Nanyang Technological University

SCE 02-434

Analysis of Fuzzy-Neuro Network Communications

Zhang Xinhua

School of Computer Engineering
2003



Nanyang Technological University

SCE 02-434

Analysis of Fuzzy-Neuro Network Communications

Submitted in Partial Fulfillment of the Requirements for the
Degree of Bachelor of Computer Engineering

by
Zhang Xinhua

School of Computer Engineering
2003



ABSTRACT

Highly parallel computers are playing a central role in high-performance computing. In addition to
network topology, reliable and efficient message routing is becoming increasingly critical with the
rapidly growing system scale. Although many fault-tolerant routing strategies have been proposed
for various specific networks, there lacks a general algorithm that applies well to a wide variety of

topologies.

Fuzzy Neural Networks (FNNs) are a group of hybrid systems that incorporate fuzzy logic into
Artificial Neural Network (ANN) architectures. The fuzzy characteristic provides interpretable
human-like IF-THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy
systems by deriving membership function and/or rule base automatically. These traits make FNN a
promising tool for designing efficient general-purpose routers and the feasibility and difficulties are

explored in the project.

On the other hand, research in traditional routing algorithm is still not complete enough to encompass
al interconnection networks. Due to sparse connectivity and low node availability, there is no
existing fault-tolerant routing strategy for node/link diluted hypercubic networks. Among these
networks, Gaussian Cubes (GCs) use a common parameter to link the interconnection density and
algorithmic efficiency. The variation of it can scale routing performance according to traffic loads
without changing the routing algorithm.  Fibonacci-class Cubes use fewer links than the
corresponding binary hypercube, with the scale increasing slower, allowing more choices of network

size.

To make these types of networks with such desirable properties more fault-tolerant, the project
investigates the approaches of divide-and-conquer and fault classification so as to tolerate more faults
than node availability. To facilitate our discussion, a new type of interconnection network named
Exchanged Hypercube (EH) is proposed. It reduces the number of links to only 1/n of binary
hypercubes with the same number of nodes (n is the network’s dimension) with little lose of structural
advantage. New auxiliary topologies are also proposed for illustrating EH’s desirable emulation and

communication properties.

Finally, as a new prototype for efficient simulation of incomplete networks, a software simulator is
built and the results about the performance of our algorithms are shown to be reasonable. FPGA

implementation is also completed to demonstrate the feasibility of physical manufacture.
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Chapter 1 | ntroduction

1.1 Background

With the growing demand for high-performance computing power in more and more
software applications, highly parallel computers have attracted increasing interest in
recent years. Multicomputers, which are based on message-passing for interprocessor
communications, can scale up to hundreds of thousands of processors, providing the
capability of massive parallel processing. Hypercube Multicomputers [37], considered
one of the most extensively studied topology due to their structural regularity, easy
construction and high potential for parallel execution of various algorithms, have been
used in several experimental and commercial machines including NCUBE-2 [35] and
Intel iIPSC [36]. Many variations of the hypercube topology have been proposed to
improve certain parameters, such as diameter, node degree, emulation and

communication efficiency, etc [1][12-15][39- 43][52][53].

Unicasting, the focus of this project, is a one-to-one communication between a source
node and a destination node. Unicasting in fault-free hypercubes and its variations have
been extensively studied in [44-47]. As in [54], when the scale of parallel computer
systems grows, the probability of component failure (processors and/or links) increases.
Reliable and efficient message routing is thus becoming more and more critical, requiring
the routing algorithm to be capable of tolerating high probability of component failures.
There have been a number of fault-tolerant unicasting schemes proposed [6][19][48-51].

In designing fault tolerant communication strategies in large networks, there are many

issues deserving special attention. Firstly, besides having fault-tolerant mechanism, an

adaptive routing algorithm, which makes more efficient use of network bandwidth and
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provides resilience to failure [54], is also necessary for routing in faulty communication

networks.

Secondly, besides reliability, efficiency is also an important consideration. As in [55],
the fault-tolerant communication mechanism should not degrade the performance gained
by parallelism and at the same time guarantee delivery of messages to their destinations
in the presence of faulty network components. It also should not incur message routing

overheads in a fault-free network.

Thirdly, scalable and space efficient schemes [33][34] should be used. A fault tolerant
routing algorithm should not require excessive space to store status information in the
network. It should maintain or update status information efficiently so asto ensure high
performance under fault-free condition, be free from deadlock and livelock, and

guarantee specified levels of reliability and efficiency in its performance.

1.2 Purposeof Project

A large variety of interconnection network topologies have been proposed, each with its
possible unique fault-tolerant routing algorithm. However, there is no general algorithm
that can apply to all types of topologies. In the exploration of a general-purpose router,
the technology of Fuzzy Neural Network (FNN) is looming as a promising tool. FNN is
equipped with outstanding learning and clustering capability that have found successful
applications in many areas. It can also provide human-like interpretable rules that
overcome the problem of black-box in ordinary artificial neural networks. In this project,
efforts are taken to evaluate the potential and feasibility of fuzzy logic routing, to

investigate the possibility of unifying the membership functions and rules learned from
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different topologies of networks. In the best case, framework of software tools is to be
studied so as to measure and compare the communications performance of fuzzy logic

routing against existing fault-tolerant routing strategies.

On the other hand, even in the realm of classic fault-tolerant routing strategies, thereis a
void for link/node diluted hypercubic networks. The intrinsic problem lies in the sparse
connectivity that brings about susceptibility to the occurrence of faults. Attracted by their
other desirable properties, we attempt to design fault-tolerant routing algorithms to make
Gaussian Cubes and Fibonacci-class Cubes more fault-tolerant topologies. Later on,
these algorithms will be implemented by software simulator and FPGA, so that their
performance can be benchmarked and the feasibility of physical manufacture can be
assessed. If fuzzy routing is proved a practicable approach, the simulation result of the

performance of both FNN and classic methods can be compared as well.

1.3 Objectives

In order to fulfill the purpose of the project, the following objective are defined:

To explore fuzzy neural network applied in network communications.

To design a fault-tolerant routing algorithm for Gaussian cube.

To design afault-tolerant routing algorithm for Fibonacci-class Cubes.

To propose anew interconnection topology: Exchanged Hypercube.

To write software simulation tools for implementation and benchmark.

To implement the routing algorithm of Fibonacci-class Cubes and fuzzy routing

strategy on FPGA with Handel-C.
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1.4 Overview of Report Organization

The report is organized into 10 chapters.

In Chapter 2, the preliminaries of fault-tolerant interconnection network routing are
presented. Basic terms are defined and the requirements for the routing algorithm in

guestion are also given.

In Chapter 3, the fundamentals of Fuzzy Neural Network (FNN) are reviewed. The
possibility and difficulty in applying FNN to the interconnection network routing are

explored.

In Chapter 4, a new fault-tolerant routing strategy is presented for Fibonacci-class Cube.

We aso designed a generic approach for cycle-free routing.

In Chapter 5, a new interconnection topology named ‘Exchanged Hypercube’ is proposed
based on link dilution from binary hypercube. Its structural features and emulation,

communication properties are discussed.

In Chapter 6, a new fault-tolerant routing strategy for Gaussian Cube is described. The

major merits and general significance are emphasized.
In Chapter 7, a software simulator is constructed to test the performance of the two fault-

tolerant routing strategies presented in Chapter 4 and 6. The architecture and many

features of the simulator are discussed.
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In Chapter 8, the simulation results areillustrated. Detailed analysisis also carried out to
investigate the result, including comparisons between different topologies and some

seemingly irregularities.
In Chapter 9, we discuss the FPGA hardware implementation of the routing strategy
proposed in Chapter 4, as well as routing with fuzzy neural network. Many suggestions

are listed for future development.

Chapter 10 concludes the report with discussion of findings in this project and provides a

recommendation for future work.
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Chapter 2

Preliminaries

2.1 Communications network

For many paralel applications, the interconnection network determines overall

performance [58]. The most commonly used topology is binary hypercube.

An n-dimensional hypercube can be modeled as a graph G(V,, E,), with the node set V,

and edge set E,, where |V, |=2", | E, |=n2"*. Each node represents a processor and its

memory. Each edge represents a communication link between a pair of processors. The

2" nodes are distinctly addressed by n-bit binary numbers, with values from O to 2" - 1.

Each node has links at n dimensions, ranging from O (lowest dimension) to n- 1 (highest

dimension), connecting to n neighbors. An edge connecting nodes u and v is said to be at

dimension j or to be the | dimensional edge if their binary addresses u and v differ at bit

position j only. Figure 2.1 shows a 4-dimensional binary hypercube.

o
]
1
1
o - v Y
- ! i
- '
- 1
e §
0, P
Figure 2.1

4-dimensional binary hypercube (16 PES)
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The length of a path is equal to the number of links contained in the path. The distance
between two nodes up and uqy is equal to the hamming distance between their binary
address, denoted by H(uo, ug). A path between upand uq is called an optimal path if its
length is equal to the distance between the two nodes. A shortest path is a path of
minimal length among all possible paths between the two nodes when constrained by the

presence of faulty components. A shortest path may or may not be an optimal one.

2.1.1  Switching Techniques

Switching refers to the means of transferring a packet from the input channel to the
output channel. Four switching techniques, store-forward, circuit switching, wormhole
routing and virtual cut-through, are discussed here. The choice of switching technique
has a great bearing on the network performance, especially on deadlock and livelock

freeness.

In store-forward, the received packet is stored in a buffer and then forwarded to the
selected neighboring node based on the routing decision made by the routing algorithm.
After the packet is forwarded, it waits for an acknowledgement from the receiver. The

whole process of storing and forwarding a packet is referred to as a hop.

In circuit switching, a physical connection path between the source and destination nodes
must be established. After the path is established, the packet is allowed to move through
the path without any buffering. During the transmission of a packet along this path, the
connection is not switched and thus no other packets are allowed to move along this path.

This physical connection path is torn down after the packet has reached its destination.

In wormhole routing [59], the packet to be routed is divided into chunks called flits.

These flits spread over the entire path between the source and destination nodes where
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each node along the path has a queue for each of its adjacent links to hold the flit. If
there is space in the next node or when flits are consumed by the destination node, the

head will move and the entire packet can move by moving to the free space created.

In virtual cut-through, if there is free space in the next node, the received packet is
forwarded without buffering. Otherwise, the received packet is stored in a queue that can

hold the entire packet.

2.1.2 Flow Control

Flow control refers to the allocation of channels and buffers to a packet as it moves along
the path between the source and destination nodes. An appropriate flow control policy
should be used for different switching techniques. For store-forward and virtual cut-
through, flow control policy is applied on packet, whereas for wormhole routing, each flit
will have a unique flow control. The flow control policy determines whether packet will

be discarded, buffered, blocked or rerouted through another channel.

2.1.3 Routing

In multiple hop topologies, routing determines the path by which a message packet
generated by an arbitrary source isto traverse in order to reach its destination. Routing

can be classified into source routing and distributed routing.

In source routing, the entire path for a message packet to traverse is determined by the
source node based on the current network condition. Once the packet leaves the source
node, it will follow the selected path till it reaches its destination. In distributed routing,
when a node receives a packet, it will determine whether the packet has reached

destination. If packet reaches destination, this packet is delivered to the local processor.
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Otherwise, the routing algorithm is used to determine which neighboring node to forward

the packet to.

A disadvantage of using source routing is larger packets size where routing information is
included in every packet. In distributed routing, the routing algorithm will normally
produce a path with lower network latency. Thus, distributed routing is the major focus

of this project.

2.2 Fault-tolerant routing

In the presence of faulty components in the interconnection network, it is desired that
alternative paths can be found and used to bypass the faults. The following concepts are

important in fault-tolerant routing.

22.1 Typesof Faults

Component faults in a communication network can be either node faults or link faults or

both. A node faults will incur the breakdown of all links incident to that node.

2.2.2 Types of links/ dimensions

Let the current node be u and destination be d. The relative address r is defined as
r=ul d, where A denotes the bitwise exclusive OR (XOR). All the dimensions
whose corresponding bit in r equals 1 are called preferred dimensions, while all the rest
dimensions whose corresponding bit in r equals O are called spare dimensions. A faulty

dimension refersto either a faulty neighboring node or afaulty link at that dimension.

2.2.3 Adaptiveness

Routing algorithm can be either classified as static (deterministic) or adaptive. In static
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or deterministic routing algorithm, a fixed path is used to send messages between a given
pair of source and destination nodes. At the source node, the selected path is determined
based on the destination node and the current network conditions. As for adaptive
routing algorithm, alternative paths between the source and destination nodes are used to
route messages. Each node can only determine the next node to forward a message based

onthe local or global information that it contains.

In the context of minimal routing, dynamic adaptive routing algorithm can dynamically
adjust its adaptivity based on fault distribution in the neighborhood [54]. This dynamic
adaptivity can be further categorized as fully adaptive, partial adaptive, one-adaptive and
zero-adaptive (also called infeasible). Fully adaptive algorithm can use all possible
minimal paths between the source and destination node. As for partially adaptive
algorithm, a subset of available minimal paths between the source and destination nodes
isused. Only a single minimal path is available for one-adaptive algorithm. For zero-

adaptive, there is no available minimal path at an intermediate node.

Adaptive algorithm can be characterized as progressive, backtracking, profitable and
derouting (or misrouting). Progressive algorithm will wait, deroute or abort if no
preferred link is available at an intermediate node. Backtracking refers to messages using
the input link to route when they are at deadend nodes. In order for a message to move
closer to the destination, preferred links are used. In contrast, spare links move a
message farther away from the destination. Profitable algorithms only consider profitable

links. Derouting or misrouting algorithm can use both preferred and spare links.

224 Deadlock

A deadlock maybe defined as a cyclic dependency of ungranted packet requests for
buffer or channel resources[57]. It refersto the situation where a packet is blocked

forever in the network. Deadlock occurs when a packet is holding some resources while
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requesting for other resources that other packets are holding and these other packets are
requesting for those resources that are held by this packet which results in a circular wait.

An example where deadlock occursis shown in Figure 2.2.

