool visited;
 int all;
 int current;
 unsigned *neighbors;

 node()
 {
 all=2;
 current=0;
 neighbors = NULL;
 }

 ~node()
 {
 delete []neighbors;
 }

 void Construct(unsigned p, int n) // there are n bits
 {
 unsigned record[30];

Page 180 of 215

 unsigned mask;

 all = 1;
 record[0]=0;
 mask = 1 << (n-1);
 mask --;
 for (unsigned i = n-1; i>0; i--)
 {
 if((p & mask) == i)
 record[all++] = i;
 mask >>= 1;
 }

 // now we get all the dimensions at which a link exists
 neighbors = new unsigned [all];
 current = 0;
 while (current < all)
 {
 mask = record [current];
 mask = 1 << mask;
 neighbors[current++] = (p ^ mask);
 }
 current = -1;
 visited = false;
 if(all==2)
 d2++;
 if(all==1)
 d1++;
 }

 unsigned getNext() // get the next unvisited neighbor
 {
 current++;
 while (current<all)
 {
 if(nodes[neighbors[current]].visited)
 {
 neighbors[current]=0; // will not be chosen
 current++;
 continue;
 }

Page 181 of 215

 return neighbors[current];
 }
 return -1;
 }

 unsigned longestPath() // return the longest path down. By the way,

// compare the max route with record
 {
 unsigned temp1, temp2;
 int dimension1=0, dimension2=0, i;

 if(all==1) // leaf, only one link (to father)
 return 0;

 temp1 = temp2 = 0;
 for (i=0; i<all; i++)
 {
 if(neighbors[i]>temp1)
 {
 temp1 = neighbors[i];
 dimension1 = i;
 }
 }
 if(all==2)
 {
 if(temp1 > max)
 max =temp1;
 return temp1;
 }

 for(i=0; i<all; i++)
 {
 if(i==dimension1)
 continue;
 if(neighbors[i]>temp2)
 {
 temp2 = neighbors[i];
 dimension2 = i;
 }
 }

Page 182 of 215

 if(temp1 + temp2 > max)
 max = temp1 + temp2;

 return temp1;
 }

 void sonDepth() // calculate the max of current son's longest path down
 {
 unsigned result = 0, son;
 if(all==1)
 return;
 son = neighbors[current];
 result = nodes[son].longestPath();
 neighbors[current] = result + 1;
 }
};

void main(void)
{
 nodes = NULL;

 for (n = 4; n < 27 ; n++)
 {
 N = 1 << n;
 d2=0;

d1=0;
 if(!nodes)
 delete []nodes;
 nodes = new node[N];
 max = 0;

 for(unsigned i = 0; i < (unsigned) N; i++)
 nodes[i].Construct(i,n);

 // now we calculate the distance
 Stack stack;
 unsigned p = 0, q;

 while(!stack.Empty() || p != INFINITY)

Page 183 of 215

 {
 if(p != INFINITY)
 {
 nodes[p].visited=true;
 stack.Push(p);
 p=nodes[p].getNext();
 }
 else // backtrack
 {
 p = stack.Pop();
 nodes[p].sonDepth();
 q = nodes[p].getNext();
 if(q != INFINITY)
 {
 stack.Push(p);
 p = q;
 }
 else
 p = INFINITY;
 }
 }
 cout<<"\n The longest distance in the graph with n="<<n<<" N="<<N

<<" is: "<<max<<endl;
 cout<<"The percentage of 2 degree nodes is: "<<d2*100.0/N<<"%"<<endl;
 cout<<"The percentage of 1 degree nodes is: "<<d1*100.0/N<<"%"<<endl;
 }
}

Page 184 of 215

Appendix IV Conversion functions for Extended

 Fibonacci Cube

unsigned CExtFibCube :: Dec2Fib
(unsigned x, unsigned digit)

{
unsigned result;
result = 0;

 digit = Num_Bits;

 while(digit > k+1)
 {
 if(x >= FibNum[digit+1])
 {
 result |= (1 << (digit - 1));
 x -= FibNum[digit + 1];
 digit -= 2;
 }
 else
 digit --;
 }
 result |= x;

 return result;
}

unsigned CExtFibCube::Fib2Dec(unsigned

x, unsigned digit)
{
 unsigned result, mask;

digit = Num_Bits; // how many
// digits are left

 resultlt = 0;
 mask = (1 << (Num_Bits - 1));
 while(digit > k+1)

 {

if(mask & x) // test the most

// significant bit
 {

// it is 1
 result += FibNum[digit+1];
 digit -= 2;
 mask >>= 2;
 }
 else //it is 0
 {
 digit --;
 mask >>= 1;
 }
 }

 if(digit == k+1)
 result += (x & ((1<<(k+1))-1));
 else
 {
 ASSERT(digit == k);
 result += (x & ((1<<k)-1));
 }

 return result;
}

Page 185 of 215

Appendix V CTimer Implementation

#define PENTIUMSPEED 2457.6
#define MHZ 1000000.0

class CTimer
{
public:

 // ULONGLONG is 64-bit unsigned
 ULONGLONG start;
 ULONGLONG duration;

 CTimer()

{
 duration = (ULONGLONG) 0;

}

 void Reset()
{

 duration = (ULONGLONG) 0;
}

void P()
{
 unsigned temptime, temptime2;

 asm{
 _emit 0x0f;
 emit 0x31; //rdtsc
 mov temptime, eax;
 mov temptime2, edx
 }

 start = temptime2;
 start <<= 32;
 start += temptime;
}

void V()
{
 unsigned temptime, temptime2;
 ULONGLONG temp;

 __asm{
 _emit 0x0f;
 emit 0x31; //rdtsc
 mov temptime, eax;
 mov temptime2, edx
 }

 temp = temptime2;
 temp <<= 32;

 temp += temptime;

 duration += (temp - start);

}

 double getDuration() // the unit

 is micro-second
 {

 double temp, result;

 // there is no direct conversion
 from ULONGLONG to double
 available, so we have to convert
 ULONGLONG to unsigned first

 temp = (double) ((unsigned)
(duration >> 32));

 temp *= 4294967296;

 result = temp + (double)((unsigned)
(duration & 0x00000000ffffffff));

 result = result * 1000000.0 /
((PENTIUMSPEED) * (MHZ));
 return result;

 }
};

Page 186 of 215

Note:

RDTSC (ReaD Time Stamp Counter) is a set of assembly directives. The _emit

directives are inline assembly code for directly insert/declare a byte into the current

text location.

The assembly directive RDTSC returns the number of clock cycles since the CPU was

powered up or reset. The number of clock cycles is measured by a 64-bit counter and is

stored in processor register EDX:EAX, where EDX contains the higher 32-bit value and

EAX the lower 32-bit.

The experiment is carried out on a 2.4GHz CPU, so PENTIUMSPEED is set to 1024 ×

2.4 = 2457.6. Since the 64-bit counter can represent more than 82850 days, it is free

from overflow. When running on other computers, this parameter may need to be

modified correspondingly.

Page 187 of 215

APPENDIX VI Raw Data of Simulation Result

MALatency: Mean Average Latency

AL SD: Average Latency Standard Derivation

Mthroughput: Mean Throughput

Throughput SD: Mean Throughput Standard Derivation

EN: Erroneous nodes, faulty nodes

EL: Erroneous links, faulty links

For regular Fibonacci Cube, with no fault. Simulation duration is 60 seconds.

Dimension MALatency AL SD MThroughput Throughput SD
5 5.731 0.212 2083902.953 39478.423
6 7.807 0.279 2509919.394 54907.034
7 9.992 0.305 3230724.711 40587.542
8 13.08 0.296 4200724.86 52155.955
9 16.095 0.521 5590315.3 50274.17

10 16.455 0.35 6649473.716 104408.736
11 20.155 0.406 5658421.504 139069.747
12 32.974 0.449 3191762.076 135310.57
13 54.566 0.979 2938218.173 100489.502
14 87.058 1.752 3701941.373 47461.994
15 114.863 2.767 7103450.59 74553.727
16 151.413 3.259 13099109.48 107931.935
17 190.072 3.628 23680371.47 404451.255
18 232.201 3.315 43698701.97 180854.325
19 275.059 4.76 75878409.95 711924.2
20 303.067 5.738 112260412.5 816434.957
21 289.345 1.61 162391187.7 2288984.601
22 242.265 2.305 243288065.4 10032688
23 189.133 1.747 350782433.1 18131088.72

For binary hypercube, with no fault. Simulation duration is 60 seconds

Dimension MALatency AL SD MThroughput Throughput SD
5 6.996 0.208 3046390.319 127271.508
6 10.093 0.383 4667176.013 95245.157
7 13.31 0.416 6313704.597 131947.345
8 15.935 1.056 6279516.186 166424.374
9 27.196 0.252 7334754.301 74366.35

10 44.961 0.776 13764698.95 190518.435
11 70.103 0.567 28554984.68 345918.469
12 106.431 1.369 58404606.18 527898.822
13 148.386 1.39 111371365.7 455649.988
14 170.444 2.784 193501166.9 1435244.624
15 157.378 0.81 346341553.8 9767170.654

Page 188 of 215

For Enhanced Fibonacci Cube, with no fault. Simulation duration is 60 seconds.