Node A Node B

Node D Node C

Figure 2.2: Four packetsin circular waiting using store-forward

In Figure 2.2, there are four packets each holding a packet buffer represented by black
square and four nodes represented by circles. Each node has a packet buffer. The packet
in node A is requesting buffer in node B. Packet in node B is requesting buffer from
node C. Packet in node C is requesting buffer from node D and packet in node D is

requesting buffer from node A. Asaresult, acircular wait is formed.

2.2.5 Livelock

Livelock refers to the situation where a packet is circulating in the network without

reaching the destination. Livelock usually occurs when misrouting is allowed in the

routing algorithm in order to tolerate faults. An example where livelock occurs is shown

in Figure 2.3.

"

Figure 2.3 Livelock with four link faults

Page 11 of 215



There are four link faults represented by dashed lines. Source and destination nodes are
represented by a circle with ‘S’ and ‘D’, respectively. The arrows represent the path by
which a packet generated by the source node traverses. These arrows form a cycle which
means that the packet is circulating in the network without reaching its destination.

Hence, livelock arises.

2.2.6  Typesof information for routing decision

An adaptive algorithm requires either local or global information to make routing
decision. However, there is limited global information based approach which is a

compromise between local information based and global information based approaches.

In local information based model [6], each node exchanges information with its adjacent
neighbors and it only knows the status of its neighbors. This model can only achieve
local optimization and is heuristic in nature. However, it can be proved for some special
network topologies that routing strategies based on local information is enough for

tolerating faults with satisfactory performance.

As for global information based model, such as the Shortest Path Routing in [20], each
node exchanges information with its adjacent neighbors as similar to local information
based model. But this information is propagated throughout the entire network. Hence,
each node knows the status of all the nodes and this model can normally achieve optimal
or suboptimal result. The problem here is the huge task of gathering and exchanging

global information, which isusually in large size.

Limited global information based approach [54] requires a relatively simple process to
collect and maintain fault information in the neighborhood (such information is called
limited global information) and is more cost effective than local or global information

based approaches.
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2.2.7 Types of Communication

Three types of communication are generally discussed: unicasting, multicasting and

broadcasting. Unicasting is a one-to-one communication between two nodes; one is
called source node and the other the destination node. Multicasting and broadcasting
involve communication between several nodes, but the difference is that multicasting is a
one-to-many communication that involves only one source node and several destination
nodes whereas broadcasting is a one-to-all communication that involve one source node

and all other nodes in a network.

2.2.8 Optimality

A routing algorithm can be categorized as optimal or suboptimal or both based on the
path that a message traverses from source to reach its destination. In optimal or minimal
routing, a message moves along a minimal path (also called a Hamming distance path) to
its destination node. This means that each link along the minimal path is a preferred link.
As for suboptimal or nonminimal routing, a path (where a message traverses) with the
length more than the Hamming distance between the source and destination is generated.
This means that nonpreferred or spare links are used for deroute or misroute when faulty

component is encountered.
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Chapter 3: Fuzzy Neural Network for Routing

3.1 Overview of Fuzzy Neural Network

Fuzzy Neural Networks (FNNSs) are a group of hybrid systems that incorporate fuzzy
logic into Artificial Neural Network (ANN) architectures. The fuzzy characteristic
overcomes the problem of black box in ANN by providing interpretable human-like IF-
THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy
systems by deriving fuzzy rule base and/or membership function automatically. Such
hybrid systems can be deployed in clustering, time series or sock market prediction, as

well as automated control of large, complex systems.

The main advantage of afuzzy logic isits ability to model a problem domain using a
linguistic model instead of complex mathematical models. Zadeh proposed fuzzy logic
as a new method to manage vagueness and uncertainty [60-63]. When modeling
vagueness, fuzzy predicates without well-defined boundaries concerning the set of
objects may be applied. The rationale for using fuzzy logic is that the denotations of
vague predicates are fuzzy sets rather than probability distributions. In many situations,
vagueness and uncertainty are simultaneously presented since any precise or imprecise
fact may be uncertain aswell. Fuzzy set and possibility theories provide a unified

framework to deal with vagueness and uncertainty.

However, the fuzzy logic itself does not have learning ability, i.e. the parameters of fuzzy
rules and membership functions can not be self-adjusted, but must be set by expert
knowledge. As such, fuzzy neural networks are adopted dueto their recognized learning

ability. Generally, FNNs perform cluster analysis on each dimension of the inputs and
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outputs of training data to determine the fuzzy sets and subsequently derive the fuzzy

rules by connecting the input and output fuzzy sets.

In this chapter, we explore the possibility of applying Fuzzy Neural Network (FNN) to

interconnection network routing, though the result is pessimistic.

3.2 Fuzzy Inference System

A fuzzy inference system is composed of following components:

L "T) Inference H() )
Fuzzifier [ i Defuzzifier
> Engine >
A
y
X .

L x States or
. uiéi::“m Plant pOutputs

Figure 3.1  Fuzzy Inference System

The specification of fuzzy inference system encompasses the five blocks in Fig. 3.2. The

following components are important:

3.2.1 Fuzzfier

This part focus on the shape of membership function: Gaussian, Trapezoidal, Triangular,

Bell-shape, etc).
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Other less frequently used functions include:

Bell-shaped Membership Function

bell(x:a,b,c)=——mr

Sigmoidal Membership Function

l

sigm(x:a,c)=
l+e

-2 -1 1 2
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Still less frequently used shapes are S membership function, = membership function.

The simplest forms of membership function are trapezoid and triangle. They can provide
high speed inference and fairly good accuracy. The two slopes belonging to [a, b] and [c,
d] makes fuzzy logic different from classic two-value logic. But they are not ideal if high
accuracy isdesired. I1n such cases, Gaussian membership function is preferred because of
its soft shape and long ‘tail’, which is different from the hard cut-off in trapezoid and

triangle.

3.2.2 Fuzzy rule-based modelsfor function approximation

How the rules are represented is very important for the compactness and effectiveness of
the fuzzy system. There are three types of fuzzy rule-based models for function
approximation: (a) the Mamdani model [23], (b) the Takagi-Sugeno-Kang (TSK) model
[24][25][26], and (c) Kosko’s Standard Additive Model (SAM) [27].

) Mamdani model is one of the most widely used fuzzy models in practice, which

consists of the following linguistic rules that describe a mapping fromU,” U,” »X U,

to W.
R: IFxisA;and .. and x, is A, THEN yis C
where,
Xi(j=12, ..,r) input variables
y output variable
A, fuzzy sets for x;
C fuzzy setsfory.

The contribution of rule R to a Mamdani model’s output is a fuzzy set whose

membership function is computed by
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e (y) = @i Ua;, U...Ua;,) U, (y)

where a; = s::p(mN (x;) U my, (%;))
0i isthe matching degree of rule R
aij is the matching degree between x; and R;’s condition about x;

The final output of the model is the aggregation of outputs from all rules using the max

operator:

me (y) = max{m. (y), m,: (y),-., M (V)}

i) The Takagi-Sugeno-Kang (TSK) model was introduced in 1984. The main
motivation of this model is to reduce the number of rules required by Mamdani model,

especially for high-dimensional problems. It consists of rules in the form of:

R: IFx isA;and .. and X, is A,

THEN y = (X, X5, %) =ho +Bx +...+ B, X

where
fi isthe linear model
b;(j =02,...r) are real-valued parameters

The total output of the model is given as

The inputsto a TSK model are crisp (nonfuzzy) numbers. Therefore, the degree of input
X =a,%, = a,,.,X% =a tha matches the i rule is typically computed using the min
operator:

a; =min{my (&), M (a),....m (&)}
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TSK seemsto be more effective (asin ANFIS) in the use of the number of rulesin a
fuzzy rule-based system as compared to CRI (asin POPFNN and GenSoFNN). But CRI

inference is more intuitive and readable.

iii) The Standard Additive Model (SAM) was introduced by B. Kosko in 1996. The
structure of fuzzy rules in SAM isidentical to that of the Mamdani model. The rulesisin

the form of
IF xis A and yis B, THEN zis C,
Given crisp inputs X=Xy, Y =Y,, the output of the model is

z = Centroid ( é my (%) Mg (Yo) Mt (2) )

3.2.3 Definition of operatorson fuzzy setsincluding: union,

inter section, and complement.

There are multiple choices for the fuzzy conjunction and fuzzy disjunction operators.
The choice of afuzzy conjunctions operator determines the choice of the fuzzy
digunction, and vice versa. Thisisdue to the principle of duality between the two
operators. A fuzzy conjunction operator, denoted as t(x,y) and fuzzy digunction operator,

denoted as 5(x,y), form adual pair if they satisfy the following condition:

1- t(x,y) = s(1- x1- y), so astoensure AC B= AE B.

Here, the set of candidate fuzzy conjunction operators called triangular norms or t-norms

is defined as a mapping T: [0, 1]° [0, ] ® [0, 1] which is symmetric, associative, non-
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decreasing in each argument and T(a, 1) = a, for all al [0, 1].

norm T satisfies the properties:
T(XYy)=T(y,x)
T(XT(y,2)=T(T(x,y),2)
TXY)ET(X, v)if xEx and YE Y

symmetricity
associativity

monotonicity

In other words, any t-

T(x, D=x,"xI [0, 1] one identity

Basic t-norms include the following:

minimum MIN(a, b)=min{a, b}

Lukasiewicz LAND(a, b)=max{a+b- 1, O}

Probabilistic PAND(a, b)=ab

week { min{ a, b} if max{a, b} =1

WEEK(a,b)= | ¢ otherwise

Hamacher HAND, (a, b) = ab , g30
g+(1-g)(atb- ab)

Dubois and Prade DAND, (a, b) :L al (0, 1)
max{a,b,a}

Y ager YAND, (a,b) =1- min{1[(1- a)" +(1- b)P]YP, p>0

Likewise, we can define t-conorm. The only difference between t-norm and t-conorm is

that int-conorm S, S(a, 0) =a, for dl al [0, 1]. Basic t-conorm include the following:

maximum MAX (a, b) =max{a, b}

Lukasiewicz LOR(a, b)=min{a+b, 1}

Probabilistic POR(a, b)=a+b- ab

strong { max{a, b} if min{a, b} =0
QTRONIG( A h) = 1 otherwise

Hamacher HOR, (a. b):a+b- (2-g)ab, g3 0

1- 1- g)ab
Y ager YOR, (a,b) =min{1, [a® +bP]""}, p>0
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3.24 Definition of fuzzy infer ence schemes.

The operations of fuzzy neural network need to be clearly defined and mapped to formal
fuzzy inference schemes. There are several such schemes such as Compositional Rule of
Inference (CRI) [30], Approximate Analogous Reasoning Schema (AARS) [28] or the
Ttruth Value Restriction (TVR) [29]. The most commonly used is CRI which works as

follows.
Knowledge: If xis A theny is B
Fact: XIisA’
Conclusion: yisB’

Here, B'= AoR. B'(v) =supT{A'(u), R(u,v)}, vi V. There are anumber of
ulu

definitions of R.

Zadeh:

min-max rule:
R, =(A" BJU@A" V) = q., (My(u) Umy(v)) U(L- my () /(u,v)
BS, = Ao R, = AG[(A” B)U(BA" V)]
Mg (v) = U {myg(u) U[(m (u) Uy (v)) U(L- my(u))]}
arithmetic rule:
R, =(A" BJU@A" V) = q., (My(u) Umy(v)) U(L- my () /(u,v)
B{=AGR, = AG[(@A  V)A (U” B)]
Mag(V) = U {mpg(u) U[LU(L- my(u) +mp ()]}
Mamdani: R =A"B=q,, M(u) Umy(v)/(u,v)

Mizumoto: R=A"VP U B= (‘g,v[mA(u)® ms (V)] /(u,Vv)
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where me my =i MWEmY

10, mMy(u) > (v)
Ry, =A VI:; U’ B:Q,V[mA(u)Crg mg (V)] /(u,v)

L My (u) £ ms(v)

_1
mA(u)CFg m (V) Tim(v),  mMa(u)>ms(v)

Ry =(A"VP U” B)N(@A" VP U 2B)

=Q UM U)® my (V] U[A- mA(U))CFg(l- ms (V))]} /(u,v)
Ry =(A"VP U B)N(@A" VP U’ 2B)

=@,V{[mA(U)<‘§ m (V)] V[ - mA(U))CFg(l- ms (V))]} /(u,v)
Ry =(A" VP U” B)N(@A" VP U’ 2B)

=@,V{[mA(U)<‘§ My (V] U[A- M (u))® (- mg (V)]}H(u,v)
Rs=(A"VP U  B)N(@A VP U’ 2B)

=Q,{Mmu® m (V)] U[(2- M (U)® (d- M ()]} /(u.v)
R,=(@A V)UU’ B)=) [ m@)UmyM]/(u,v)

R=AVPU B=Q [mu® mMl/(uy)

where MA(U)® My (V) =1- My (u) +my ()" my(v)

There is no principle to judge which one is best on a general basis because the system’s
performance is closely related to the specific application. We can use experiment to

choose the best fit one.

3.25 Defuzzification

Defuzzification is a process to select arepresentative element from the fuzzy output
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inferred from the fuzzy control algorithm. There are three common defuzzification

techniques:

1) Mean of Maximum (MOM): It calculates the average of those output values that
have the highest possibility degrees. It can be expressed formally as:
ayr

MOM (A) = y*ITFF;I

i) Center of Area (COA): The center of area (COA), also referred to as center of

gravity or centroid, is the most commonly used defuzzification technique.

é my(X)" x
COAA) = Xo———
a m(x)

i) Height Method: First, convert the consequent membership function C; into crisp
consequent y=c; where ¢; isthe center of gravity of C;. The centroid defuzzification is
then applied to the crisp consequents. It can be expressed formally as:

§

a WG

y="r

aw

i=1
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3.3 Ar chitectur e of fuzzy neural networks

There are many architectures of fuzzy neural network in existence. One typical kind of
architecture iswhat is used in Generic Self-Organizing Fuzzy Neural Network
(GenSoFNN) [31] and Pseudo Outer Product based Fuzzy Neural Network (POPFNN)
[32]. Itisactually a Multi-Input Multi-Output (MIMO) system is a five-layer neural
network as shown in Figure 3.2. For simplicity, only the interconnections for the output

Ym are shown [32].