Dimension MALatency AL SD Mthroughput Throughput SD
5 6.118 0.334 1867121.121 32300.797
6 7.754 0.153 2282489.291 104697.344
7 10.56 0.249 3092194.369 45348.138
8 14.422 0.634 3649553.66 46371.699
9 19.084 0.423 4574387.498 40678.36

10 19.623 0.302 4071091.475 58355.813
11 26.128 0.493 4620221.082 132135.598
12 44.148 1.543 3512369.454 80139.695
13 78.206 1.528 4530388.221 188164.791
14 113.292 1.345 6578548.289 109678.648
15 155.442 3.533 14938441.68 208868.714
16 202.393 4.199 23031271.55 276336.661
17 274.073 2.346 48805511.77 270534.491
18 347.074 7.622 74274771.66 172534.607
19 390.71 7.771 118787792.3 1045183.748
20 383.481 5.161 156077315.7 1477467.015
21 312.276 2.172 251850034.3 12029546.57
22 246.282 2.134 344473927.4 20065672.56

For Extended Fibonacci Cube XFC1, with no fault. Simulation duration is 60 seconds.

Dimension MALatency AL SD Mthroughput Throughput SD
5 6.111 0.548 1997666.045 129741.239
6 8.398 0.441 2544305.343 68773.57
7 10.506 0.525 3022916.698 40881.233
8 13.589 0.435 3763136.654 61615.341
9 16.449 0.483 4091118.929 102616.141

10 19.643 0.232 4164382.708 25607.429
11 25.031 0.312 3275873.753 43656.724
12 41.716 0.815 2714505.551 73940.93
13 70.684 1.9 3192470.325 87453.553
14 102.635 2.163 4735510.016 68645.701
15 132.692 1.857 8988125.719 187721.677
16 165.983 3.745 16699058.48 123745.832
17 213.803 3.865 31539444.04 127224.894
18 261.356 5.957 57534241.64 425847.624
19 293.774 2.818 93071257.8 338624.828
20 299.232 1.542 133804007.5 822463.41
21 263.198 2.144 200622752.2 7332553.462

Page 189 of 215

For binary hypercubes with faulty nodes only. Simulation duration is 60 seconds.

Dimension EN MALatency AL SD Mthroughput Throughput SD
14 0 170.444 2.784 193501166.9 1435244.624
14 1 170.908 2.317 193452666.5 1099476.623
14 2 170.767 2.733 192553922.8 1775080.445
14 3 171.05 1.752 193229950.5 1196041.28
14 4 171.331 2.636 193922825.4 1274647.738
14 5 171.15 2.523 192788940.4 1433044.25
14 6 171.64 3.356 192156973.4 2101961.334
14 7 171.309 2.507 192740750.9 718702.298
14 8 171.457 2.965 192409636.3 2235970.311
14 9 170.89 3.169 193015906.2 2094651.531
14 10 171.153 2.205 192640297.3 903856.609
14 11 171.021 3.55 192151673.6 1964048.968
14 12 171.908 2.281 192509583.2 1060578.947
14 13 172.762 2.749 192678761.5 1179273.101

For regular Fibonacci Cube with faulty nodes only. Simulation duration is 60 seconds.

Dimension EN MALatency AL SD Mthroughput Throughput SD
20 0 303.067 5.738 112260412.5 816434.957
20 1 302.155 3.766 111999010.1 541699.452
20 2 303.922 2.429 112390575.2 392661.017
20 3 300.991 4.642 112372574.4 1336658.26
20 4 301.532 5.531 112122284 530947.712
20 5 302.823 4.883 112363961.4 581985.825
20 6 303.247 5.94 111776616.1 1101095.928

For Enhanced Fibonacci Cube with faulty nodes only. Simulation duration is 60 seconds.

Dimension EN Average Latency MALatency Mthroughput Throughput SD
19 0 389.103 7.771 118787792.3 1045183.748
19 1 389.226 4.438 119188267.7 863318.596
19 2 389.36 6.259 118588758.3 345219.298
19 3 389.487 6.328 119074739.5 819653.202
19 4 389.874 8.033 119112338.6 1245026.195
19 5 390.34 9.299 118558303.6 672637.849

Page 190 of 215

For Extended Fibonacci Cube XFC1 with faulty nodes only.
Simulation duration is 60 seconds.

Dimension EN MALatency AL SD Mthroughput Throughput SD
18 0 261.356 5.957 57534241.64 425847.624
18 1 258.198 2.785 57444466.25 333138.835
18 2 259.587 2.886 57502706.45 305976.943
18 3 259.561 2.207 57398983.78 249533.696
18 4 257.964 5.649 57688070.44 1426735.889
18 5 260.374 4.093 57366672.28 220644.97
18 6 257.031 6.869 57740320.65 559855.318

Collective data for regular Fibonacci Cube. Simulation duration is 60 seconds.

Dimension EN EL MALatency AL SD Mthroughput Throughput SD

5 0 0 5.731 0.212 2083902.953 39478.423
6 0 0 7.807 0.279 2509919.394 54907.034
7 0 0 9.992 0.305 3230724.711 40587.542
8 0 0 13.08 0.296 4200724.86 52155.955
9 0 0 16.095 0.521 5590315.3 50274.17

10 0 0 16.455 0.35 6649473.716 104408.736
11 0 0 20.155 0.406 5658421.504 139069.747
12 0 0 32.974 0.449 3191762.076 135310.57
13 0 0 54.566 0.979 2938218.173 100489.502
14 0 0 87.058 1.752 3701941.373 47461.994
15 0 0 114.863 2.767 7103450.59 74553.727
16 0 0 151.413 3.259 13099109.48 107931.935
17 0 0 190.072 3.628 23680371.47 404451.255
18 0 0 232.201 3.315 43698701.97 180854.325
19 0 0 275.059 4.76 75878409.95 711924.2
20 0 0 303.067 5.738 112260412.5 816434.957
21 0 0 289.345 1.61 162391187.7 2288984.601
22 0 0 242.265 2.305 243288065.4 10032688
23 0 0 189.133 1.747 350782433.1 18131088.72
5 1 0 5.841 0.386 1618549.516 72194.816
6 1 0 7.351 0.39 2126026.976 113579.376
7 1 0 10.145 0.353 2761105.574 90267.137
8 1 0 13.292 0.504 3372483.103 64298.75
9 1 0 16.739 0.993 4304299.715 195288.141

10 1 0 16.5 1.097 4861723.763 143332.959
11 1 0 21.529 0.853 4273978.892 86374.399
12 1 0 33.45 0.728 2970892.611 118091.51
13 1 0 55.81 2.192 2822988.235 81006.148
14 1 0 87.192 1.149 3750585.78 92523.637

Page 191 of 215

15 1 0 112.604 1.456 7171639.391 89578.961
16 1 0 146.284 1.068 13068279.02 129118.695
17 1 0 193.371 5.441 23525662.46 230885.207
18 1 0 228.362 3.619 43880389.04 236422.429
19 1 0 276.543 9.206 75734875.52 333895.796
20 1 0 302.155 3.766 111999010.1 541699.452
21 1 0 287.889 3.68 161551742.5 2901851.687
22 1 0 242.436 1.367 241733277.3 9015897.691
23 1 0 189.254 1.425 352411767.5 19880373.02
7 2 0 9.834 0.457 2673296.987 121027.335
8 2 0 12.962 0.365 3281306.28 87370.985
9 2 0 16.481 0.726 4248450.497 175355.554

10 2 0 17.117 0.447 4318529.501 112847.492
11 2 0 22.314 0.807 3802018.538 67406.071
12 2 0 34.379 1.836 2899333.034 279764.286
13 2 0 55.788 1.207 2827076.315 137049.032
14 2 0 86.611 1.384 3661348.803 111057.116
15 2 0 111.645 1.548 7167980.838 303127.802
16 2 0 147.621 1.313 12922902.61 227256.572
17 2 0 189.557 6.229 23715267.72 326830.328
18 2 0 232.7 4.317 43537637.1 116949.548
19 2 0 278.776 4.242 76261005.38 549153.146
20 2 0 303.922 2.429 112390575.2 392661.017
21 2 0 287.411 2.868 162237785.1 2675653.88
22 2 0 244.045 1.89 242105643.7 8285151.7
23 2 0 189.183 1.294 351914363.9 18288048.95
10 3 0 17.602 1.981 4053731.24 381424.032
11 3 0 21.675 0.657 3501868.693 432017.043
12 3 0 33.061 0.945 3072415.772 54872.898
13 3 0 55.599 1.47 2847679.812 84563.958
14 3 0 87.865 1.621 3792607.37 127188.396
15 3 0 117.009 2.888 7155727.834 115170.834
16 3 0 151.481 3.376 12895748.08 184784.944
17 3 0 193.618 4.854 23872469.42 225886.935
18 3 0 234.779 2.631 43623510.47 628782.563
19 3 0 276.977 6.405 75651568.99 1182848.891
20 3 0 300.991 4.642 112372574.4 1336658.26
21 3 0 289.744 1.73 160943842.6 2597467.327
22 3 0 243.417 1.349 242547865.8 9674494.215
23 3 0 188.369 1.149 351941789.4 19237030.7
13 4 0 55.289 1.597 2807826.854 68066.228
14 4 0 86.307 2.557 3697107.437 169624.455
15 4 0 115.346 1.603 7157687.081 275615.391
16 4 0 148.617 2.178 13037838.15 261051.447
17 4 0 191.644 3.571 23605535.18 125514.916
18 4 0 234.495 5.669 43405108.42 208137.297
19 4 0 277.937 3.948 75911122.39 617764.067
20 4 0 301.532 5.531 112122284 530947.712