Qutput
Layer

Caonsequence
Lavyer

Rule-based
Layer

Condition
Lavyer

Input
Lavyer

Figure 3.2 Structure of POPFNN-CRI(S)

Each layer in POPFNN-CRI(S) performs a specific fuzzy operation. The inputs and
outputs of the POPFNN-CRI(S) are represented as non-fuzzy vector X =[x, Xa, ... Xi, ...
Xn2] and nonfuzzy vector Y '=[y1, Va, ... Vi, ... Yns] respectively. Fuzzification of the
input data and defuzzification of the output data are respectively performed by the input

and output linguistic layers, while the fuzzy inference is collectively performed by the
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rule-base and the consequence layers. The number of neurons in the condition and the

rule-base layers are defined in as:

0 : :

n=ald n,=a bm N; =N, n,.
i=1 m=1

where

Ji is the number of linguistic labels for the i™ input,

Lm is the number of linguistic labels for the m™ output,
Ny isthe number of inputs,

N, isthe number of neurons in the condition layer,

N is the number of rules or rule-based neurons,

N4 is the number of linguistic labels for the output, and
Ns isthe number of outputs.

A detailed description of the functionality of each layer is given as follows:

i) Input linguistic layer:

net input: fl=x, and
net outpui: o =f'
where: x = valueof thei™ input

i) Condition layer:
Each input-label node IL;; represents the j™ linguistic label of the ™ linguistic node from

the input layer. The input-label nodes constitute the antecedent of the fuzzy rules. Each

node is represented by a trapezoidal membership function m ; (x) described by a fuzzy

interval formed by four parameters (a; ;,b; ;,9; ;,d; ;) and acentroid v, ; asshownin

Fig. 3.3.
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aj, bi; ni;g,d

i

Figure 3.3 Trapezoidal-shaped membership function

net input: fif} =o', and
\I 0 if f-“- <a.”. or f.”. >d_”_
.~ 1 1 i,] i,j i,j i
.:.ai,J - fi,j
11 11
Ta; - b e I I I
net output: Oil,lj ::, i ) i,j ifa/| £ £b",
T I
i M if by £} £97}
} dii-9i;
where
[a},,d/", ] isthe kernel of the fuzzy interval for the " linguistic label of thei™ input,

[b/',9/1 is the support of the fuzzy interval for the " linguistic label of thei" input, and

o isthe output of i input node.

i) Rule-base layer
net input: f," =min(q';), and

net output: o' =f.".

where
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o' =  output of the input-label node that forms the antecedent conditions

for thei™ input to the k™ fuzzy rule R,
iv) Consequence layer
net input: fot = max (o)), and

net output: o = o

where
0, = output of the rule node Ry whose consequence is Olp,.
V) Output Linguistic layer
1tem IV Vyr IV v
Il a (V (gm,l - bm,I) 0m,I if gnmk > b
: . \Y
net input: fn = =1 L(m)
! a Vi " O
f 1= if 9 mk =D IVI
] fn
) if >h
E i ahogy O
net output: oy, =i ' v
i Fm
! 0 v
1 a Vm if gnmk b m,|
| =1
where
Vo = the centroid of the output-label node OL ., and
Omi» by = thewidth of the membership function for output-label node OL .
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34 Sdf-organizing (Clustering) techniquesin FNN

Generally FNNs perform cluster analysis on each dimension of the inputs and outputs of

training data to determine the fuzzy sets, which are subsequently used to derive the fuzzy

rules by connecting the input and output fuzzy sets. After the fuzzy inference systemis

chosen, several parameters need to be learned from training data. The challenges lie in:

i)

Required prior knowledge such as number of clusters for different sets of
training data, such as in Pseudo Outer Product based Fuzzy Neural Network
(POPFNN).

No principled method to configure the parameters of membership functions
or parameters for learning process, e.g. set support parameter and STEP in
Discrete Incremental Clustering (DIC).

How to make the number of clusters as small as possible so that the rule
number can be effectively reduced. Thisisalso known as horizontal
reduction.

How to be resistant to noisy/spurious training data and overcome the
stability-plasticity dilemma. Most partition-based clustering techniques,
such as fuzzy C-means (FCM), Linear Vector Quantization (LVQ) and LVQ-
inspired technique such as modified LV Q, fuzzy Kohonen partitioning (FKP)
and pseudo FKP, are all susceptible to noisy data and lack the flexibility to
incorporate new clusters of data after the training has completed. Thisis

called stability-plasticity dilemma, making online learning difficult.

There are many fuzzy clustering techniques, such as. DIC, Fuzzy Kohonen Partition

(FKP), Pseudo Fuzzy Kohonen Partition (PFKP), fuzzy C-means (FCM), LV Q, modified

LVQ, self-organizing map (SOM), fuzzy adaptive resonance theory (fuzzy ART), etc.
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Asthe rules used for implementing FPGA routing is generated by POPFNN, we take a
look at the fuzzy membership learning algorithms in POPFNN: FKP and PFKP. The
difference between FKP and PFKP is that the latter produces pseudo fuzzy partitions
while the former only produces fuzzy partitions. The former is a supervised learning

algorithm, while the latter is unsupervised.

Step 1: Define ¢ as the number of classes, | < Vivasthe learning constant, n asthe

learning width and a small positive number ¢ as a stopping criterion; where

Q = number of data vectorsin acluster, n=total number of data vectors.
Step2: Initialise the training iteration T = 0 and the weights v(® with

i+1/2

v = min(x,) + (max (%) - min(x,)) fori=1...ck=1...n

Step3: Initialize V™

=v{" fori=1...c.

Step 4: Fork=1.n:
FKP: Determine thei™ cluster the data x belongs to from the training data.
PFKP: Find the winner using:

|- v Emin( % - viTY ) for j=1, ...c.
J

Update weightsv; of
FKP: thei' cluster
PFKP: the winner i

with v =y 4 (x, - vD)
Step 5: Compute eV using ™ = én |% - V(™Y
k=1
Step 6: Compare €™ and ™ where & =0, using de™ =™ - [,
Step 7: If de'™ £ e, stop, otherwise, repeat step 3-7for T =T +1.

Page 29 of 215



Step 8:
Step 9:

FKP:

PFKP:

Initidlizea; =b, =d, =g, =j ; =v{"™ fori =1, ....c

For k=1..., n

Determine the i™ cluster the data X belongs to from the
training data.

Find the winner using | X, - j ; [Fmin(|x-j ;) for
J

j=1..., c.

Update pseudo weights j ; of

FKP:
PFKP:

thei™ cluster

thewinner i

thei™ cluster using j ; =j . +h(x, - j ;)

Update the four points of the Trapezoidal Fuzzy Number (T,FN) with

FKP:

PFKP:

FKP:

PFKP:

a; =min(a;, x,)

min(ai, X) fori=1

ai

d.

1 fori>1

b; =min(b;.j ;)

g; = max(g;, X,)

max(g;, x) fori=c

Diu fori<c
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3.5 Ruleformulation techniquesin FNN

The rule formulation techniques are different between T SK-based and CRI-based models.
Even in CRI-based models, different approaches might be adopted. In GenSoFNN,
RuleMap is used while the method used in POPFNN to identify the fuzzy rulesisthe
Pseudo Outer-Product (POP) learning algorithm. The POP learning algorithm isa simple
one-pass learning algorithm. 1n POPFNN-CRI(S), each node in the condition and
consequence layers represents a linguistic label once the membership functions have been
identified. Under the POP learning algorithm, the set of training data{ Xp, Y p}, where
Xp isthe input vector and Y p is the output vector, is simultaneously fed into both the
input linguistic and output linguistic layers. The membership values of each input-label
node ol are then determined. These values are subsequently used to compute the firing
strength fl11 of the rule nodes in the rule-base layer. Similarly, the membership values of
each output-label node are determined by feeding the output value back from the output
layer to the consequence layer. The weights of the consequence layer linking the rule-
based layer are then determined using: W :én ! (XP) my(vh)  (*)

p=1
W m = weight of thelink between the k™ rule node and the I linguistic label for

the m™" output, and

f!' (X P) = firing strength of k™ rule node when presented with input vector Xp, and

My (Y5) = membership value of the m™ output of Y p with the fuzzy subset Y, that

semantically represents the " linguistic label of the m™ outpui.
The weights in Equation (*) areinitially set to zero. After performing POP learning,

these weights represent the strength of the fuzzy rules having the corresponding output-

label nodes as their consequences. Among the links between a rule node and the output-
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label nodes, the link with the highest weight is chosen and the rest are deleted. The links
with zero weightsto all output-label nodes are also deleted. The remaining rule nodes
after this link selection process subsequently represent the rules used in the POPFNN-
CRI(S).

3.6  Problemsin applying FNN to network routing

Although FNN is a powerful data analysis and prediction tool, it is very difficult to apply

FNN to interconnection network due to the following reasons:

3.6.1 Exponentially growing number of rules

With careful re-examination of the Virus Infection Clustering and clustering techniques
in POPFNN and GenSoFNN, it is clear that the clustering process is related only to the
input of training examples, with no relationship with the respective output. To make
routing decision, it is indispensable to take the binary address of nodes into consideration.
So they are selected as part of FNN’s inputs. However, in an-dimension network, if in
the training set, we feed all the 2" combinationsto FNN, then obviously, each input i will
be assigned two linguistic labels, namely H; centering on 1 and L; centering on 0. Recall

the process of rule formulation. No matter whether Mamdani or TSK, SAM model is

used, the rule antecedent is alwaysinthe formof IF x is A; and ... and X, is A,. So
the rule number is always in the magnitude of 2" with each tuple (X, X,,..., X,)

(x 1 {H,,Li}) corresponding to arule. In other words, the FNN is just memorizing each

case without any intelligence demonstrated. In practice, this number isintolerable.

A trial to circumvent this problem is to convert the n-digit binary number into its

corresponding decimal value for input. Thisis supported by the fact that the n bits are
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independent. However, aswhat counts is the bit pattern of the node address, this attempt

suffers from the following problem. For example, at current node, a packet isto be sent

to 10000 and another packet isto be sent to 01111. In decimal value, their differenceis

only 1. However, the routing decisions for them are quite different. Experiments also
show that this conversion will not reduce the number of rules effectively because more

linguistic labels are needed for each input.

Another attempt to overcome the problem isto use pure CMAC and feed in the decimal
value. Theresult still showsthat unless the resolution grows exponentially with
dimension, the error rate isintolerable. The test is run on learning the function of bitwise
XOR. Theinputs aretwo integers ranging from O to 127. The output is the bitwise XOR
of the inputs. Inthe training set, all 128* 128 combinations of inputs are enumerated and
the testing set is same asthe training set. The following Figure 3.4 demonstratesthe
trend of error rate with respect to the resolution r. The resolution r applies to both inputs

simultaneously.

Error Rate ~ Resolution

E

20 """"""E— ------- -I"-"""";F""-""";F- —+— Error Rate [ 777

e I LNt S S

L e e .
] S e P ]

) NSNS RS N U N E—

Error Rate

i) S— S S S SR AR i
G T T S TR .

c — — e

20 a0 g0 a0 100 120 140
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Figure 3.4 Error rate versus Resolution for learning bitwise XOR
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Fig. 3.4 shows that the error rate decreases slowly when the resolution is far from 128.
Actually, the error rate goes below 50% only when CMAC is nearly memorizing all
individual maps from input space to output space. This rote is not acceptable due to its

large space cost for storing rule base.

3.6.2 Toolong off-linetraining time

Suppose the input for FNN is three n-bit binary strings. current node address, destination
address, and safety vector of current node [54]. Then for a 5-dimension network, if we
use all the 22 combinations of (source, destination) pair, the training time is about 2

minutes with POPFNN on a 1.7GHz CPU computer. For networks of practical size, say
11 dimensions, the training time will be intractable. The problem in nature is that the
application of routing in interconnection network is based on binary discrete numbers.
The FNN is heavily dependent on the clustering of each dimension of input, also called

horizontal reduction. So the range of each input can be very large but the number of

S
input can not be too high because the algorithm’s time complexity is O(Q I; XQO O, XT),
i=1 j=1

where I; stands for the number of linguistic labels for the i input, O, stands for the

number of linguistic labels of the j™ output, and T stands for the number of training

examples. However, our binary application makes I; = 2 for il [1, n] and n linear to

network dimension, so that the complexity is exponential to the dimension.

Besides converting binary numbers into one decimal number, another way to tackle this
problem is to reduce the number of training examples. If we provide all possible cases of

input in the training set, then as the training time is linear to the training set size, it is
inevitable to suffer from O(2") time complexity where n is the dimension of the network.

We have noted that in most cases, the routing decision in a network with faults is the
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same as that in the fault-free setting. The proportion of those decisions affected by faults
is so small that an FNN even neglecting them will also achieve a very high percentage of
correctness (asymptotically approaching 100%). Thus, to prepare the training set, we
choose a small proportion of those cases that are not affected by faults while recording all
the cases that are affected. The choice of the former is just by random. However, the
harvest is not significant. And the new problem is what proportion of the former cases

need to be preserved in order to reach the best performance.

3.6.3 Difficulty in discussion of non-fuzzy metrics

In network routing by FNN, the most important problem in theory is the discussion of
metrics of performance. For example, there can be no theoretical deduction of whether
the routing strategy is deadlock free or livelock free. We can’t prove how many faults

can betolerated. It isalso hard to derive in theory the upper bound of path found.

One way to deal with the problem is by simulation. But to compare with other routing
strategies, such an approach is not appropriate, because currently no routing strategy is
measured by how likely it will lead to deadlock or livelock. The occurrence of deadlock
and livelock might result from the routing decision of many packets at many nodes. So
such a benchmark is not easy. More importantly, there is no way to predict how many
faults can be tolerated. Thiswill put the routing strategy at a disadvantage when high and
predictable reliability are desired.