Page 192 of 215

21 4 0 287.936 4.619 160748440.7 2047598.54
22 4 0 242.596 1.688 242899126.6 9647192.063
23 4 0 188.031 0.893 352360852.8 19045274.37
16 5 0 151.647 3.61 12895138.08 129809.399
17 5 0 189.658 3.958 23711335.99 294883.227
18 5 0 234.082 2.601 43850272.85 441577.508
19 5 0 278.013 6.432 75747040.73 727315.024
20 5 0 302.823 4.883 112363961.4 581985.825
21 5 0 286.8 3.94 161293466.8 2432747.019
22 5 0 241.441 1.253 239650845.7 9331981.02
23 5 0 187.879 1.663 351191231.1 17631945.04
19 6 0 273.405 3.079 75397343.12 964119.355
20 6 0 303.247 5.94 111776616.1 1101095.928
21 6 0 288.296 1.199 161496358.9 2356425.875
22 6 0 242.883 0.266 243473027.6 10952392.96
23 6 0 188.372 1.216 352543696.4 15539182.15
22 7 0 243.434 1.387 242832192.6 9331375.855
23 7 0 188.519 0.904 351617990.2 17437587.55
5 0 1 6.097 0.462 1726640.593 98924.5
6 0 1 7.617 0.321 2182032.631 36757.316
7 0 1 9.876 0.264 2738781.763 42109.965
8 0 1 13.741 0.52 3377856.11 28762.92
9 0 1 17.135 0.446 3933021.1 100574.699

10 0 1 18.982 0.702 4176426.926 54626.762
11 0 1 22.066 0.55 3494240.258 105971.85
12 0 1 34.805 0.512 2945132.317 123370.165
13 0 1 55.586 1.306 2873227.469 122647.05
14 0 1 87.152 2.031 3697591.115 105786.394
15 0 1 113.826 2.418 7085188.141 85301.345
16 0 1 145.261 3.331 12794124.43 167862.113
17 0 1 186.044 5.554 23519854.81 287804.907
18 0 1 232.573 2.801 43135061.68 968377.075
19 0 1 278.354 5.378 76279807.61 646134.003
20 0 1 304.017 6.072 112479316.7 1401271.608
21 0 1 287.328 1.625 161746953.7 2281468.207
22 0 1 244.863 2.146 242518784.7 8230428.261
23 0 1 188.295 1.254 351867941.6 18445606.29
7 0 2 9.779 0.33 2802521.589 119372.526
8 0 2 12.656 0.593 3518964.724 35118.731
9 0 2 16.127 1.415 4349712.159 137129.389

10 0 2 17.628 0.756 4176483.821 91787.965
11 0 2 22.46 0.6 3581334.523 89022.239
12 0 2 34.24 0.723 2961031.809 97220.94
13 0 2 55.877 1.135 2864100.956 86629.739
14 0 2 89.591 1.079 3692789.936 85996.717
15 0 2 112.918 1.949 7219054.51 159439.033
16 0 2 150.229 2.882 13095535.83 83780.784
17 0 2 192.874 3.601 23625762.59 392668.198

Page 193 of 215

18 0 2 233.495 4.189 43668385.69 175002.276
19 0 2 287.79 5.453 76274428.92 593318.292
20 0 2 304.549 4.808 112627107.9 585352.334
21 0 2 289.082 2.329 161944709.8 3531325.42
22 0 2 242.9 2.657 241599965.2 9807168.625
23 0 2 188.672 0.717 350587767 18556023.75
10 0 3 17.32 0.504 3711813.572 546014.565
11 0 3 22.032 0.931 3533562.056 53993.652
12 0 3 33.536 0.547 3019382.803 135932.695
13 0 3 55.69 1.729 2844721.862 65727.717
14 0 3 87.129 0.646 3721347.095 59245.802
15 0 3 114.518 1.331 7118970.867 144171.111
16 0 3 150.57 3.98 13052741.42 166682.883
17 0 3 188.052 2.865 23593775.54 362548.149
18 0 3 233.928 4.436 43451445.28 738088.005
19 0 3 278.64 6.693 76155587.76 501383.903
20 0 3 303.413 3.892 112228353.9 969003.748
21 0 3 290.387 5.056 162390931.8 3430973.882
22 0 3 243.535 1.639 242304501.6 8608072.177
23 0 3 189.263 1.051 352163094.2 18593234.63
13 0 4 57.292 1.753 2788187.992 59873.767
14 0 4 89.303 1.44 3654662.547 145141.466
15 0 4 112.32 0.809 7174184.481 247667.038
16 0 4 148.099 4.263 12945073.51 75679.358
17 0 4 190.316 2.809 23817456.21 362849.662
18 0 4 234.931 5.005 43424581.28 374666.141
19 0 4 276.827 3.517 75686593.32 211857.105
20 0 4 306.673 4.105 112476295.8 775496.677
21 0 4 287.735 5.154 160781004.7 4558053.091
22 0 4 244.242 1.344 243464016.5 12076438.39
23 0 4 189.009 1.679 350583164.3 15822572.61
16 0 5 148.207 3.971 13091493.97 252983.409
17 0 5 193.847 5.429 23797481.04 310887.189
18 0 5 232.828 3.864 43764896.03 196767.528
19 0 5 274.506 4.64 75819387.85 516854.958
20 0 5 306.385 5.223 112254312 426331.319
21 0 5 288.236 4.162 161979297.4 1634858.237
22 0 5 241.491 2.279 243080694.9 9227651.419
23 0 5 189.089 1.359 350743196.8 14963819.5
19 0 6 275.523 3.469 76123014.35 946650.689
20 0 6 301.867 8.611 111961538.8 1357248.707
21 0 6 288.467 1.411 161668584.8 2459544.243
22 0 6 242.885 1.266 243385355 9457780.62
23 0 6 188.927 1.768 352804366.1 18667659.5
22 0 7 243.267 1.537 242964575.4 10349595.84
23 0 7 187.924 1.022 351066937.1 19037467.13

Page 194 of 215

Collective data for Enhanced Fibonacci Cube. Simulation duration is 60 seconds.

Dimension EN EL MALatency AL SD Mthroughput Throughput SD

5 0 0 6.118 0.334 1867121.121 32300.797
6 0 0 7.754 0.153 2282489.291 104697.344
7 0 0 10.56 0.249 3092194.369 45348.138
8 0 0 14.422 0.634 3649553.66 46371.699
9 0 0 19.084 0.423 4574387.498 40678.36

10 0 0 19.623 0.302 4071091.475 58355.813
11 0 0 26.128 0.493 4620221.082 132135.598
12 0 0 44.148 1.543 3512369.454 80139.695
13 0 0 78.206 1.528 4530388.221 188164.791
14 0 0 113.292 1.345 6578548.289 109678.648
15 0 0 155.442 3.533 14938441.68 208868.714
16 0 0 202.393 4.199 23031271.55 276336.661
17 0 0 274.073 2.346 48805511.77 270534.491
18 0 0 347.074 7.622 74274771.66 172534.607
19 0 0 390.71 7.771 118787792.3 1045183.748
20 0 0 383.481 5.161 156077315.7 1477467.015
21 0 0 312.276 2.172 251850034.3 12029546.57
22 0 0 246.282 2.134 344473927.4 20065672.56
5 1 0 5.71 0.233 1806157.496 69316.26
6 1 0 8.204 0.551 2274568.786 68934.367
7 1 0 10.208 0.404 3076542.438 86355.255
8 1 0 13.265 0.53 3623835.395 93915.813
9 1 0 18.327 0.438 4555702.767 85419.56

10 1 0 20.713 0.905 4152025.833 182298.417
11 1 0 25.916 0.722 4585471.892 80212.826
12 1 0 42.068 0.482 3642861.426 115700.707
13 1 0 78.27 1.757 4393053.915 109338.073
14 1 0 115.706 1.572 6441498.929 157801.34
15 1 0 152.267 1.944 15046982.34 203165.737
16 1 0 209.334 5.279 23003218.71 177685.27
17 1 0 270.691 2.291 48922694.62 199340.486
18 1 0 346.876 6.341 73737042.87 354749.655
19 1 0 389.226 4.438 119188267.7 863318.596
20 1 0 385.027 3.376 155825532.7 1769757.061
21 1 0 314.34 0.896 249601221 7778148.909
22 1 0 247.042 1.762 344035808.4 18404266.83
7 2 0 11.133 0.398 2771060.221 107246.006
8 2 0 14.65 0.514 3528522.659 63827.118
9 2 0 19.084 1.056 4433637.198 227404.401

10 2 0 20.871 0.834 4062656.006 224152.334
11 2 0 25.628 0.228 4598448.576 150059.556
12 2 0 43.028 0.732 3598269.413 92982.134
13 2 0 76.712 2.691 4262932.036 68213.402