3.7 A possible method for usng FNN

For low dimensional networks, the FNN can be applied. But we have to be careful with
designing inputs and outputs of the fuzzy neural network. For example, at 000, if a

packet isto be sent to 111, then it can use any of the 3 dimensions. However, which one
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is adopted in training example is important because choosing randomly will lead to

inconsistent training examples.

The final approach used in implementing FPGA is not a direct routing strategy based on
FNN. At each node, it uses the FNN to estimate the distance of each neighbor to the
destination. And then choose the best one together with such considerations as not
immediately backtracking to the sender, and not using a faulty link. In other words, the
input of the FNN is:

(n bits for current address), (n bits for destination address), (n bits for current node’s

safety vector)

Output of FNN is the real distance between current node and the destination in the

presence of faulty components.

Note here, when using trained FNN to route, the ‘current address’ above is actually fed

by the neighbors address and ‘current node’s safety vector’ is actually fed by the
neighbor’s safety vector.
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Chapter 4: A Fault-tolerant Routing Strategy for

Fibonacci-Class Cubes

4.1 Introduction

Fibonacci-class Cubes originate from Fibonacci Cube (FC) proposed by Hsu [12][13][16],
and its extended forms are Enhanced Fibonacci Cube (XFC) by Qian [14] and Extended
Fibonacci Cube (XFC) by Wu [15]. This class of interconnection network uses fewer links

than the corresponding binary hypercube, with the scale increasing slower because

1++/3,,

Fibonacci number is of order O((—) ) <O(2"). That alows more choices of network

size. In structural aspects, these two extensions virtually maintain all desirable properties
of FC and improve it by ensuring the Hamiltonian property [14][15]. Besides, there is an
ordered relationship of containment between the series of XFC and EFC, together with
binary hypercube and regular FC [15] as shown in Fig. 4.1 and 4.2:

EFC, ,(n) =HC, , XFC,.,(n) =HC,,
EFC, 5(n) XFC, 5(n)
EFC, (n) XFC, (n)
EFC,(n) XFCo(n)
FC, FCn
Figure 4.1 Relationship between binary Figure 4.2 Relationship between binary
hypercube, regular Fibonacci Cube and hypercube, regular Fibonacci Cube and
Enhanced Fibonacci Cubes Extended Fibonacci Cubes
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Lastly, they all allow efficient emulation of other topologies such as binary tree
(including its variants) and binary hypercube. In essence, Fibonacci-class Cubes are
superior to binary hypercube for low growth rate and sparse connectivity, with little loss

of its desirable topological and functional (algorithmic) properties.

Though Fibonacci-class Cubes provide more options of incomplete hypercubes to which
a faulty hypercube can be reconfigured and thus tend to find applications in fault-tolerant
computing for degraded hypercube computer systems, there are no existing fault-tolerant
routing algorithms. This is a common shortcoming of link-diluted hypercubic variants.
In this chapter, we propose a unified fault-tolerant routing strategy for Fibonacci-class

Cubes, named Fault-Tolerant Fibonacci Routing (FTFR). It has the following properties:

It can be applied to al Fibonacci-class Cubes in a unified fashion, with only minimal
modification of structural representation.

The maximum number of faulty components tolerable is the network’s node
availability [18] (the maximum number of faulty neighbours of a node that can be
tolerated without disconnecting the node from the network).

Each node requires only one round of fault status exchange with its neighbours.

For a n-dimension Fibonacci-class Cube, each node, with degree deg, maintains and
updates a most (deg+ 2) n-bit vectors, among which: 1) a n-bit availability vector

indicates the local non-faulty links, 2) a n-bit input link vector indicates the input
message link, 3) deg copies of its deg neighbors’ n-bit availability vector indicate
dimension availability of its neighbors.

Provided the number of component faults in the network does not exceed the
network’s node availability, and the source and destination nodes are not faulty,
FTFR guarantees a message path length not exceeding n+H empirically and
2n+H theoretically, where n is the dimension of the network and H is the Hamming

distance between source and destination.
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Generates deadlock-free and livelock-free routes.
Can be implemented almost entirely with simple and practical routing hardware
requiring minimal processor control (refer to Chapter 7 for the FPGA

implementation).

The rest of this chapter is organized as follows. Section 4.2 reviews several versions of
definitions of Fibonacci-class Cube, together with comments and initial analysis. Section
4.3 presents a Generic Approach for Cycle-free Routing (GACR), which is used as a
component of the whole strategy. Section 4.4 develops the fault-tolerant routing
algorithm FTFR and Section 4.5 illustrates its application with an example. The design
of asimulator and simulation results will be presented in the Chapter 4 and 5 respectively.
Finally, the routing strategy is implemented on an FPGA chip. This is described
separately in Chapter 7.
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4.2 Definition and analysis

Though Fibonacci-class Cubes are very similar and are all based on a sequence with
specific initia conditions, they do have some different properties that call for special

attention.

421 Definitions of Fibonacci-class Cubes

We first quote the definition Fibonacci Cube proposed by Hsu [12].

(Definition 4.1) Fibonacci number
The well-known Fibonacci number is defined by: f, =0, f, =1 f,=f,_,+f, ., for

n3 2.

(Definition 4.2) order-n Fibonacci code

The order-n Fibonacci code of integer il [0, f, - 1] (n3 3) isdefined as (b, ;,%%b;,b,) -

n-1
where b; iseither Oor 1for 2£ j£(n- 1) and i = § b, xf .
j=2

(Definition 4.3) Fibonacci Cube of order n(n3 3)

Fibonacci Cube of order n (n23) is a graph FC, = <V(f,),E(f,)>, where
V(f,)={0, 1%xf, -3 and (i, j)T E(f,) if and only if H(l-,Jz) =1, where |, J; are
the Fibonacci codes of i and j, respectively. H(l¢,Jg) stands for the Hamming distance

between |- and J .

Another equivalent definition which is more unified with Enhanced Fibonacci Cube and

Extended Fibonacci Cubeis:
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(Definition 4.3’) Fibonacci Cube of order n(n3 3) [12][14]

Let FC,=(,,E,) , then V,=0]|V,.,U10|V,., for n3 5, where || denotes the
concatenation operation. V; ={1, 0}, V, ={01, 00, 10} . Two nodes in FC, are connected

by anedge in E, if and only if their [abels differ in exactly one bit position.

(Theorem 4.1)

Fibonacci Cube of order n (n3 3) can be equivalently defined as a graph whose node

addresses are (n- 2) -bit binary number in which there are no two consecutive 1’s. Edges

exist between nodes whose Hamming distance is 1.

Proof:

Let V, ={a,.33,. 433 | &1 {0, §,for il [O,n- 3 andfor " jT [O,n- 4], a;,,a; * 11}.

Obviously, to prove Theorem 4.1, it is sufficient to prove that V, =V, because the
definition of link in Theorem 4.1 is the same as that in Definition 4.3°. Firdt, it is obvious

that V, I V.. Weprove V, EV, inductively. Asthe basis, it isclear that V, =V,, for n=3,
4. If V, =V, holds for n<k (k>4), then when n=k, for each binary address
a_ 58y 48,1 V,, we discuss two cases.
1) a,,=0. Asa, ,..aa,1 V,_,,thus a,_,..aa,1 V, ;. Then a_,a, ,..aa, =

03y 48,1 OV, 11 V.
2) a,,=1. Thena,_,=0. Asa_s.aa,1 V, ,,thus a_..aa,1 V, ,. Then

a8y 4.8 =108, s..a,a,1 10|V, , | V.

Combine 1), 2), weget V. EV.. SoV, =V. holdsfor n=k. Theorem4.1lisproved. g
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The definition in Theorem 4.1 is more suitable for discussing routing strategies in

Fibonacci Cube.

Enhanced Fibonacci Cube and Extended Fibonacci Cube can be defined in a similar way:
(Definition 7.4) Enhanced Fibonacci Cube of order n(n3 3) [14]

Let EFC, = <V,, E, > denotethe Enhanced Fibonacci Cube of order n, then

Vv, =00]|V,.,U10|V,.,UJ0100]|V,., ||UO101|V,.,. Two nodesin EFC, are connected
by an edge in E, if and only if their labels differ in exactly one bit position. As initial
conditions for recursion, V; ={1,0}, V, ={01, 00, 10}

V; ={001, 101, 100, 000, 010} and

Vs ={0001, 0101, 0100, 0000, 0010, 1010, 1000, 1001} .

(Definition 7.5) Extended Fibonacci Cube series of order n [15]

A series of Extended Fibonacci Cubesis defined as{ XFC,, k3 1}, where

XFC, (n) ={V, (n), E,(N)}. V. (n) =0[|V,(n- )UL0||V, (n- 2) for n3 k+4. Two nodes
in XFC, (n) are connected by an edge in E, (n) if and only if their labels differ in exactly
one bit position. Asinitial conditions for recursion, V, (k +2) ={a,_, *»&a, |a, 1 {0, 1} for

i1 [0,k- 1}, V. (k+3) ={a, »aa, |aT {0, J foril [0,Kk]}.

422 Comments and Analysis

The following property is important for our routing algorithm. Let current node address be

u and destination node address be d, then each dimension corresponding to 1 inu A dis
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called preferred dimension, where A stands for bitwise XOR operation. Due to the
definition of Fibonacci-class Cubes, when a packet is routed in the network, it is quite
likely that links in one or more preferred dimensions are not available at current node. But
the following Theorem 4.2 guarantees that in a fault-free setting, there is always at least one
preferred dimension available at its present node. Unlike binary hypercube, this is not a

trivial result.

(Theorem 4.2)
In a fault-free Fibonacci Cube, Enhanced Fibonacci Cube or Extended Fibonacci Cube,
there is always a preferred dimension available at the packet’s present node before the

destination is reached.

Proof :
Suppose we are discussing an n-dimension Fibonacci-class Cube. This means that we are

discussing FC, XFC and EFC of ordern+2. Let the binary address of current node be

a,. ; »xa, and the destination be d,_, »od,d,. Let the rightmost (least significant) bit

correspond to dimension O while the leftmost bit correspond to dimension n- 1.

Casel: Fibonacci Cube FC,,,. Obviously, if the destination has not been reached, there

is always a preferred dimension i1 [0,n- 1]. If a =1 and d, =0, then there is always a

preferred link available at dimension i because changing one ‘1’ in avalid address into O

always produces a new valid address. So we only need to consider a =0 and d, =1.

When n£ 3, Theorem 4.2 can be easily proven by enumeration. So now suppose n3 4.

Obviously, if iT [Ln- 2], thend. , =0, d.,,=0. If a_, =1, theni-1is an available

preferred dimension. If a,, =1, then i+1 is an available preferred dimension. |If
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a_, =a,, =0, thendimensioni isan available preferred dimension because inverting a,

to 1 will not produce two consecutive 0’s in the new nodes address. This satisfies the

precondition of Theorem 4.1, so that the new address is ensured to be a valid node

address. If i =0, then d; =0. If & =1, dimension 1 is an available preferred dimension.
If &, =0, then dimension O is an available preferred dimension for the same reason as in
il [Ln-2]. Ifi=n-1,thend,,=0. If a_, =1, then dimension n-2 is an available
preferred dimension. If a,_, =0, then dimension n-1 is an available preferred

dimension for the same reason asfor i1 [Ln- 2]. Inwhatever case, Theorem 4.2 holds.

CaseIl: Extended Fibonacci Cube XFC, (n+ 2)

Suppose there is apreferred dimensioni. If i <k, then it always produces avalid

address if weinvert a;. If i3 k, the discussion isthe same as case .

Case I1l: Enhanced Fibonacci Cube EFC,,,.

The discussion is similar to case I. We only need to pay attention to the leftmost

preferred dimension. Please refer to Appendix | for detailed proof. g

Theorem 4.2 implies that whenever a spare dimension is used, either a faulty component
is encountered or al neighbors on preferred dimensions have been visited before. For the
latter case, all such preferred dimensions must have been used as spare dimensions before.

So both cases can be boiled down to the encounter of faulty components.

Theorem 4.2 implies the possibility that FTFR can be applied to all type of networks

which can always ensure the existence of at least one preferred dimension. Actually, we
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applied FTFR to all Fibonacci-class Cubes and find that it works well in all cases,
including binary hypercube.

4.3 A Generic Approach for Cycle-free Routing (GACR)

4.3.1 Overview

This approach aims at providing away of avoiding cycles in routing by checking the
traversal history. The most valuable strength is that the algorithm only takes O(2) time
to check whether a neighbor has been visited before, and only O(1) time to update the

coded history record. Other advantages include its wide applicability and easy hardware
implementation. It applies to such routing algorithms that deal with a network in which
links only connect node pairs whose Hamming distance is 1 (called Hamming link). All

networks constructed by node or link dilution meet the requirement. An extended version

of the algorithm can be applied to those networks which have O(1) types of non-

Hamming links at each node. Thus, such networks as Folded Hypercube, Enhanced

Hypercube and Josephus Cube can also use this algorithm.

The weakest point of this approach lies in the size of message overhead O(L,,logn),

where n is the dimension of the network and L, is the maximum length of a path a

packet can traverse. However, in most cases, it is still within an acceptable bound [19].

4.3.2 BasicGACR
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The traversal history is effectively an .

ordered sequence of dimensions used

when leaving each visited node. For dy

001

example, in Figure 4.3, the route that 000

originates from 000 can be recorded as:

1210121. Anobvious equivalent 010

requirement for cycle-freeness is that:

if ‘(C and ©)’ areinserted into the

sequence, then for any combination of

the places of ‘(" and )’ (aslong as

(* precedes )’), there must be at least Figure 4.3 Example for routing history

one number between the brackets
which appears for an odd number of times. Put it another way, the equivalent condition
for aroute to contain cycle is. there exists away of inserting ‘(" and )’ into the sequence

such that each number in () appears for an even number of time.

For example, in 1(21012) , 0 appears only one time, which is an odd number. In
(1210121), 1 and 2 appear for an even time but 0 still appears for an odd number of time.
So neither forms a cycle. But for a sequence of 1234243, there must be a cycle:

1(234243). Suppose a node p, the history sequence is aa, *a,,, and it is guaranteed
that no cycle exists hitherto, then to check whether using dimension a,,,,

will cause any cycle, we only need to check whether in (a,a,,,) . (&,.,8,.18,841) »

(8. 48, 38, 8, 18,8,,1) --. €ach number will appear for an even time. Here we can

omit dimension a,, because immediate backtrack will certainly cause cycle.

Page 46 of 215



We first introduce the basic form of this algorithm that applies only to networks
constructed by node/link dilution from binary hypercube. This algorithm is run at each

intermediate node so asto ensure that no cycle is formed.

(Algorithm 4.1) Basic GACR

The data structure is a simple array: port[ ], with each element composed of dogn( bits.
port[i] records the port used when exiting the node that the packet visited i +1 hops ago.
So when a packet leaves a node, it only needs to append the dimension adopted to the

head of the array port[ ]. Aseach node has only n ports and the meaning of dimension is

common at all nodes, that is, dimension ¢ a node a has the same meaning at node b,

obviously only dogn( bits are necessary for representing these n possibilities. At the

source node, the array port[ ] is null.

Suppose a node x, the length of the array is L. After running the following short code
segment, each 0 in mask corresponds to a dimension, the using of which will cause an

immediate cycle. Thus, the test time only takes one clock cycle.

unsigned Preprocess( unsigned port[], int L)

{
unsigned dim, mask = 0, history = 1 << port[0];
int k, flag = 1;
for(k=1,k<L; k++)
{
dim =1 << port[K];
history "= dim;
if (! flag) /I flag ensures that OnlyOne is called every other time
{
if (OnlyOne (history) ) Il check if history has only one 1
mask |= history;
flag ++;
}
else

flag --;
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}
return ~mask;

For instance, for the dimension sequence 875865632434121 from source to present, the
mask is: 000010011. Because in 875865632434121a, there is a cycle formed when a =
2,3,56,7, o0r8.

The operations in this algorithm are all basic logic operations. The OnlyOne function

which tests whether history has and only has one 1 is also easy to implement such that

only one clock cycle is required. Suppose history = X ;X , %X, (% 1 {0, T for

iT [0,n)), then OnlyOne (history) =

Xn-1%n- 2 200% X + X 1 X 2 29K Xg +232+ Xy 1 X 2 20K X Xy 1% 2 XK X
The implementation of this only costs n AND gates and 1 OR gate, taking only one clock
cycle. But in software smulation, it takes O(n) time. Attention should be paid to this

problem. The logic circuit of function OnlyOne is drawn in Fig. 4.4.

‘ >

X yl>o . DO Inverter
: . Y

] . D AND gate

D OR gate

o o

Figure 4.4 Logic circuit of function OnlyOne
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Another gtrength of this algorithm is that the time for running the code above can be

reduced to nearly zero because it is orthogonal to the routing algorithm. This makes

parallelism and pipelining possible. At first sight, the time complexity is O(L,,,,) , Where

L. isthe length of the longest path the packet can traverse. In a network with heavy

max

load, this preprocess of calculating mask can be done when the packet is still waiting in
the buffer.

4.3.3 Extended GACR

If the network has O(1) number of non-Hamming link types at each node and these links

can be represented by a common and uniform way, then Algorithm 4.1 can be easily
extended. For example, in Josephus Cube JC(n) [64], we denote the complementary

link as dimension n and the Josephus link as dimension n+1. Then the function of

Preprocess can be modified into the following form:

(Algorithm 4.2) Extended GACR
void Preprocess( unsigned port[], int L, unsigned * mask1, unsigned * mask2,
unsigned * mask3)

unsigned dim, history = 1 << port[0];
*mask1l=*mask2 = *mask3 = 0;
for (intk=1;k<L; k++)
{
if (port[k] <n)
dim =1 << port[K];
elseif (port[k] ==n)
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dim = ((1<<n) - 1);
else dim= (unsigned) 3;
history "= dim;

if ( OnlyOne (history) ) /I check if history has only one 1
*maskl |= history;  // for cycle caused by Hamming link
elseif (AllOne(history))  // check if history has straight 1’s
*mask2 = 1, /I for cycle caused by complementary link
else if ( history == (unsigned) 3) /I check the rightmost two bits
*mask3 = 1; /I for cycle caused by Josephus link

}
*maskl = ~( *maskl);

mask2 = 1 represents that the use of complementary link will result in acycle, while
mask3 = 1 stands for the fact that using Josephus link will bring about acycle. The

meaning of maskl remains the same as mask in the basic algorithm.

It might be noticed that the biggest shortcoming lies in the size of message overhead. For
most routing algorithms, L., =O(n) thus O(L,,logn) =O(nlogn). However, thisis till

within the acceptable bounds in most applications. For example, the “visited stack” used

by [19] incurs message overhead of (n+ 1) dog, n( bits for an n-dimension binary

hypercube.
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44  Fault-Tolerant Fibonacci Routing (FTFR)

441 De€finition and notation

In a Fibonacci-class Cube of order n + 2 (n-dimensional), each node’s address is an n-bit

binary number where n > 0. Let the source node, u, be identified by (a, ... a,a,), where
aiT {0, 1} for al O £ < n, and the destination node, v, by (b, , ... b,b,), where bjT {0, 1}
for all 0 £ < n. Then, the identity of the neighboring node of u along the d dimension,
is u® for any 0 £ d < n, where u® means inverting the k™ bit of the binary address of

node u.

(Definition 4.5)  route vector
When a packet reaches current node c, four r-bit route vectors are calculated as follows:

R=~d&c, R,=~c&d, R;,=cé&d, R, = ~(c|d)
Here, ‘|, ‘&’ ‘~’ represent OR, AND and bitwise NOT operation, respectively.

Obviously, R |R, |R;|R, =1", R & R, =0 foral 1£i,j£4 i j,where1" stands

for a sequence of 1 with the length of n.

(Definition 4.6) availability vector
At each node x, the n-bit binary number availability vector (AV(X)) records a bit string,
indicating by ‘1’ what dimensions are available at x, and by ‘0’ what dimensions are

unavailable.
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Here adimension d is available means there is a nonfaulty link at xto x¥.  For example,

in Figure 4.5, node 1001 and link (0000, 0001) are faulty. The availability vector of each
nodeislisted in Table 4.1:

o

1000 1001

1010

0010 0000 0001

1 0
2 0100

Figure 4.5 Example of availability vector

node AV node AV node AV
0000 1110 0100 0101 1001 0000
0001 0100 0101 0101 1010 1010
0010 1010 1000 1010

Table4.1 availability vector for Fig. 4.5

Availability vector is crucial for generalizing the applicability of the routing algorithm to
other Fibonacci-class Cubes. It is effectively adistributed representation of the network

topology, connectivity and fault distribution.
(Definition 4.7) input link vector

An n-bit input link vector at node w is defined as I(w) = [l.1... I1lo], where |; = O if the

message arrives at w along the dimension i link, otherwisel; = 1 for O £i <n. Setting the
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corresponding bit to O for a used input link prevents the link from being used again
immediately for message transmission, causing the message to “oscillate” back and forth.
An input link vector has all n bits set to ‘1’s for anew message generated at the node and

after transmission of a received message.

(Definition 4.8) mask vector
To prevent cycles in the message path and to regtrict the freedom of selecting output port,

it is also necessary to keep track of link dimensions traversed. As part of the message

overhead, a mask vector may be defined as DT = [t,,_, »«,t,] . At source node, we clear

DT =[1... 11]. After that, whenever a spare dimension is to be used, it must be
guaranteed that the corresponding bit in DT is 1. But the use of preferred dimension is
never restricted. Different from many existing algorithms, each originally preferred
dimension (preferred dimension at the source) can be used more than once. When it is
used for the first time, DT doesn’t record it. But at the second time when it isto be used
as a spare dimension, its corresponding bit in DT is masked, so that it can’t be used asa
gpare dimension again. It will then be used as a preferred dimension. Any O-bit inDT
cannot be set back to 1. Asfor originally spare dimensions, they can be used for at most
two times, which is ensured by masking the corresponding bit in DT the first time it is
used.

(Definition 7.9) neighbor condition vector array (NCy)

Each node periodically exchanges its own availability vector with all neighbors. So it
costs at most O(n?) space to store the neighbor condition. The availability vector of the

neighbor on dimension k is denoted as NCi .
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4.4.2 Detailed description of FTFR

Empirically, the number of faults FTFR can tolerate is the network’s node availability.
There is an intricate mechanism in choosing candidate dimension when more than one
preferred dimension are available, or when no preferred but several spare dimensions are
available. First of all, the GACRis used to generate a mask

M. Only those dimensions whose corresponding bit in (M AND | (w) AND AV) is1 are
further investigated. These dimensions are called available. To illustrate the algorithm,
the following Figure 4.6 is useful. In Figure 4.6, ‘s’ stands for spare dimension or

neighbors onit, while ‘p’ stands for preferred dimension.

Decision
made here

E Deadlock (ignore)

Figure 4.6 lllustrative example of FTFR

We divide our discussion into two cases.

(Casel)
We first check the I’'sin R, R, (preferred dimensions). If there are several available

preferred neighbors (like A and B), we compare which one has the largest number of
non-faulty preferred dimensions. If tie, then compare their number of non-faulty spare

dimension. If still tie, choose the lowest dimension. Actually, the value to compare is
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given by n:(No. of prefer) + (No. of spare). Here, For A, n> (No. of prefer) + (No. of

gpare) =2n + 2, while for B, thevalueis n+3. So A is chosen.

(Case ll)

If at current node M, there are no preferred dimensions available, spare dimensions have
to be used, like D and E. Firstly, the eligibility is checked by DT. Then just likein casel,
we compare n>(No. of prefer) + (No. of spare). After one spare dimension isfinally
chosen, its corresponding bit in DT is masked to 0, so that it will not be used as spare

dimension again.
In Case I, if all spare dimensions are masked by DT, the algorithm has to abort.

The m=n:(No. of prefer) + (No. of spare) is aheuristic metric. After extensive
experimentation, it is found that small modifications can be made to m so asto improve
the performance of FTFR. Suppose the dimension under consideration isi and inverting
the i™ bit of destination d producesd’= d XOR 0™'10. If d’ isavalid node address in
that Fibonacci-class Cube, attaching some priority to dimension i will be helpful in
reducing the number of hops. Hence, we add the value of node availability of the
network to mfor that dimension in such case. In Enhanced Fibonacci Cube, thisis an
indispensable measure for the algorithm to generate a path to destination when the

number of faults in the network is no more than its node availability.

The following are two core routing functions. They are very easy to understand.

// this function isrun at M, which looks ahead at A, B, C, D and E
Il available= AV(M) AND I (M) AND (mask generated by GACR)

/l source and destination are both in Fibonacci code

unsigned EnhFibCube :GetNext(unsigned int source, unsigned int destination,
unsigned int available, unsigned int *DT)
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int max1, max2;
unsigned x2, templ, temp2;

if (source == destination)
return DEST_REACH;

/I first get preferred 1->0 dimensions
X2 = (~destination & source);

x2 &= available

maxl = -1;

if(x2) /I if there exists some available 1->0 preferred dimensions,
/I choose the one that has the largest
/I n*(No. of // prefer) + (No. of spare),
I the value is recorded in max1 (called by reference).
templ = OneBest(source, destination, x2, *DT, & max1);

/I check preferred 0->1 bits
X2 = (~source & destination);
x2 &= available

max2 = -1;

if(x2) // such adimension exists
temp2 = OneBest(source, destination, x2, *DT, & max2);

if(max1 > max2)
return templ,

elseif(maxl < max2)
return temp?2;

eseif(maxl!=-1)
return templ,

I check spare 1->1, now make 1->0
X2 = (source & destination);
X2 &= available
X2 &=*DT;
maxl = -1;
if(x2)
templ = OneBest(source, destination, x2, *DT, & max1);
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/I check spare 0->0, now make 0->1
X2 = ~(source | destination);
x2 &= available
X2 &=*DT;
max2 = -1;
if(x2)
temp2 = OneBest(source, destination, x2, *DT, & max2);

if(max1 > max2)

{
*DT A= (1<<templ); // remember to mask spare dimension once used
return templ,

}

if(max1 < max2)

{
*DT "= (1 << temp2);
return temp?2;

}

if(max1!=-1)

{
*DT A= (1 <<templ);
return templ,

}

return ABORT:;

Il each running of this function corresponds to the neighborsof A, B, C, D, E...

Il each 1 in x2 corresponds to the candidate dimensions waiting to be tested

/l mrecordsthe largest n* (No. of prefer) + (No. of spare)

/I the return value indicates the selected dimension.