Page 195 of 215

14 2 0 111.339 0.988 6559022.755 80519.54
15 2 0 153.825 1.334 14930533.78 91939.792
16 2 0 202.543 5.096 22896998.21 276669.631
17 2 0 277.992 7.182 48969139.38 297260.358
18 2 0 345.463 10.003 73669825.81 684904.337
19 2 0 389.36 6.259 118588758.3 345219.298
20 2 0 383.166 3.139 156490431 1662560.385
21 2 0 314.969 1.242 249694022.6 9597898.654
22 2 0 246.796 1.627 343678362.9 17699673.98
11 3 0 26.426 1.042 4133120.75 755453.876
12 3 0 42.891 1.204 3574800.007 150248.202
13 3 0 75.908 3.086 4873139.713 733733.12
14 3 0 112.416 1.531 6539897.814 214966.603
15 3 0 152.845 2.237 15017944.48 158367.045
16 3 0 208.456 6.422 22967991.32 91091.56
17 3 0 275.9 2.421 48962135.26 289153.107
18 3 0 346.384 7.898 73936986.34 188041.717
19 3 0 389.487 6.328 119074739.5 819653.202
20 3 0 380.408 3.562 155081077.5 1991664.857
21 3 0 313.956 2.471 250556457.7 8478897.847
22 3 0 246.449 2.823 342505667.2 20639260.24
15 4 0 156.31 3.007 14834361.69 174277.391
16 4 0 206.398 5.587 23057417.98 237013.718
17 4 0 274.663 5.086 48863649.37 315978.506
18 4 0 344.365 4.659 73784511.28 486207.859
19 4 0 389.874 8.033 119112338.6 1245026.195
20 4 0 382.306 7.16 155713921.5 1206456.477
21 4 0 314.385 1.608 250967736.2 7878142.644
22 4 0 246.371 3.922 343893082.2 15642781.34
19 5 0 390.34 9.299 118558303.6 672637.849
20 5 0 383.077 2.094 156335015.9 2237025.259
21 5 0 314.231 2.089 250423555.3 10536274.42
22 5 0 245.701 3.081 345318373.1 14166987.47
5 0 1 5.913 0.606 1738072.97 54078.904
6 0 1 8.454 0.157 2128601.381 57988.136
7 0 1 10.314 0.329 3030071.585 35245.483
8 0 1 14.105 0.305 3712643.842 68783.47
9 0 1 18.817 0.4 4589546.343 145671.878

10 0 1 20.157 0.325 3920837.921 67124.555
11 0 1 25.427 0.462 4383760.221 104734.372
12 0 1 42.895 0.853 3511298.085 94526.91
13 0 1 78.235 0.601 4421358.734 92258.085
14 0 1 112.703 1.924 6550176.688 154399.633
15 0 1 152.969 1.905 14870029.12 149333.778
16 0 1 211.559 5.71 22865480.7 181100.807
17 0 1 271.56 4.735 48709198.79 356366.441
18 0 1 347.174 4.646 74148256.74 467713.211
19 0 1 391.082 3.139 118899222 373324.041

Page 196 of 215

20 0 1 381.917 4.058 156285886.8 1646609.492
21 0 1 313.457 2.209 250591097.2 9896198.119
22 0 1 246.09 4.139 343276434.8 18627791.84
7 0 2 10.861 0.463 2814787.708 134346.328
8 0 2 15.161 0.417 3613595.657 77756.136
9 0 2 20.597 0.891 4056322.533 100120.965

10 0 2 20.915 0.63 3660536.852 101170.579
11 0 2 26.315 0.588 4637002.448 174019.213
12 0 2 43.356 0.808 3532656.083 80737.812
13 0 2 79.142 1.361 4467803.84 140991.044
14 0 2 113.31 1.789 6512454.05 154709.263
15 0 2 154.629 0.897 14996845.95 77816.02
16 0 2 204.266 4.345 22998459.83 364659.954
17 0 2 275.528 6.063 49273206.53 333990.466
18 0 2 347.004 6.016 73913898.29 1628582.269
19 0 2 393.537 3.98 119019819.5 459906.788
20 0 2 383.687 3.15 155959662 1495539.401
21 0 2 314.682 1.553 250923979.6 11023890.63
22 0 2 246.645 1.588 346237730.9 19729948.56
11 0 3 27.622 0.513 4111040.053 419462.646
12 0 3 44.571 0.967 3401995.803 106968.962
13 0 3 77.243 1.586 4410671.022 113806.882
14 0 3 112.682 2.115 6656273.537 103666.951
15 0 3 151.975 2.888 14950240.91 180415.723
16 0 3 206.454 4.427 22983022.88 128445.298
17 0 3 272.376 4.855 48783163.68 504878.403
18 0 3 344.358 7.897 73917757.8 413888.247
19 0 3 394.308 2.715 118612891.1 241032.091
20 0 3 382.58 1.863 156519151.8 1779986.328
21 0 3 313.468 2.54 250977576.2 9411008.265
22 0 3 246.389 4.667 343592958.9 16184394
15 0 4 156.033 2.155 14610265.86 318944.431
16 0 4 199.774 6.628 22947311.83 261322.581
17 0 4 270.988 1.392 48830965.89 307736.668
18 0 4 343.493 6.995 74185642.88 566054.476
19 0 4 390.904 8.031 118380790.8 331526.558
20 0 4 384.115 5.605 156363799.5 1741559.548
21 0 4 314.838 1.682 250898967.1 8157147.348
22 0 4 245.821 3.64 344261416.4 21121078.05
19 0 5 390.806 15.652 118847907.8 1102955.553
20 0 5 382.057 1.05 156022912.9 1447976.38
21 0 5 312.647 2.212 250825025.8 7926472.788
22 0 5 245.92 2.193 344638066.7 19158723.89

Page 197 of 215

Collective data for Extended Fibonacci Cube XFC1. Simulation duration is 60 seconds.

Dimension Subscript EN EL MALatency AL SD Mthroughput Throughput SD

21 1 0 0 263.198 2.144 200622752.2 7332553.462
20 1 0 0 299.232 1.542 133804007.5 822463.41
19 1 0 0 293.774 2.818 93071257.8 338624.828
18 1 0 0 261.356 5.957 57534241.64 425847.624
17 1 0 0 213.803 3.865 31539444.04 127224.894
16 1 0 0 165.983 3.745 16699058.48 123745.832
15 1 0 0 132.692 1.857 8988125.719 187721.677
14 1 0 0 102.635 2.163 4735510.016 68645.701
13 1 0 0 70.684 1.9 3192470.325 87453.553
12 1 0 0 41.716 0.815 2714505.551 73940.93
11 1 0 0 25.031 0.312 3275873.753 43656.724
10 1 0 0 19.643 0.232 4164382.708 25607.429
9 1 0 0 16.449 0.483 4091118.929 102616.141
8 1 0 0 13.589 0.435 3763136.654 61615.341
7 1 0 0 10.506 0.525 3022916.698 40881.233
6 1 0 0 8.398 0.441 2544305.343 68773.57
5 1 0 0 6.111 0.548 1997666.045 129741.239

21 1 1 0 265.219 3.161 199088120.6 7303813.555
20 1 1 0 296.97 2.504 133436741.5 771502.698
19 1 1 0 293.887 1.872 92905390.07 1351086.941
18 1 1 0 258.198 2.785 57444466.25 333138.835
17 1 1 0 215.471 4.197 31525904.34 249118.385
16 1 1 0 167.814 3.105 16841782.87 237712.569
15 1 1 0 134.265 1.759 9088189.582 157547.852
14 1 1 0 100.534 0.458 4783634.634 277797.116
13 1 1 0 70.75 1.362 3236308.469 117527.675
12 1 1 0 40.924 1.132 2706430.195 45522.29
11 1 1 0 24.75 1.21 3481050.429 737040.567
10 1 1 0 19.234 0.312 4155260.1 83642.79
9 1 1 0 16.534 0.351 4350247.757 72987.535
8 1 1 0 13.743 0.588 3704667.997 118894.186
7 1 1 0 10.714 0.189 3059107.766 59656.619
6 1 1 0 7.885 0.217 2495627.764 29566.618
5 1 1 0 6.091 0.224 2052280.149 66398.359

21 1 2 0 265.971 1.285 200331426.7 6732831.867
20 1 2 0 299.762 2.077 133444323.9 878399.877
19 1 2 0 292.358 2.463 93298069.21 533850.245
18 1 2 0 259.587 2.886 57502706.45 305976.943
17 1 2 0 210.825 3.521 31619763.34 230008.725
16 1 2 0 169.772 4.991 16732718.49 183719.05
15 1 2 0 132.692 2.691 8940323.215 117265.276
14 1 2 0 102.837 2.337 4807856.749 81899.904

Page 198 of 215

13 1 2 0 70.127 1.916 3131084.288 71053.123
12 1 2 0 41.236 1.931 2918028.031 737677.167
11 1 2 0 24.933 0.264 3314056.278 523110.038
10 1 2 0 19.363 0.796 4149873.43 250568.257
9 1 2 0 17.199 1.136 4550593.055 228117.283
8 1 2 0 14.096 0.481 3758240.471 118674.347
7 1 2 0 10.463 0.463 2949211.73 42588.169
6 1 2 0 7.756 0.362 2513267.792 40896.691
5 1 2 0 6.256 0.377 1901078.027 77532.58

21 1 3 0 265.262 4.414 199684343.4 7468818.212
20 1 3 0 296.77 1.682 133274466.3 1366219.362
19 1 3 0 294.193 2.314 92832158.88 574327.548
18 1 3 0 259.561 2.207 57398983.78 249533.696
17 1 3 0 210.228 3.894 31315760.46 290424.634
16 1 3 0 171.007 2.464 16590856.54 333729.919
15 1 3 0 133.238 1.655 9043464.201 152959.693
14 1 3 0 102.363 2.097 4789679.141 70501.799
13 1 3 0 68.799 1.66 3263554.472 68176.457
12 1 3 0 41.952 0.812 2796851.13 81633.806
11 1 3 0 24.405 1.378 3519281.432 768508.652
10 1 3 0 19.434 1.013 4285503.26 397783.673
9 1 3 0 17.385 1.334 4710003.484 272999.955
8 1 3 0 14.669 0.286 3950009.379 188964.102

21 1 4 0 266 3.273 200881711.6 7309829.236
20 1 4 0 296.992 2.113 133419870.7 1229102.729
19 1 4 0 292.927 2.508 92883316.93 229330.581
18 1 4 0 257.964 5.649 57688070.44 1426735.889
17 1 4 0 211.891 4.025 31475005.84 361711.042
16 1 4 0 165.688 3.052 16768644.21 149272.382
15 1 4 0 131.462 1.222 8905400.523 155797.718
14 1 4 0 102.64 1.61 4776977.777 26544.413
13 1 4 0 67.502 0.968 3159847.425 366031.919
12 1 4 0 41.317 1.191 3572525.236 471813.232
11 1 4 0 24.709 0.814 3547430.753 334499.955
21 1 5 0 265.047 3.059 201178621.7 8274876.642
20 1 5 0 296.934 3.088 133606854.8 666252.068
19 1 5 0 292.911 4.067 92802440.8 920262.299
18 1 5 0 260.374 4.093 57366672.28 220644.97
17 1 5 0 214.567 2.777 31545974.96 189719.366
16 1 5 0 168.595 4.15 17003736.79 318931.2
15 1 5 0 131.737 1.697 9017893.049 309165.247
14 1 5 0 102.002 2.825 4980801.951 316371.054
21 1 6 0 266.969 1.374 199302577.7 7297633.83
20 1 6 0 297.524 1.572 133976585.7 1177269.866
19 1 6 0 292.98 1.61 93147551.45 627383.95
18 1 6 0 257.031 6.869 57740320.65 559855.318
17 1 6 0 217.06 3.138 31522824.11 460011.848
21 1 7 0 266.117 1.682 200664295 6536290.811

Page 199 of 215

20 1 7 0 300.143 1.94 132977548.1 609171.502
21 1 0 1 265.572 2.172 199385330.5 5733065.957
20 1 0 1 297.015 2.151 133627413.9 1255472.491
19 1 0 1 294.224 3.016 92647415.64 665297.084
18 1 0 1 255.241 1.876 57350700.07 422341.553
17 1 0 1 208.725 5.344 31796454.76 460435.078
16 1 0 1 168.918 4.693 16724094.66 99699.997
15 1 0 1 132.915 2.042 8991897.849 133163.856
14 1 0 1 99.754 2.007 4776551.37 125197.212
13 1 0 1 70.186 1.208 3202758.981 36236.102
12 1 0 1 40.987 0.853 2716972.14 33192.018
11 1 0 1 24.418 0.263 3329010.302 31272.175
10 1 0 1 19.422 0.301 4359067.714 115008.857
9 1 0 1 16.275 0.262 4450664.645 85206.181
8 1 0 1 13.609 0.742 3905100.304 89791.69
7 1 0 1 11.101 0.359 2964917.13 37992.225
6 1 0 1 8.498 0.226 2445427.197 57025.154
5 1 0 1 6.005 0.461 2026803.782 72590.5

21 1 0 2 265.967 1.687 199600120.9 5273566.624
20 1 0 2 295.156 3.415 134119309.3 884143.156
19 1 0 2 292.187 1.405 92992569.53 297372.361
18 1 0 2 257.205 4.534 57560594.59 613404.955
17 1 0 2 212.226 1.638 31203823.75 323857.221
16 1 0 2 168.068 3.747 16691231.79 135221.991
15 1 0 2 133.163 1.653 8997325.64 93368.63
14 1 0 2 102.299 1.638 4740069.734 68881.209
13 1 0 2 69.697 1.967 3169418.418 59662.239
12 1 0 2 40.487 0.353 2719432.101 51808.733
11 1 0 2 24.952 0.37 3193031.031 38434.247
10 1 0 2 19.666 0.898 4100552.058 364657.107
9 1 0 2 16.683 0.834 4485865.045 279743.274
8 1 0 2 13.677 0.194 3791233.691 76439.006
7 1 0 2 10.696 0.207 3052559.3 48833.829
6 1 0 2 8.305 0.469 2570836.011 40704.135
5 1 0 2 6.449 0.497 2121097.91 39028.761

21 1 0 3 264.61 2.163 199448640 5780222.65
20 1 0 3 297.657 2.243 133299337.4 1238084.378
19 1 0 3 293.128 2.175 93308591 800260.93
18 1 0 3 256.248 1.703 57419114.64 340689.725
17 1 0 3 212.189 1.858 31243565.65 389286.49
16 1 0 3 173.482 6.424 16875165.17 156700.73
15 1 0 3 132.887 0.998 9003571.707 187107.415
14 1 0 3 101.812 2.216 4841758.091 117702.954
13 1 0 3 68.596 1.659 3306859.903 66659.529
12 1 0 3 41.719 1.012 2727866.412 60890.266
11 1 0 3 24.598 0.615 3179344.055 42413.222
10 1 0 3 19.421 0.267 3933510.969 118726.283
9 1 0 3 16.637 0.377 4134940.935 122416.438

Page 200 of 215

8 1 0 3 13.833 0.263 3769035.305 45632.055
21 1 0 4 266.315 0.584 199320506.1 5795558.376
20 1 0 4 297.983 4.193 133773502.2 1081045.327
19 1 0 4 295.06 3.178 93237995.58 755807.748
18 1 0 4 258.236 3.077 57144973 356155.614
17 1 0 4 209.739 1.502 31286770.17 308067.937
16 1 0 4 165.187 4.429 16766313.59 238018.662
15 1 0 4 131.898 3.021 8947275.425 101865.77
14 1 0 4 103.619 1.135 4751042.126 106725.325
13 1 0 4 69.624 2.041 3144186.163 59149.646
12 1 0 4 41.893 0.871 2719853.494 61261.43
11 1 0 4 24.457 0.632 3222281.782 46398.769
21 1 0 5 266.437 2.069 199165263 5403703.717
20 1 0 5 296.127 3.09 133332157.9 334061.544
19 1 0 5 293.935 3.089 93250037.55 2847316.239
18 1 0 5 255.161 2.673 57278709.4 527434.724
17 1 0 5 213.272 4.04 31349854.73 177993.277
16 1 0 5 171.146 3.825 16690803.19 135721.406
15 1 0 5 132.203 1.531 9027390.502 87184.27
14 1 0 5 101.292 3.262 4846336.806 134941.318
21 1 0 6 265.403 4.977 200817858.7 7238988.242
20 1 0 6 295.625 3.309 133099205.8 912861.232
19 1 0 6 293.273 1.718 92802155.01 772981.447
18 1 0 6 256.141 2.614 57368258.19 394580.88
17 1 0 6 213.501 2.389 31458945.42 98421.339
21 1 0 7 266.257 1.361 199405100.1 6124989.436
20 1 0 7 296.987 2.688 133764361.4 1793139.211
5 4 0 0 6.996 0.208 3046390.319 127271.508
6 5 0 0 10.093 0.383 4667176.013 95245.157
7 6 0 0 13.31 0.416 6313704.597 131947.345
8 7 0 0 15.935 1.056 6279516.186 166424.374
9 8 0 0 27.196 0.252 7334754.301 74366.35

10 9 0 0 44.961 0.776 13764698.95 190518.435
11 10 0 0 70.103 0.567 28554984.68 345918.469
12 11 0 0 106.431 1.369 58404606.18 527898.822
13 12 0 0 148.386 1.39 111371365.7 455649.988
14 13 0 0 170.444 2.784 193501166.9 1435244.624
15 14 0 0 157.378 0.81 346341553.8 9767170.654
5 4 1 0 6.939 0.349 2904603.881 159899.65
6 5 1 0 10.773 0.199 4439517.649 48139.175
7 6 1 0 14.148 0.707 6083592.593 126975.738
8 7 1 0 16.516 0.345 6147552.167 177640.208
9 8 1 0 27.989 0.69 7593261.941 308897.363

10 9 1 0 45.293 0.406 14064062.68 394192.369
11 10 1 0 71.351 1.245 28428847.63 342288.559
12 11 1 0 107.561 0.593 58121355.85 320391.082
13 12 1 0 147.194 2.58 110715573.5 614928.394
14 13 1 0 170.908 2.317 193452666.5 1099476.623

Page 201 of 215

15 14 1 0 156.89 0.503 347934785.8 7977134.759
5 4 2 0 7.189 0.207 2893658.421 107783.017
6 5 2 0 10.406 0.411 4567365.966 83543.657
7 6 2 0 13.807 1.585 6256001.046 170926.584
8 7 2 0 15.898 0.542 6075238.647 147433.674
9 8 2 0 27.457 1.021 7502926.896 133500.389

10 9 2 0 45.088 0.416 14019681.22 137883.768
11 10 2 0 70.579 1.045 28315185.56 149717.532
12 11 2 0 106.924 1.485 58292679.22 328786.053
13 12 2 0 148.029 1.38 111327053.7 123739.399
14 13 2 0 170.767 2.733 192553922.8 1775080.445
15 14 2 0 156.661 0.789 347418253.5 10375803.85
5 4 3 0 7 0.146 2739784.172 179562.55
6 5 3 0 10.665 0.251 4400795.826 89770.126
7 6 3 0 16.063 1.793 6251088.944 390011.29
8 7 3 0 16.259 3.022 6092019.233 808084.973
9 8 3 0 28.104 0.257 7572503.963 140305.981