/[ 1f al neighborsin x2 are leading to deadlocks or these neighbors have no nonfaulty

/l'links, mis set to -1 (unchanged as before calling OneBest) and return INFINITY .

unsigned EnhFibCube:OneBest(unsigned int source, unsigned int destination, unsigned
int x2, unsigned int DT, int *m)
{

unsigned x1, mask, neighbor, prefer, spare, i;

int max, temp, total;
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mask = 1;

max = 0;

for(1=0; i < Num_Bits; i++) /I iterate for each dimension

{

if(x2& mask)

{

}

neighbor = source* mask; I get the neighbor (A, B, C,D...)
temp = Fib2Dec(neighbor); /I get the array index of neighbor
prefer = neighbor ” destination; // relative address.

if('prefer) /1 the neighbor is destination

{
*m = OX7fffffff; Il st mto INFINITY

returni; /I return corresponding dimension

total = CalOnes (prefer & Nodetemp].avaiVector & ~mask) *Num_Bits;
/I how many preferred dimensions are available at the neighbor

spare= (~prefer & DT & Nodegtemp].avaiVector& ~mask);

total += CalOnes(spare);
/I how many spare dimensions are available at the neighbor

if (CheckValid(destination ™ mask, Num_Bits))
total = total + Node_Availability;

if(total > max) Il record the max value

{
max = total;
x1=1i; /I record the corresponding dimension

mask <<= 1;

if(max == 0)

/I return no qualified dimension is found

return INFINITY;

*m = max;
return x1;

/I record the max value
/I record the corresponding dimension
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4.5 Anillustrative Example:

In an 9-dimension Regular Fibonacci Cube F1; :

/\9+2 4
It can tolerate at most &9 U

g 3 f

1= 2 faulty components

Faulty Node: 000001000 and 000000001

Faulty Link: none

Now wewanttogofrom 101010100 to 000001001

The path selected is:

Step 876543210 | Dimension Used
101010100

D & 100010100 | 6

@ & 000010100 | 8

(O 000010101 | O

4 & 000000101 | 4

®) & 000000100 | O

©) & 000000000 | 2 meet 000001000, 000000001
") & 100000000 | 8

@) & 100000001 | O

© & 100001001 | 3

(10 & 000001001 | 8

Page 59 of 215



At step (1), apreferred dimension 6 isused. There are 4 1->0 preferred dimensions
available then, namely 2, 4, 6, 8. The metric n> (No. of prefer) + (No. of spare) is
4*9+1, 3*9+2, 3*9+2, 4*9+0, 4*9+0, respectively. After updated for dimensional
availability at destination, the final scoreis 37, 29, 39, 39, respectively. Thus dimension
6 or 8 can be chosen. Here we choose the smaller one. Before step 7, we can always find
a 1->0 preferred dimension. At 000000000, neither of the two preferred dimensions (3
and 0) is available because each will lead to afaulty node. So spare dimension hasto be
used then. The input dimension is 2 and using dimension 4 will lead to deadlock.
Therefore, there are only 5 possible dimensions, namely 1, 5, 6, 7, 8. The score they get
are (including the possible addition of node availability) are: 14, 25, 25, 25, 27,
respectively. So dimension 8 is chosen. Note, now dimension 8 is used as spare
dimension and its corresponding bit in DT will be masked. It will never be used as spare

dimension again. Afterwards, three preferred dimensions are used successively.

Note here, each faulty component is not encountered twice. The final route is short.

Actually, in the 9-dimension Fibonacci Cube with 2 faulty nodes, the longest possible
route found by FTFR is 10.
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Chapter 5: Exchanged Hypercube

5.1 Introduction

One important means of improving computation speed is by breaking the problem into
subcomputation and execute concurrently with multi-processors. In this setting, the
communication between processors is crucial. A number of interconnection networks
have been designed to dea with the problem. One of the most researched as

interconnection network is the binary hypercube [8][9].

The binary hypercube, however, scales too rapidly as its dimension n increases. The

more serious problem is the number of edges: n2"*, which grows more dragtically than

the number of nodes: 2". Some variants have been proposed to remove as large a

fraction of edges as possible, while, at the same time, preserve the desirable topological
properties of the binary hypercube. Examples are Gaussian Hypercube [1] and Reduced
Hypercube [10]. Nevertheless, when edges are diluted, some usefulness of a richer
connectivity disappears. Routing between nodes becomes a serious problem, particularly

when faulty components exist in the network.

The Exchanged Hypercube proposed in this chapter is based on link removal from binary

hypercube, possessing only 1 of the number of links in the latter topology with the same
n

number of nodes, where n is the dimension of the network. It is defined with two
parameters, which provide more flexibility of network structure. What is more, it

maintains virtually all of the desirable properties of the binary hypercube, such as
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Hamiltonian property (which ensures the optimal embedment of ring), uniform node

degree, low diameter, and various possibilities of decomposition.

An interesting point is that an Exchanged Hypercube is isomorphic to a Gaussian Cube.
It near-optimally emulates binary hypercube. Besides, it can embed meshes with
reasonable efficiency (dilation 2, expansion 2, loading 1 and congestion 2). Being

Hamiltonian, the Exchanged Hypercube can optimally embed linear arrays and rings.

The Extended Binomial Tree, which is proved to be the spanning tree of the Exchanged
Hypercube, preserves many desirable properties of the original Binomial Tree, with only
some minor variations in the initial conditions. This provides a necessary framework for
solving many applications such as broadcasting, prefix sum computing and load

balancing in Exchanged Hypercube.

Finally, a fault-tolerant routing strategy is proposed. For link-diluted hypercubic variants,
the common nightmare is the low node availability (the maximum number of faulty
neighbours of a node that can be tolerated without disconnecting the node from the
network [18]). With refined analysis of the location of faulty components, our algorithm
can tolerate more faults than the trivial bound of node availability. Besides, it is livelock
free and generates deadlock free routes. It also ensures that a message path length never
exceeds 2F longer than the optimal path found in a fault-free setting, provided the
distribution of faulty components in the network satisfies the precondition of Theorem

5.1

The rest of the chapter is organized as follows. In Section 5.2, we define the Exchanged

Hypercube, discuss its structural properties including Hamiltonian property and present

results of its diameter, node degree, node and link complexities. In Section 5.3, the
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embeddings of Gaussian Cube, ring, mesh, binary hypercube are studied. In Section 5.4,
we define the Extended Binomial Tree, together with its labeled form: Exchanged Tree.
The good properties of these trees and their relationship with Exchanged Hypercube are

discussed. In Section 5.5, we describe a fault-tolerant routing strategy.
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5.2 TheExchanged Hypercube

5.2.1 De€finition and Construction
(Definition 5.1) Exchanged Hypercube

The Exchanged Hypercube is defined as EH(s,t) = (V,E) (s® 1t 3 1), where
V ={a,, xa.h_, ebc|a,b;,cl {04 for il [0,5),j1 [0,)}
E={(v,v,)TV V| whee v,Av,=1

or \ys+t:it+l=v,[s+t:t+1], H(w[t:1,v,[t:1]) =1 v[0]=v,[0] =1

or \v[t:=v,[t:1], H(y[s+t:t+1],v,[s+t:t+1])=1 v[0]=V,[0] =0}
Here, V[ X:y] represents the bit pattern of v between dimension 'y and x inclusive (we borrow
the syntax of Handel-C [11]). Let H(X,y) represent the Hamming distance between x and y,

where (x,y)T V" V.

EH (1,2) isshownin Fig. 5.1:

1000 0nn1 0n11 1010
\ i \\\ /
\(/ ~o
/ \
0000 \\ 70101 0111\ // 0010
/ \
N // \
1100 7/ \_1001 1011, \ 1110
4 \
~_ .,/ \ _~
/<\ e
/ S - \
/ \\ // \
Y ~ - \
Moo 1101 1111 0110
Figure5.1 EH (1,2)
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The dashed links correspond to v, A v, =1 . The solid links correspond to
vi[s+t:t+l=v,[s+t:t+1], H(w[t:1,v[t:1])=1 y[0] =v,[0] =1 and the bold linksto

vi[t:1] =v,[t:1], H(y[s+t:t+1,v,[s+t:t+1])=1 v[0]=Vv,[0]=0.

5.2.2  Structural Properties

(Property 5.1)

EH(s,t) is isomorphic to EH(t,s). This means Exchanged Cube is symmetric.

EH (s,t) can be decomposed into two copiesof EH(s- 1,t) or EH(s,t- 1).

Let T represent the smallest change in the number of network components (nodes or

links) needed to increase the existing number of components T in a network while

retaining its topological characteristics. |IE =g measures the incremental expandability

of the network. We use |Ewqe and IE;x to differentiate between node and link

incremental expandabilities.

(Property 5.2)
EH(st) has s2%° 1 + 12" 1 + 25! Jinksand 2°*"*'nodes. Nodeincremental
expandability is 1 and link incremental expandability is also approaching 1.

S+t +1+1 s+t +1
— ﬂTnode — 2 -2

node — s+t+1
Tnode 2

Proof. IE =1,

ﬂ—l—“nk B (S+1)25-l+l+t2t-l+25+t+l_ (825-l+t2t-l+25+t) B (S+ 2)25-l+25+t
Tiink s25° 1 +¢2t1 4 2™ 251 42t 1 4 ostt

(s+2)27 "1 +1

S oty st 1®lass® +¥ and/or t ® +¥ .
S + +
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(Property 5.3)

The number of linksin EH(s,t) is %1 to % of that of (s+t+1)-dimension n-cube B, .
n
Be,1q has (s+t+1)2°"" links. The ratio of the number of links between EH(s,t) and

B, Can be evaluated in the following way:

Without loss of generality, suppose s3t,let n=s+t, m=s-t. Define

number of links for EH (s,t)

number of links for B, ,;

825-1 +t2t-l + 25+t

(s+t+1)2°*"
MZ 2 +(n m)2 2 +2n
- (n+1)2"
(”Zm)z 2 (”’;m)z 2 41
- n+1
To calculate the range of r, we have
r_ 1 (_Ez'ném+n-m2 In2+127n n+m27In_2)
fm n+1 2 2 2 2 2
1 -n-m
= 4(n+1)2 2 (m2™n2+ 2" - 12+ (n- m)In2))
As 2"3 1for m3 0 and n>m, 2 >0 for m>0 and '|]r| 0 =0.
fm Im
.n
N2 ?2+1

It is easy to seethat with afixed n, r increasesasmincreases. So r

min =r |m=0_ n+1
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which approaches %1 when nis large enough. On the other hand, 1, =T |- 2
n

2_n+l+n' 1

= 2 , which approaches 1 xn—l ® 1 as n approaches infinity. In conclusion,
n+1 2 n+l 2

ri (%1 , %) . A useful ruleisthat the smaller the difference between sand t is, the better
n

is the proportion of links reduced.

(Property 5.4)
For 0-ending nodes, the node degree is s+1while the node degree of 1-ending nodes is
t+1.

Proof: Thisis obvious from the definition of Exchanged Hypercube.

(Property 5.5)

Routing in EH (s,t) is straightforward. If source and destination differ in the leftmost s
bits, then it must reach a 0-ending node from which the difference can be offset by routing
in the subgraph of 0-ending nodes. If source and destination differ in the middle t bits, then

it must reach a 1-ending node from which the difference can be offset by routing in the

subgraph of 1-ending nodes. Which one is done first depends on the rightmost bit of
source and destination. For example, in EH (2, 2) , if we want to go from 00000 to 10100,

then we must use spare dimension 0 twice: 00000® 10000® 10001® 10101® 10100. If
we want to go from 00001 to 10101, then go: 00001® 00101® 00100® 10100® 10101.

(Property 5.6)
The distance between each node pair isin [H, H+2], where H is their Hamming distance.

According to Property 5.5, the detailed conclusion is listed in table 5.1. Suppose source is

S=ag , ¥»qyb,_, »,c and destination is d = a' ;xa'yb',_,x¥', C".
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NO. | ag 0@, =a'y A | by ;2 =b'y 2, C c distance

1 Yes Yes any any H

2 Yes No 0 0 H+2
3 Yes No 0 1

4 Yes No 1 0 H

5 Yes No 1 1 H

6 No Yes 0 0 H

7 No Yes 0 1 H

8 No Yes 1 0 H

9 No Yes 1 1 H+2
10 No No 0 0 H+2
11 No No 0 1 H
12 No No 1 0 H
13 No No 1 1 H+2

Table 5.1 Node distance in Exchanged Cube

For example, the 9" case meansif a_, xa, * a', ', b, , xd, =b',_;xk',, c=1 and

c'=1, then the distance between sand d is H+2, where H is the Hamming distance between
sandd. The +2 is because it has to use dimension O (originally spare) twice: 1->0 and 0->
1, for changing the first sbits. From Table 5.1, since for all rows in which distance equals

H+2, cequalsc’ so H £ s+t , the distance isno morethan s+t +2. For other rows,

distanceis H £ s+t +1. Thus, the diameter of EH(s,t) is s+t +2.

(Property 5.7)

EH (s,t) isHamiltonian, with a closed cycle encompassing all nodes only once.
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We prove the property of Hamiltonian by inductiononsandt. As EH(s,t) is

isomorphic to EH(t,s), weonly need to take induction ons. Asabasis, we show that

EH(1,2) and EH (2, 2) are Hamiltonian in Fig. 5.2 and 5.3 respectively.

1000 0001 1010
0000 \ y; 0010
1100 / \ 1110
\ 1001 1101 41
/' \

0100 1101 1111 0110

10000 11000 10010 11010
®

A

00000 \ l 01010
01000 ‘ 4 N0N10
0nnn1 0n011 01001

01011
nn1M 01111
00111 0110
0n100 n1100 0n110
01110
10100 11110

11100 1010

10111 ‘ ‘

10101 1110
' \ 11111

10001 10011 11001 11011

Figure 5.2

Hamiltonian
cyclein

EH(, 2)

Figure 5.3

Hamiltonian
cyclein

EH(2. 2)
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Assumethat for sE k (k3 1), EH(s,t) isHamiltonian. Thenwhen s=k +1, we

decompose EH (k +1,t) into two subgraphs: G,(k,t) and G, (k,t).

G, (k,t) =<V, (k. 1), E, (k,t) > where
Vi(k,t) ={0a_ 8. , *o@ghy 1. , eetyc |3, by, ¢l {0, 3 for il [O,k- 1, T [O,t- 1}

Ey(k,t) ={ (v, Vo) T EH(k+1t) [vy,v, T Vi (K, 1)}

G,(k,t) =<V, (k,t), E,(k,t) > where

V,(k,t) ={1a,_,a,_, %0@oh_4by_, odc|a;,b;,cl {0, I for il [O,k-1],jT [Ot- 1]}
E,(K,t) ={(v;,V,)T EH(k+1t) v, v, T V, (K, 1)}

Obviously, G,(k,t) and G, (k,t) are both isomorphic to EH (k,t) . Based on the induction
assumption, there must be aHamiltonian route R, in G,(k,t) from u, = 010" to

v; =0%"'*2 where 0' represents a sequence of Oswith length | (1 3 0). Similarly, there must

also be aHamiltonian route R, in G, (k,t) from u, =10“*"** to v, =110**".