10 9 3 0 44.47 0.773 14027080.82 116070.111
11 10 3 0 71.918 1.28 28432228.07 195548.586
12 11 3 0 105.119 1.716 58228688.11 187552.559
13 12 3 0 149.372 2.081 111134159.2 865932.664
14 13 3 0 171.05 1.752 193229950.5 1196041.28
15 14 3 0 156.421 0.747 347456875.4 8350103.319
5 4 4 0 7.492 0.3 2792660.961 131947.574
6 5 4 0 10.757 0.161 4370231.437 87749.177
7 6 4 0 13.838 1.904 6194980.013 164195.208
8 7 4 0 16.788 0.626 6399213.129 221580.161
9 8 4 0 27.473 0.41 7343743.137 236726.238

10 9 4 0 45.447 0.877 13859678.23 186995.459
11 10 4 0 71.262 1.336 28324951.07 248040.651
12 11 4 0 106.25 0.681 58385494.3 278939.133
13 12 4 0 147.661 1.159 111109710.4 385580.968
14 13 4 0 171.331 2.636 193922825.4 1274647.738
15 14 4 0 157.254 0.999 346514751.7 7540128.137
6 5 5 0 10.775 0.274 4022610.738 223538.391
7 6 5 0 16.318 1.305 6200325.815 212043.521
8 7 5 0 17.534 1.932 6255143.692 534857.59
9 8 5 0 28.289 4.289 7782234.333 1551388.438

10 9 5 0 45.608 0.748 14100033.61 495740.525
11 10 5 0 71.401 1.126 28462490.59 195105.138
12 11 5 0 107.56 1.133 58157575.14 584658.02
13 12 5 0 149.457 3.545 111132527.7 824398.498
14 13 5 0 172.352 2.523 192788940.4 1433044.25
15 14 5 0 156.837 0.678 347646415.8 9153185.065
7 6 6 0 16.981 1.942 5859901.675 659189.695
8 7 6 0 20.346 2.962 7299854.515 623134.316
9 8 6 0 27.847 0.79 7509677.564 289007.292

10 9 6 0 45.19 0.817 14015130.96 415881.124

Page 202 of 215

11 10 6 0 70.997 1.519 28114803.2 675272.084
12 11 6 0 107.201 0.585 58160213.51 149942.024
13 12 6 0 148.688 2.72 110791288.8 562550.443
14 13 6 0 172.595 3.356 192156973.4 2101961.334
15 14 6 0 157.251 0.771 347672230.7 8394355.957
8 7 7 0 21.603 4.586 6907788.422 1178227.283
9 8 7 0 29.294 0.863 7596715.165 330899.676

10 9 7 0 46.199 0.781 14087613.81 286269.539
11 10 7 0 70.86 1.151 28641216.65 232329.467
12 11 7 0 107.699 1.328 58192091.67 135172.158
13 12 7 0 146.929 2.536 111165305.7 538515.66
14 13 7 0 171.309 2.507 192740750.9 718702.298
15 14 7 0 157.146 0.916 345187885.8 7408504.968
9 8 8 0 28.74 0.399 7372820.282 272652.915

10 9 8 0 45.26 0.865 13924882.68 138739.332
11 10 8 0 71.335 0.927 28261354.27 254365.414
12 11 8 0 107.097 1.4 57847402.81 622371.801
13 12 8 0 147.411 1.618 110916538.3 775369.518
14 13 8 0 171.457 2.965 192409636.3 2235970.311
15 14 8 0 156.942 0.305 347539294.2 8850733.981
10 9 9 0 46.399 1.053 13495376.2 287664.548
11 10 9 0 71.391 0.721 28290302.93 294095.098
12 11 9 0 107.919 1.427 58318546.74 245064.371
13 12 9 0 149.891 4.269 110257451.3 637700.94
14 13 9 0 170.507 3.169 193015906.2 2094651.531
15 14 9 0 156.304 0.686 347221450 12457080.79
11 10 10 0 71.69 1.367 28035602.92 624584.138
12 11 10 0 108.578 2.393 58306790.31 652080.775
13 12 10 0 148.736 3.193 110390844.1 823003.364
14 13 10 0 171.153 2.205 192640297.3 903856.609
15 14 10 0 156.025 1.468 344956233.7 9869207.002
12 11 11 0 107.92 2.363 57798658.24 778117.187
13 12 11 0 149.658 2.475 110765264.8 202992.59
14 13 11 0 171.021 3.55 192151673.6 1964048.968
15 14 11 0 156.872 1.548 346225642.4 11153337.19
13 12 12 0 148.78 3.327 110570940 1236820.907
14 13 12 0 171.908 2.281 192509583.2 1060578.947
15 14 12 0 157.175 0.908 345023942.9 8548642.995
14 13 13 0 172.762 2.749 192678761.5 1179273.101
15 14 13 0 156.797 1.708 346159779.1 10638850.57
15 14 14 0 156.487 0.671 347135456.5 1128675.143
5 4 0 1 7.224 0.305 2976237.719 151923.069
6 5 0 1 10.049 0.381 4649847.616 67300.762
7 6 0 1 13.14 0.57 6067049.682 223415.446
8 7 0 1 16.399 0.627 6270192.849 64958.029
9 8 0 1 28.401 0.597 7323173.757 171772.214

10 9 0 1 45.787 0.621 13785636 260939.184
11 10 0 1 70.874 1.038 28360853.57 472101.182

Page 203 of 215

12 11 0 1 106.394 2.2 58225078.46 225717.316
13 12 0 1 147.892 2.882 111050144 525464.019
14 13 0 1 171.819 4.282 193534296.8 1441738.331
15 14 0 1 157.467 1.078 346726973.4 9821532.467
5 4 0 2 6.903 0.573 2928395.078 144456.924
6 5 0 2 11.119 0.419 4392884.992 108882.996
7 6 0 2 14.671 1.044 5945086.41 179405.474
8 7 0 2 17.436 0.769 6194750.304 277585.981
9 8 0 2 27.958 0.352 7466378.595 288416.214

10 9 0 2 45.471 0.263 14197258.9 156298.66
11 10 0 2 71.116 0.981 28576008.4 105238.943
12 11 0 2 107.04 1.04 58470547.31 332405.668
13 12 0 2 148.784 1.678 111314290.1 278061.67
14 13 0 2 172.054 4.119 193137404.7 1641426.254
15 14 0 2 156.818 0.639 346402694.3 8773904.119
5 4 0 3 7.317 0.359 3044738.527 142753.738
6 5 0 3 10.151 0.184 4604233.797 78807.059
7 6 0 3 12.778 0.82 6153807.814 87270.029
8 7 0 3 16.028 0.373 6066570.649 195700.828
9 8 0 3 27.438 0.338 7293597.319 125286.199

10 9 0 3 45.65 0.375 13973645.07 139020.09
11 10 0 3 70.903 1.051 28518298.2 170219.562
12 11 0 3 106.446 1.566 58169500.68 417764.978
13 12 0 3 147.888 1.495 111500054.5 401595.324
14 13 0 3 170.517 1.65 193329573.4 487962.667
15 14 0 3 157.265 1.261 347220229.2 8141063.129
5 4 0 4 7.432 0.371 2996061.425 111059.02
6 5 0 4 10.637 0.423 4459197.67 123195.448
7 6 0 4 14.765 0.709 6163835.606 82880.013
8 7 0 4 17.215 0.789 6214966.041 257967.745
9 8 0 4 28.523 1.008 7575435.268 221482.715

10 9 0 4 45.785 0.655 14191702.43 209666.025
11 10 0 4 71.227 1.106 28566715.29 230027.908
12 11 0 4 106.948 0.764 58129429.83 243867.414
13 12 0 4 148.71 2.247 111498674.8 497863.165
14 13 0 4 170.067 3.322 193548818.6 1522675.71
15 14 0 4 157.36 1.827 346203141 10794851.4
6 5 0 5 10.178 0.725 4159785.493 307999.688
7 6 0 5 12.889 1.582 6314942.118 227088.176
8 7 0 5 16.162 0.427 6229874.567 223950.713
9 8 0 5 27.432 0.699 7214464.762 229529.685

10 9 0 5 45.568 0.853 13848597.5 209301.952
11 10 0 5 70.413 0.653 28475517.1 269055.332
12 11 0 5 107.543 1.356 58242633.95 127149.111
13 12 0 5 147.666 1.591 111302190.5 596135.33
14 13 0 5 171.026 2.396 193525774.2 1358971.175
15 14 0 5 156.921 1.657 348831834.4 10530220.86
7 6 0 6 15.285 0.592 5484434.268 544077.969

Page 204 of 215

8 7 0 6 17.182 0.835 6162744.09 307916.091
9 8 0 6 28.49 0.584 7681289.709 188870.48

10 9 0 6 45.802 0.461 14103017.62 265478.118
11 10 0 6 71.168 1.429 28354888.59 123432.986
12 11 0 6 106.456 2.491 58509059.51 577638.168
13 12 0 6 149.148 2.139 110689261.8 422471.024
14 13 0 6 170.871 2.231 194340436.2 1205155.304
15 14 0 6 157.838 0.952 346974953.6 9151231.64
8 7 0 7 17.177 0.441 5784399.355 388582.958
9 8 0 7 27.658 0.367 7374922.631 824005.562