As e =(v,U,) and e, =(v,,u,) areboth edgesin EH (k +1,t) , we now find a Hamiltonian

cycle: R |lgl|R;|le,, where || denotes a concatenation operation. g

Actually, in previous Figure 5.3, the Hamiltonian cycle found in EH (2,2) is constructed by

the method in the proof. The path from 01000 to 00000 connected by —= is effectively

R, and the path from 10000 to 11000 connected by — is R,. Thetwo links represented
by —> correspondto g and e,. R, and R, are mapped from the Hamiltonian cycle in

EH (1,2) demonstrated above.
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5.3 Embedding other networks

(Property 5.8)

B.,B, 1 EH(st) 1 By, . EH(st) canalso be decomposed into 2° B, and 2' B,
simultaneously. The 0-ending nodes (denoted as V (EH (s,t)) ) together with the links
connecting in between (denoted as E.(EH (s,t)) ) comprise 2" s-dimension binary
hypercubes (denoted as B,(EH (s,t)) collectively), while 1-ending nodes (V,(EH (s,t)) )
together with the links connecting in between (E, (EH (s,t))) comprise 2° t-dimension
binary hypercubes ( B, (EH (s,t))). And linksin Ey(EH (s,t)) ={(v,,\,)|v,A v, =1 span

between these two classes of binary hypercubes.

(Property 5.9)

EH (s,s) isisomorphicto GC(2s+1, 2). EH(s,s- 1) isisomorphicto GC(2s, 2). Here
GC(n,M) stands for aGaussian Cube. For GC(n,2%), it can embed simultaneously

{ EH(s.,t,)|kT [0,2%)}, where

n-k-1
22

D>

011 d(ka), t,=n-a-s,d(ka)=k<a?L0.

%(:

D!

This property will be proved in the following Chapter 6, which is about Gaussian Cube.

Applications emulation performance is a measure of how efficiently an application
expressed as a guest network may be represented or mapped onto a host network. The
embedding results demonstrate two important factors. the computational equivalence (or
non-equivalence) between networks of different topology and the efficiency of the

simulation of algorithms designed for the guest network on the host network [56].
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(Definition 5.2)

Let the guest and host networks be denoted as G, = (Vg, Eg) and G, = (V,, E),
respectively. An injective embedding of G, onto G, is a one-to-one mapping that assigns
every node and edge of G toa node and path, respectively, of G,. Given an embedding,
the dilation is the maximum distance in G, between two adjacent nodes in G,. The
expansion is the smallest number of nodes in G, that is required to map all the nodes in
G- Loading is the maximum number of nodes in G, mapped to the same node in G,

while congestion is the maximum number of edgesin G, mapped to the same edge in G,

For optimal embedding, dilation = expansion = loading = congestion = 1.

(Property 5.10)

EH (s,t) can optimally embed aring network of the same size.

Proof:  This property isensured by Property 5.7 that EH (s,t) is Hamiltonian.

(Property 5.11)

EH(s,t) can embed amesh of size 251" 2'** or 25*1* 21 with dilation 3, expansion 2,
loading and congestion 1, or with dilation 2, expansion 2, loading 1 and congestion 2.
Before presenting the strategy for embedment, wefirst define a subgraph GM (25*2,2'°1) of
EH (s,t) by removing part of itslinks. GM (25*2,2""1) islike a mesh, though two
intermediate nodes may be inserted between two neighboring nodes in the same column of

the mesh. The Figure 5.4 below demonstrates GM (16, 2) and how a 2*” 2° meshiis
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embedded into it. The nodes with double cycle are images of the guest network: mesh of
2" 8.

00000 01000
0n001 010M
0n011 01011
0nn10 01010
10010 11010
10011 11011
10111 11111
10110 11110
0n110 01110
0111 01111
0010 0110
00100 01100
10100 11100
10101 110M
10001 111M
10000 11000

Figure54  GM(16,2) and how 2'" 2° mesh is embedded into EH (2,2)

The procedure of constructing GM (25*2,2'"1) isasfollows. Since n-dimension binary
hypercube B,, is Hamiltonian, there is a sequence of node addressin B,_, and B, such that

the Hamming distance between neighboring addressesis 1. Denote the sequence as

{a,a,%%a,.._,} and { by, by, 0osb,, . }. Thenthe first row of GM (2°*2,2""%) is;
0ayhy 0, 02y, 0,9 Oa,s. ,15,0, where Oa b, 0 means concatenating 0, &, by and 0. They
are all connected to ¢, = Oa,b,1 respectively. But ¢ and ¢, (il [0,2%"- 2]) arenot

neighbors, though they are all neighbored by d, = 0a;b,1, which isin turn neighbored by
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e =0ab,0. Now, ¢ and g, are connected for i1 [0,2°*- 2]. They formthe second
horizontally connected row of GM (2°°2,2""). Moreover, e hasalink to f, =1ab,0,
which are also sequentially connected and form the third row of the mesh. This process

continues on until the 2“lth row is formed.

It is obviousthat a 2° 2' mesh can be embedded into GM (2°**,2') and GM (2°,2*%).

For example, the embeddings of 4° 8 mesh into GM (8,8) with dilation 2, expansion 2,

loading 1 and congestion 2, and with dilation 3, expansion 2, loading 1 and congestion 1
are shown in Fig. 5.5 and Fig. 5.6 respectively. The nodes represented by # serve as
images of the guest mesh, while the ® stands for those nodes in the host network that are

not images of any node in the guest mesh.

Figure 5.5 Embedment with dilation 2, Figure 5.6 Embedment with dilation 3,
expansion 2, loading 1 and congestion 2 expansion 2, loading 1 and congestion 1
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5.4 Extended Binomial Tree

In binary hypercubes, many applications such as broadcasting, prefix sum computing and
load balancing can be solved with the aid of Binomial Trees (special spanning trees of
hypercube). For the Exchanged Cube, we introduce the Extended Binomial Tree. It is very
similar to the Binomial Tree, with only a small change in the initial condition. It is proved
later that the labeled form of Extended Binomial Tree, Exchanged Tree, preserves many

desirable properties of Binomial Tree.

(Definition 5.3) Extended Binomial Tree

Extended Binomial Treeis defined by induction. For n3 3, an Extended Binomial Tree of

dimension n (EBT,) is formed by two copies of EBT,_,, where the root of one EBT,_,
(randomly chosen) becomes the root of EBT, and root of the other EBT,_, becomesthe

child of the root of the former EBT,_,. EBT, and EBT; are defined in Figure 5.7:

®
[
o
‘ [
\“ .
[
\ ®
EBT, Figure 5.7 EBT, and EBT,

Extended Binomial Tree maintains several good properties of Binomial Tree as follows:

(Property 5.12)

There are 2" nodesin EBT, for n3 2. This can be simply proved by induction on n.
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(Property 5.13)

The height of EBT, is n+1 for n3 2.

(Property 5.14)

For n3 2, theroot of EBT,, hasdegree n- 1, which isthe largest among all nodes.

(Property 5.15)

In EBT, (n® 2), thereareexactly &, =C., ; +Ci"2 nodesat depthi fori=0,1,2, ....,

| N ~
n+1. Here, C =L, where nl=n(n- 1):»1, for ml [Ln], mnl N. Cr?zl
m(n- m)!

for all nT NU{0}. For all other cases, C" =0. The depth of root is 0.

Proof: (By induction onn)

For n=2, 3, this proposition istrue based on the Figure 5.7 above. It iseasy to see that
dueto the congtruction of EBT,, foral n3 2, a° =1, a/* =1, a. =a }+a , for
i1 [Ln]. Supposethe propositionistruefor n£k (k3 2). Thenwhen n=k+1, for

iT[L k+1]:

B =a ta =a @ tal) =alt tali (@ taly) =
=gita g ha g
= (C3+C3) +(CL, +CI) +(Cly +CIf) + 3o (C1 +C 3
= (G +C 4ok G + (G + G5 +2eer G CF) (CIF =CP7)
=Cl +Cl 2.

The last step used the conclusion that:
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n n n n
Cn + Cn+1 + Cn+2 RiRecals Cn+k

- n+l n n n

- Cn+1 +Cn+1+Cn+2 RiRecals Cn+k

- n+l n n n

- Cn+2 +Cn+2 +Cn+3 200t Cn+k

— n+l n n n
- Cn+3 + Cn+3 + Cn+4 +x00ek Cn+k

Cr?:& +Crr1]+k
= Cpiin (n31 k3 0) g

This property shows that the name Extended Binomial Tree is justified for the tree
constructed here.

(Property 5.16)

For n3 3, EBT, embedsthe Binomial Tree of order n- 1, with dilation 1, congestion 1,

load 1 and expansion 2.

In the following, we introduce Exchanged Tree ET(s,t), which is actually a labeled

Extended Binomial Tree. 000

(Definition 5.4): Exchanged Tree

100 001!
Exchanged TreeET (s,t) isconstructed by the
following sequence: 101 @ 0Ll
ET(L )® ET(, 2)® ET(L 3) ® »x 11 ® 010
® ET(L, t)® ET(2, t)® ET(s,t).
@ 110
ET(, 1) isdemonstrated in Figure 5.8: Figure5.8 ET(L, 1)

Page 77 of 215



Given ET(4, t), ET(L, t+1) isdefined as:
Let G, and G, betwo ET(1, t)s. Were-label G, by inserting one O between the left first

and second bits of original node labels. Formally, it isamapping f;':

. 0., ¥HC ® 3,00 by, 2edyC.

Thenre-label G, by inserting one 1 between the left first and second bit. Formally, it isa

mapping f: agh_ ;b , e ® aylh_jb, xobyc.

Finally, make the root of G, therightmost sonof G, ’sroot. ET(1, 2) isillustrated in

Figure 5.9.

0000

1000

10M

1011

Figure5.9 ET(, 2)
Given ET(s, t), ET(s+1, t) isdefined by:

Let G, and G, aretwo ET(s, t)s. Were-label G, by adding one O to the leftmost bit.

Formally, it isamapping f,: ag ja, , @b, ;. , xeb,c ® Oay. 18, , *0agh 4l , XebycC.
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Then re-label G, by adding one 1 to the leftmost bit. Formally, it isamapping f.2:
85185 o QP 1h, obc ® lag ja , 0agh by, ehC.

Finally, make the root of G, the rightmost child of G, ’sroot. ET(2, 2) isdemonstrated

in Fig. 5.10.

nNnNNN

n100N
n10M non11@ 01100
e 0100 mim® M@ 11nn@ 101
01010@ mi1@ "MO o 10110@ T @
M1IN@ 11010 @ 11111 @1m1n
Figure5.10 ET(2, 2) ® 11110

Based on the procedure of constructing Extended Binomial Tree ET (s, t), it isobvious

that ET (s, t) isan Extended Binomial Tree EBT,,,,,. Soit inherits all good properties of

EBT,,.,. However, it also has some additional propertiesrelated to EH(s;t).

(Property 5.17)
For al s,t3 1, the root of ET(s, t) is 01, This is guaranteed by the procedure of

construction.

(Property 5.18)

ET(s, t) isaspanningtreeof EH(t,s).
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Proof:

This property can be proved by induction. Firstly, it is obvious that all nodesin EH (t,s)
are covered by ET(s, t). Then due to Property 5.17 and the fact that 0°"'** and 10°"' are

neighbors, it is guaranteed that each edgein ET (s, t) isasoin EH(t,s).

(Property 5.19)

Suppose the pre-order of ET(s, t) is{ ag,a,%a,sws_, }-

Define by =&, AND 1°'01°'00. Then, { b, by %b,...._,} is non-decreasing.

Proof:

Recall the sequence of construction:

ET@L D® ET(L, 2)® ET(L, 3)® ET(@ t)® ET(2, t)® »ET(s,t). When
constructing ET(1, t+1) from ET (L, t), we place the new graph built by adding 1 the

rightmost son of the root of its counterpart, which is built by adding 0. When constructing

ET(s+1, t) from ET(s, t), theruleisfollowed too. These facts ensure this property of

order. Masking three bits is due to the initial condition.

Property 5.19 provides a good way of routing in ET(s, t). Suppose the source is s and
the destination is d. We first find a path to x=s AND 101" '00. This is simple

because it is equivalent to routing in small-scaled ET (1, 1), which can be accomplished

by rote. Then from x, it is easy to find a pathto y=d AND 1°'01"'00. Thanks to the

ordering property, this is equivalent to routing in a Binomial Tree. Finally, a path is

found fromy to d.
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5.5 Fault-tolerant routing in Exchanged Hypercube

We now present a fault-tolerant routing algorithmin EH(s,t) . It categorizes faulty

components so as to produce a better result than tolerating merely as many faults as node
availability. Thisapproach is also applicable to the class of hypercube variants formed by

link dilution.

As stated above, there are 2' s-dimension binary hypercubes embedded in EH(s,t). They
are denoted as B,(EH (s,t)) collectively. More specifically, for any ki [0,2"),

denote as B,(EH (s,t),k) the binary hypercube whose nodes comprise the following set:
Vo(EH (5,1),K) ={a 1 0aghy_; 00,0y 2oty =k, &,b;T {03 i1 [0,5), jT [O,1)}.

If xT V,(EH(s,t),k) and Xs+t:t+1] = p, we denote such nodes as V,(EH (s,t),k, p) .

Likewise, there are 2° t-dimension binary hypercubes embedded in EH (s,t). They are
denoted as B, (EH (s,t)) collectively. B,(EH (s,t),l) isdefined as the hypercube whose
nodes are composed of: V; (EH (s,t),1) ={a_, eah_; @etyl|a, ; 2o@g =1, a,b; T {01}
i1 [0,9),j1[0,t)} (1T [0,2%). If xI V,(EH(s,t),l) and Xt :1] = q, we denote such node

as V,(EH(st),l,q). Obviousy, V,(EH(s,t),k, p)[s+t:1 = V,(EH(st), p,K)[s+t:1].

Suppose there are F, faulty componentsin Bi(EH (s,t)), and F, faulty componentsin
B(EH (s,t)). Let Ej(EH(s,t)) ={(Vy,v,)T EH(st)|v; XORV, =1}. Suppose there are

F, faulty linksin Ey(EH (s,t)) \{(v;,V,)T EH(s,t)| v, or v, isfaulty}. We have:
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(Theorem 5.1)

If F,+F,<s and F, +F, <t, there is adeadlock-free and livelock-free routing algorithm

that can deliver messages from a nonfaulty sourcer to a nonfaulty destination d in no more

than H(r,d) +2(F,+F)+ 2 hops.