10 9 0 7 45.039 0.899 14022578.19 215119.657
11 10 0 7 70.793 0.275 28359340.44 232704.911
12 11 0 7 106.793 1.472 57984436.07 337678.25
13 12 0 7 148.855 0.938 111501156 3882276.469
14 13 0 7 171.712 4.365 193775717.3 1646256.46
15 14 0 7 156.456 0.658 347420505.1 7747460.256
9 8 0 8 27.646 1.169 7198566.799 666937.619

10 9 0 8 45.458 0.828 13949458.61 131589.539
11 10 0 8 70.737 1.849 28315670.01 423897.943
12 11 0 8 107.716 1.662 58459451.98 331545.658
13 12 0 8 148.901 2.988 111752800 323325.79
14 13 0 8 170.905 3.354 193222046.3 2115076.761
15 14 0 8 156.792 1.755 348288594.8 11387147.18
10 9 0 9 45.398 0.944 13827736.11 279760.033
11 10 0 9 71.914 0.591 28658313.96 416963.472
12 11 0 9 106.248 2.072 58090655.99 684261.11
13 12 0 9 149.353 1.959 110968846.4 291893.08
14 13 0 9 171.481 3.195 192688093.3 413870.59
15 14 0 9 157.335 0.564 346845486.8 9060549.088
11 10 0 10 71.419 0.968 28535022.93 582933.744
12 11 0 10 106.797 1.458 58333715.82 200604.098
13 12 0 10 146.616 2.117 111353300 499563.935
14 13 0 10 170.562 2.535 192612127.9 1862913.429
15 14 0 10 156.384 1.076 346119679.1 11757862.09
12 11 0 11 106.627 2.371 58128060.98 326238.498
13 12 0 11 147.524 2.227 110588975.1 2418652.134
14 13 0 11 171.576 2.383 193255779.8 1807463.352
15 14 0 11 156.645 0.864 347981099.6 8414212.546
13 12 0 12 148.082 3.651 111212805.3 280511.406
14 13 0 12 170.271 1.373 192453849 1198149.646
15 14 0 12 156.938 0.79 347324557.3 8524685.337
14 13 0 13 171.32 3.062 193543984.1 1997670.176
15 14 0 13 156.49 2.153 348944051.6 12000917.35
15 14 0 14 156.886 1.082 347372413.8 1332908.132

Page 205 of 215

Collective data for Gaussian Cube)2,(αnGC . Simulation duration is 60 seconds.

Dimension alpha EN EL MALatency AL SD Mthroughput Throughput SD

4 0 0 0 16.478 1.101 1014948.407 14421.665
5 0 0 0 19.629 0.603 1642427.059 16317.775
6 0 0 0 26.055 0.459 2564353.717 26780.176
7 0 0 0 29.295 1.056 3137559.255 110083.552
8 0 0 0 38.268 1.535 3663865.425 105516.024
9 0 0 0 60.386 1.148 5817991.134 176886.629

10 0 0 0 96.235 1.186 11200003.98 108042.277
11 0 0 0 144.969 1.304 22498200.47 101143.502
12 0 0 0 204.232 6.55 43263557.45 271537.391
13 0 0 0 262.707 2.039 72886951.2 575698.986
14 0 0 0 278.187 4.472 124317207.8 1644591.009
14 1 0 0 360.481 3.602 131736072.6 378251.439
14 2 0 0 474.811 22.763 130652414.8 333566.087
14 3 0 0 556.398 1.752 109795726.5 265873.96
14 4 0 0 729.073 23.195 80735616.85 343121.33
14 5 0 0 728.018 21.316 67800669.19 167683.468
14 6 0 0 685.395 9.742 56271109.76 73072.555
14 7 0 0 712.927 1.135 41897420.08 153843.086
14 8 0 0 730.201 5.548 28499073.51 39518.5
14 9 0 0 849.952 5.03 19986746.05 55838.537
14 10 0 0 828.24 11.1 11622718.54 247973.241
14 11 0 0 869.195 13.273 8195355.179 188334.684
14 12 0 0 812.87 6.632 5868188.759 202647.123
14 13 0 0 799.375 10.811 5472558.749 251256.536
4 0 1 0 16.056 1.27 973346.46 10773.785
5 0 1 0 20.583 0.967 1605887.863 15965.111
6 0 1 0 30.108 0.99 2573076.862 7615.069
7 0 1 0 52.527 2.272 3741495.795 20390.439
8 0 1 0 63.389 4.023 5086352.034 115188.064
9 0 1 0 78.195 1.849 8114327.751 93044.31

10 0 1 0 102.528 1.173 13346409.13 132200.752
11 0 1 0 146.67 2.637 22852337.77 196863.149
12 0 1 0 199 5.619 41285418.55 374940.42
13 0 1 0 254.276 5.33 71762647.47 494324.092
14 0 1 0 274.143 5.239 121477299.5 586216.824

Page 206 of 215

A:

 processing with

 FNN

B:
 traditional trading

 algorithm

.

.

.

. . .

current price
 last high

last low

other
aspects

.

.

.

.

.

.
buy
 or
sale

I

 Figure VII.2 one architecture for explicit trading

APPENDIX VII
A New Approach to Routing in Hypercube

Based on Fuzzy Neural Network

VII.1 Two architectures of decision-making using Fuzzy Neural Network

There are two ways to use Fuzzy Neural Networks (FNNs) for decision-making. The

first is called implicit system, in which all possibly related information is fed into the

FNN. Then the FNN outputs the result of decision. For example, in the area of financial

market decision-making, the architecture of implicit trading is illustrated in Figure VII.1.

The second architecture is called explicit processing. Here FNN is used only as a

component while traditional algorithms are also incorporated. Figure VII.2 and VII.3

show examples of this explicit processing system.

buy or sale

current price

 last high

.

.

.

last low

other
aspects

implicit

trading

 FNN

Figure VII.1 architecture for implicit
trading

Figure VII.1 architecture for implicit trading

Page 207 of 215

Here, I stands for the intermediate results produced by A, and inputted to B. In this

trading example, I may encompass the prediction of the price of one hour later or three

days later.

Actually, the mixed structure reflects a decomposition of the original problem. Some

tasks can be efficiently done by FNN, especially learning and predicting. However, some

other jobs maybe more suitable for traditional approaches. A case in point is learning

bitwise XOR operation, on which most existing routing algorithms depend. It can be

easily proven that for learning the XOR function between two n-bit binary numbers or

two decimal numbers both ranging from 0 to 2n - 1, FNN must use O(2n) rules. However,

this function can be realized by hardware in one clock cycle. So by carefully and

properly dividing tasks into different functional components (A or B), the original

problem can be solved far more efficiently than purely using FNN or traditional

algorithms.

VII.2 Design of input and output of FNN

If the explicit architecture is to be adopted, then the first challenge lies in the

decomposition of the task. What is to be done by FNN and what is supposed to be done

by traditional algorithms? What is the proper interface? From the angle of FNN, these

questions are equivalent to what is the input and output of FNN.

A:

 traditional trading

 algorithm

B:
 processing with

 FNN

.

.

.

. . .

current price
 last high

last low

other

aspects

.

.

.

.

.

.
buy
 or
sale

I

 Figure VII.3 another architecture for mixed explicit trading

 other
aspects

Page 208 of 215

As the space and time cost for gathering global information is too high and such

information is too intractable for FNNs, it is more feasible to use local information. One

type of such strategy is to base the routing decision solely on the status of links incident

to current node. For binary hypercube, this simple strategy can achieve good

performance [6]. A more far-sighted approach is to take into consideration the status of

the links incident to all of the current node’s neighbors. We call it 1-hop look-ahead. For

example, in Figure VII.4, the routing decision made at P not only incorporates the status

of links from P to A, B, C, and D, but also considers the status of e1, e2, …, e10.

So for each packet that arrives at P, say from A, P uses a new metric M to compare all the

possible outlet ports. This metric is based on B, C, and D’s link status, packet destination,

and encoded history that helps to avoid deadlock and livelock. M can be a tuple of

several crisp values or fuzzy values, or combination. If we view the crisp values as fuzzy

values in the form of singleton, then M is actually a set of fuzzy values. This process is

also known as feature selection. It helps to reduce the number of total factors that require

to be considered in the next step of comparison. The number of final rules will also be

reduced significantly (possibly exponentially) with this horizontal reduction.

With regard to comparison, as we are only interested in the best alternative, there is no

need to rank all neighbors according to their corresponding M and pick up the highest one.

That approach costs time complexity O(nlogn), where n is the network dimension.

 P C

B
D

A

e1

e2

e3

e4
e5

e10

Figure VII.4 Illustration for 1-hop look-ahead approach

Page 209 of 215

Instead, only O(n) comparisons are needed to derive the best one. This comparison is

suitable for FNN. The mechanism is illustrated in Fig. VII.5.

VII.3 Choice of M

The choice of M is critical for the whole strategy. It can not include any binary value (or

its corresponding decimal value) related to node address. Otherwise, the number of rules

will inevitably grow exponentially with network dimension.

It should also be applicable to all kinds of fault distributions. It is our goal that one fuzzy

neural network be used for evenly distributed faults, concentrated faults and other types

of distribution. So for different underlying fault distributions, different parts of the rule

base in FNN are to be fired so that the system has adaptivity to fault distribution. This

requires that the input of FNN under different fault distribution types should also be

sufficiently discriminable.

Lastly, M should contain or encode enough information that can ‘deduce’ the result of

comparison. One possible design is to introduce three fuzzy variables called optimistic

distance, pessimistic distance and neutral distance from respective neighbors to the

destination. Such fuzzy values are calculated based on the neighbors’ address, packet

destination and the status of links incident to the neighbor. For example, the membership

function for the three fuzzy variables might be like Figure VII.6:

 FNN

.

.

.

.

.

.

M for neighbor N1

M for neighbor N2

0 if N1 is preferred

1 if N2 is preferred

2 if N1 and N2 are equally preferred

Figure VII.5 mechanism of comparison by FNN

Page 210 of 215

VII.4 Generating training examples

As the routing strategy is based only on the information of connectivity within 2 hops’

distance, there is no point in allocating a faulty component over 2 hops away from current

node. In other words, if we are focusing on node 0n (n straight 0’s) i.e. collecting training

examples by examining routing decisions at 0n, then we can locate all faulty nodes in S =

{]1,0[}1,0{|... 0121 −∈∈−− niforaaaaa inn and 2
1

0
≤∑

−

=

n

i
ia } with all faulty links in SS × .

Otherwise, the training example set will be inconsistent.

Start off simulating the network communication and focus on the packets arriving at node

0n. In Figure 5, M for N1 and N2 are easily available. Whether N1 or N2 is preferred is

decided by applying Dijastra’s shortest path algorithm. If they are not equally preferred,

then we can exchange the M for N1 or N2 and exchange the result of preference. Thus

one example can be made use of twice.

VII.5 Combining FNN and traditional algorithms

The whole picture of the routing strategy is as follows. Each node maintains an n-bit

fault vector F that records the status of local links. If the link on the corresponding

dimension is faulty, then the corresponding bit in F is 0. Otherwise it is 1. The packet

overhead is composed of the destination address and an n-bit traversal vector DT. At the

µ

1
optimistic neutral pessimistic

Figure VII.6 membership function of possible fuzzy variables

distance

Page 211 of 215

source, DT is set to straight 1’s. Whenever a preferred dimension is used, the

corresponding bit in DT is masked to 0. And all dimensions masked by 0 in DT can not

be used as spare dimensions any more. When a packet is received, the router calculates

the optimistic, neutral and pessimistic distance from all neighbors to the packet’s

destination, except those that are faulty (as is recorded in F) and those that are masked by

DT. Finally, FNN is used to determine the best outlet port.

VII.6 Problems

The major problem here is that there has already been saturated research in this area of

network routing. One algorithm uses the similar strategy [4]. It first examines non-faulty

preferred dimensions. If there are more than one preferred dimensions available, then it

chooses a neighbor on a preferred dimension that has least faulty incident components. If

there is no non-faulty preferred dimension, then it chooses a neighbor on a spare

dimension that has least faulty incident components. Rigorous theoretical deduction is

available to demonstrate that this algorithm generates deadlock and livelock free routes.

It also has a route with strictly bounded length and the message overhead and time for

making routing decision are both O(n). It is very easy to be physically implemented. So

it has already provided a set of rules and choice of M that are applicable to hypercube and

its symmetric variants with satisfactory performance.

Let us go back to the motivation of using FNN. We adopt it with an eye to deriving a

unified or generalized routing strategy for as many variants of binary hypercube as

possible. However, without considering binary address, the current approach to using

FNN is not suitable for asymmetric networks, which is the majority of hypercubic

variants.

Page 212 of 215

Appendix VIII User’s Guide

This guide includes the usage of software simulation tool and introduces the source code

of FPGA implementation written in Handel-C.

VIII.1 Using software simulation tool

The simulation tool is called SimuRt. It can simulate three types of Fibonacci-class Cube

and Gaussian Cube. There are two things to be specified before running simulation:

parameters in the code and testing cases in the input file.

VIII.1.1 Setting parameters

The following parameters must be set according to the computer platform and testing

objective:

#define PENTIUMSPEED 2048.0

It is defined in file Structure.cpp. It specifies the speed of CPU. The unit is MHz.

#define BUFFER_SIZE 10

It is defined in Common.h. The influence of BUFFER_SIZE on the simulation result is

discussed in Chapter 8.

#define NO_READINGS 5

Defined in Common.h, it specifies how many rounds of test are carried out for each

testing case.

VIII.1.2 Input file

It is driven by an input file, in which all the testing cases are enumerated and the

simulation is run on a batch mode. The input file is named as “input.txt”. It should be

placed in the same directory of the executable file. If running under Visual C++, then it

should be placed in the working directory (specified in Project:\\settings\Debug\Working

Page 213 of 215

Directory). For example, if the input file is as follows:

 Begin

1 15 2 3 1 500 60

2 13 3 0 1 500 50

3 11 10 5 2 1 500 60

4 11 3 1 500 60

0

then

‘Begin’ means the beginning of testing cases. All characters before ‘Begin’ are filtered

so that it is possible to add some comments at the beginning of the file as long as the

string ‘Begin’ does not appear in the comments.

Line 1: ‘1’ means the testing case is for regular Fibonacci Cube. ‘15’ means the

dimension is 15 (strictly speaking, it means we are testing a regular Fibonacci Cube of

order 17). ‘2’ means that the number of faulty nodes is 2. ‘3’ means that there are three

faulty links. ‘1’ means that packets are generated according to even distribution. ‘500’

means that the hop time is 500ns. ‘60’ means that the simulation runs as long as 60

seconds.

Line 2: ‘2’ means the testing case is for Enhanced Fibonacci Cube. ‘13’ means the

dimension is 14 (strictly speaking, it means we are testing an Extended Fibonacci Cube

of order 15). ‘2’ means that the number of faulty nodes is 3. ‘0’ means that there is no

faulty link. ‘1’ means that packets are generated according to even distribution. ‘500’

means that the hop time is 500ns. ‘50’ means that the simulation runs as long as 50

seconds.

Line 3: ‘3’ means the testing case is for Extended Fibonacci Cube. ‘11’ means the

dimension is 11 (strictly speaking, it means we are testing an Extended Fibonacci Cube

of order 13). ‘10’ means that the subscription is 10. So we are testing XFC10(11). ‘5’

means that the number of faulty nodes is 5. ‘2’ means that there are two faulty links. ‘1’

means that packets are generated according to even distribution. ‘500’ means that the

hop time is 500ns. ‘60’ means that the simulation runs as long as 60 seconds.

Page 214 of 215

Line 4: ‘4’ means that the testing case is for Gaussian Cube. ‘11’ means that the

dimension is 11. ‘3’ means that the M = 23. So we are testing GC(11, 8). ‘0’ means that

there is one faulty node. ‘500’ means that the hop time is 500ns. ‘60’ means that the

simulation runs as long as 60 seconds. Now we have only implemented having one

faulty node and no faulty link (see: void CGaussianCube::BuildFault()). The faulty node

is fixed as 00…0, where n is the dimension of the Gaussian Cube. The program has

provided two functions to add faulty nodes and faulty links respectively:

void CGaussianCube::AddFaultyNode(unsigned address)

void CGaussianCube::AddFaultyLink(unsigned address1, unsigned address2).

The only task left is to design and interface so that faulty links and over one faulty node

can be added to the network.

Line 5: ‘0’ stands for the end of the input file. The user can add comments after this line

and these characters will not be processed.

VIII.1.3 Output file

There are two output files:

Regular Fibonacci Cube RegOutput.txt RegTable.txt

Enhanced Fibonacci Cube EnhOutput.txt EnhTable.txt

Extended Fibonacci Cube ExtOutput.txt ExtTable.txt

Gaussian Cube GaussianOutput.txt GaussianTable.txt

These files are automatically created. If they exist before running the simulation, then the

results will be appended to the file. The XOutput.txt records the result for each reading

of one testing case. XTable.txt records the statistical result for each testing case by

processing the result of all readings. In the batch mode, this provides a succinct

presentation of result.

n

Table VIII.1 output files of simulation

Page 215 of 215

VIII.2 FPGA implementation with Handel-C

Very detailed comment has been added to the source code of both programs. Macros are

extensively used in the programs so that it is very easy to change the dimension of the

network, which is controlled by a macro called Num_Bits. Some other macros also need

to be modified if a new Num_Bits is used. Please refer to the comments in the source

code. Equations of calculating these macros are given in detail.

A useful programming skill is using conditional compiling. This makes it possible to

switch the source code between Debug mode and EDIF mode by only commenting out or

releasing ‘#define MYDEBUG’. If this macro definition is released, then the code is for

Debug mode. If it is commented out, then the code is for EDIF mode. Likewise, if

‘#define FINAL’ is released, then the router’s input and output are fixed and the router

eliminates all the gates needed for controlling Flash Memory that stores testing cases and

results. However, with regards to fuzzy router, rules are stored in Flash Memory, it is

impossible to completely exclude gates used for controlling Flash Memory. Thus the

comparison of number of gates between classical router and fuzzy router is not on a fair

ground. In other words, the comparison is not based only on the complexity of logic.

In the Debug mode, the testing files are transferred to the Flash Memory of RC100 board

beginning at address READ_START_ADDRESS. The results are stored in the Flash

Memory starting at address WRITE_START_ADDRESS. The rules are stored from

address RULE_BASE.

To generate the circuit diagram, we need to use Schematic Editor. It is a tool of Xilinx

Project Manager. Choose File: \\Generate from netlist. Then choose the .edf file. The

Schematic Editor will automatically generate the circuit graph. However, errors occur

frequently because .edf file is generated by DK1, a product of Celoxica Ltd, while Xilinx

is another company. So there are some discrepancies and small modifications on .edf is

necessary for successful conversion. Some technical problems can be solved by posting

them in Xilinx’s forum. The circuit generated in put in the CD attached with the report.