This theorem is evident from the following agorithm:

(Algorithm 5.1) Fault-tolerant Routing in EH (s,t) (FREH)

(Casel)

Suppose r = B{(EH (s,1),k,,1;) and d = B,(EH(s,t),l5,k;). Since F,+F, <s,itis
affordable to communicate within each B;(EH (s,t),k) in the initialization phase, so that
each node in it knows and records the set of nodesin B,(EH (s,t),k) whoselink in

E,(EH(s,t)) (i.e. indimension 0) is faulty.

Inone casg, if r findsthat B(EH (s,t),k,,1,) ’slink in dimension O is non-faulty, it sends
the packet within B,(EH (s,t),k;) to B,(EH(s,t),k,,l,) . Thisisguaranteed to succeed

because F,(k,) <sandtherearealot of existing deadlock-free and livelock-free routing

algorithms (including my FTFR) that work well in s-dimension hypercube in the face of no

morethan s- 1 faulty components. After that, B,(EH (s,t),k,,l,) sendsthe packet to
B, (EH(s,1),l5,k,) viathelink in dimension 0. Finally, the packet is sent in

B, (EH(st),l,) to B,(EH(s,1),ly,k;), whichisguaranteed by F, + F, <t.
In the other caseg, if by looking up itslocal table, r finds that the O-dimension link of

B.(EH (s,t),ky.1,) isfaulty, then there must be a nonfaulty neighbor of r whose O-

dimension link is also nonfaulty. Thisisguaranteed by F, + F, <s. Denoteit as
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B.(EH(s,t),ky.1,). Sothe packet issent to B(EH (s,t),ky.,1,), which inturn, sendsthe
packet to B, (EH (st),l,,k;). Now there must be a nonfaulty neighbor of

B, (EH(s1),l,,k;) in B,(EH(s,1),l,) whose O-dimension link is also nonfaulty. If thereis

such a neighbor in preferred dimension, then use it. Otherwise, use the spare dimension

and mask it so that it will not be used again. After going back to B,(EH (s,t)), the process

above repeats and finally the packet reachesd.

Obviously, deadlock-freeness is still guaranteed. Since faulty components might cause the

use of a spare dimension, which brings about for and pro between B, (EH (s,t)) and

B.(EH (s,t)), the number of hopsisbounded by H(r,d) +2(F,+F,).

(Casell)

If r=B(EH(st),ly,k) and d =B,(EH(s,1),k,,l;), due to the symmetricalness of

Exchanged Hypercube, the algorithm isthe same as case |.

(Case 111

Suppose r =B, (EH (s,t),k,,l,) and d = B,(EH (s,t),k;,1;). If k =k, , thenit isrouting
in s-dimension binary hypercube. Otherwise, the packet issent to B, (EH (s,t),k,) viathe
0-dimension link of r or one of its neighborsin B,(EH(s,t),k;). Thenthe problemisthe

same asin case|. But now, the number of hopsis bounded by H(r,d) +2(F, + F) + 2.

(Case 1V)
Suppose s=B,(EH (s t),l,,ky) and d = B, (EH (s,t),1;,k;) .

This case is handled in the same way asin case l11. g
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Apart from the initialization cost O(max(s,t)) <O(n), the algorithm is run at time cost

O(1) and message overhead O(n). The most important thing is that both node faults

and link faults (including those spanning in dimension 0) can be tolerated.
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Chapter 6 A Fault-Tolerant Routing Strategy for

Gaussian Cube Using Gaussian Tree

6.1 Introduction

Gaussian Cubes (GCs) is a family of interconnection networks parameterized by a
modulus M and a dimension n [1][2]. Their desirable scalability makes possible
generalized analysis of interconnection cost, routing performance, and reliability.
Besides, such communication primitives as unicasting, multicasting, broadcasting/
gathering [7] can also be done rather efficiently in all GCs [1]. However, athough
research achievements abound in routing in binary hypercubes, there are no existing
fault-tolerant routing strategies for GCs or for node/link dilution cubes. One of the
difficulties lies in the low network node availability (maximum number of faulty
neighbors of a node that can be tolerated without disconnecting the node from the
network). Thus, if the topology is fixed, new methods have to be employed to tackle this

intrinsic problem.

In this chapter, we present a new routing algorithm based on a new topology called

Gaussian Tree (GT). In GC(n,2%), GT is dependent only on a and divides all the

nodes in GC(n,2%) into 2* classes according to their least significant a bits. So the

original problem is converted into first routing in GT (i.e. between different classes) and
then routing in one such class. The former is facilitated by the definite and predictable
routing in trees while the latter is actually routing in ordinary binary hypercube. Faults
encountered in different stages of this divide-and-conquer strategy lead to a new
categorization of faulty components, which enables to analyze the routing strategy in the

presence of far more faults than the network node availability. The encouraging result is
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demonstrated in the chapter. Methodologically speaking, this approach also opens

window to a brand-new way of analyzing network reliability, which is especially

valuable for incomplete networks.

1)

2)

3)

4)

5)

6)
7)

The characteristics of our routing strategy for GC(n, 2%) encompasses:

Incurs message overhead of only O(n).

The computation complexity for intermediate nodes is at most O(a(n- a)loga).

Guarantees a message path length not exceeding 2F longer than the optimal path
found in a fault-free setting, provided the distribution of faulty components in the

network satisfies the precondition of Theorem 6.3 and Theorem 6.4.

Each node requires at most gnz; 1§+ 1 rounds of fault status exchange with its
neighbors.

Each node maintains and updates at most F n-bit node addresses, where F isthe
number of faults related to nodes whose least significant a bits are same asthe
current node.

Generates deadlock-free and livelock-free routes.

The number of faulty components tolerable is presented in Fig. 6.6 and Theorem

6.4.

The chapter is organized as follows. Preliminaries are given in Section 6.2 to

provide an equivalent definition of GC that facilitates the following discussion. Section

6.3 defines GT. The routing algorithm for the fault-free GC is described in Section 6.4

separately to make the subsequent section clearer. In Section 6.5, the fault-tolerant

routing strategy that deals with all categories of faults is studied.
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6.2 Preiminaries

6.2.1 Original Definition
(Definition 6.1) The binary Gaussian Cube is denoted by GC(n,M) [1][2], where n

(network dimension) > 0 and M (modulus) > 1. It has 2" nodes that are identified with
unique n-bit labels. A link connects two nodes p and q if the following conditions are

both true:
1) The labels of p and q differ inthe ¢ bit for somec, 0<c<(n-1).
2) pandq areinthe congruence class[c]y: , where M’ =min {2°, M}.
The congruence class of ¢ modulo M, [C]w, isthe set{kM + c|kT Z} , where Z represents

the set of integer.

6.2.2 Transfor mation:

According to Definition 6.1, if node p =a, ,a, , @, »a,a, (a1 {0, I for i1 [O,n- 1])

hasalink to g=a_,a__, %@, xa,a,, then there must exist k, and k, , such that

An.18n. 2 0@, 8, =kiM’+c 1)

8,18, 9@, @3, = koM’ +C (2
(1) — (2) and take absolute value on both sides, we get:

2= |k - kM €)

Therefore, M’ must be the power of 2. SinceM * = min{2°, M}, M must also be the

power of 2 if M < 2°.  We examine two cases.
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1. M is not power of 2. If M> 2"* since cEn-1and M’ =min{2° M} = 2°, it
makes no difference to the original network if weset M = 2"*. SoweassumeM < 2"*.
In this case, there will be no link spanning in dimension ¢, where c is larger than dogM (.

Effectively, the network is separated into 2™ ¢*" disconnected subnetworks, with each

combination of the first n- 1- dogM ( bits representing one such subnetwork. Formally,

n—l—elogMﬂ_
GC (n,M) = U2 lGi . Each subnetwork G; is composed of <V;, E>, where

i=0

Vi ={8, gogur g2 9@ 29@Doq045 00 2o, | by T {03, O£ j £BOGM U, 8, gogu 2 0@ 0@, =1}
Ei={(v,v,)T E|v1V,v,TV]}, whereE isthe set of edges in the original network.
Obviously, for " i, jT [02" " ¢9M0) and it j, V. NV, =@, E,NE, =F . Sorouting

can be done within the subnetwork G; if the source and destination both belong to G; or

fails otherwise. Furthermore, as G; isisomorphic to GC (dogM (+1, 2¢°9M0), this

situation is covered in the following case, where M is power of 2.

2. M is power of 2. Denotea =log, M, and al Z. We have the following theorem,

which can be viewed an equivalent definition of Gaussian Cube.

(Theorem 6.1)
In GC(n,2*), nodep= a_,a, ,»xa »aa, (al {0, L foril [0,n-1]) hasalink in

dimensionc (cl [Ln- 1)) if and only if:

a, 18, , X, = C%2 if cl (a,n)

8,18, X%, =C if cl [La]

where x%y represents the modulus of x divided by vy, like in C/C++. And each node has

alink in dimension 0.
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Proof: We prove Theorem 6.1 by considering three cases.
(Casel) cl (a,n).

(Necessary)

According to Equation (1), a, ;a, , >, »aa, =kiM +c.

Thus, 18 0@, 418, 27+, 18, 200, =k X2* +C.

Take the modulus of 2* on both sides and due to the fact that a, _;a, _, @, <2* , we

obtain a, ,a, ,>a, =c%2* .

(Sufficient)

If a,_,a,.,%a,=c%2?, then a, ,a, ,*a@ a, ,*a3a,- c canbewholly divided by

2 . Define k, = 2122 % P8~ Cf 7 g

2
k +2°2 if a,=0
k, =
k, - 2°2 if a,=1
Then, 8y 18y 0 WAy = kg X2 +C = kmin(2°,2%) +c =k M '+C
and a8, %@, ¥9@,3, = k, X2 +C =k, >xmin(2°,2%) + ¢ = k, M '+c

In other words, according to the original definition, a,_,a,., ¥, »<a,a, hasalink in

dimension c.

(Casell) ci [La].

(Necessary)

According to Equation (1), a,,a, , *a. a3, = k X° +c.

Thus, 8. 18- 2 ¥0@c18 X2° + 818 008 =k X2° +C.
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By taking the modulus of 2°on both sides and due to the fact that a._,a. , %@, <2° and

c<2° for c3 1, weobtain a._,a. , >3, =C.

(Sufficient)

If a.,a.,>@, =c,then a, ,a, ,*xa a3, - ¢ canbewholly divided by 2°.

Define k, = 2121277 48" Cj 7 oy

20
k +1 if a,=0
k, =
k-1 if a, =1
Then, a, 1@, , %A, »a, =k X +c=k xmin(2°,2%) +c =k, XM '+c
and a8, , %@, a8, = k, @° +c =k, xmin(2°,2%) +c = k, M '+

In other words, according to the original definition, a,_,a,_, »a, ¥xaa, hasa

(Caselll) c=0.
Forany M >1,M’=min{2° M} = 1. For any integer p and g, they must be in the

congruence class[c]v-=[0]1. So each node hasalink in dimension O.

Since the case of M not being the power of 2 can be solved once we have a routing

strategy for M being power of 2, in this paper, we only discuss the latter Situation, i.e.

assuming o =log, M | Z.

Page 90 of 215



6.3 Gaussian Tree
According to Theorem 6.1, we can see that whether a packet can be forwarded through

dimension c at node p, is entirely irrelevant to a,_ ,a, , »a, , regardless of whether ¢ > o

or not. So the last a bitsin nodes’ address is of more importance. We define a Gaussian

Graph based on these o bits.

(Definition 6.2): Gaussian Graph

We call the undirected graph G, (n3 2) Gaussian Graph if it is composed of

<Vn, B>, where  Vp={a, a,,*aa|al {03, for il [0, n-1}

En={(a,,a,, %, xaa,, a,,a,,%0a, 0aa,) |

c=Oorcl [1,n-1] and a._,a,.., &8, = C}.

The Figure 6.1 below demonstrates the topology of G,, G,, and G,. They can be

generated easily by adding edges, according to the definition of E, , to the original graph

which is composed only of nodes.

(@
G;:
(b)
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Figure6.1 (8 G,, (b) G,, and (c) G,

Lemma 1: (Equivalent definition of Tree)

Suppose graph G has n vertices (v, Vv, %%V, ) and e edges. Gisatreeif and only if G is

connected and e=n- 1.

Proof: A treeis defined as a connected graph which contains no cycle.

(Sufficient)  We prove the proposition by induction on n. Clearly, this proposition

holdsfor n=1, 2. Assumethat it istrueforal n£k (k3 2). When n=k +1, sinceG

is connected, so there is no isolated vertex (vertices whose degree is 0). If thereisno
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end-vertex (verticeswhose degreeis 1) in G, then e= % I;ﬁjdeg(vi )3 %%2 =k+1,

which contradicts with the fact that e=n- 1=k. So there must be an end-vertex v.
Remove v and its only edge from G, we get asubgraph G’, which hask verticesand k- 1
edges. Sincev isan end-vertex, G’ is still connected. Based on the induction assumption,
G’isatree. Obviously, constructed by adding an end-vertex to G’ together with its only
edge, the graph G is still atree.

(Necessary)

Thisis an apparent property of tree. So the proof is omitted here. g

(Theorem 6.2) G, isatree.

Proof. We prove Theorem 6.2 in three steps.

1. G, isconnected.

We prove this proposition by induction on n. Clearly, this proposition holds for n£ 4

based on the figures above. Assumethat it istruefor all n£ k. Supposewhen n=k +1,

G, ., Isnot connected. Then there must be two vertices u =u, u,_, ¥»u, and
V=V, V%, (U, v T {0, I for il [0,k]) between which there is no path. Let c bethe
dimension of the leftmost 1in uA v (c1 [0,k]) and c=a_.a, , @, (a1 {0, I for
il [0,c-1]). Clearly, edge
| = (U, V') = (U, Uy 09U 8, 18, , ¥¥98g,U, Uy ¥9U 8,3, , *8,)] G,,,. Wedefinea
subgraph of G, as G'=<V',E'>, where

V'={U U U X 1% 2 %% | % 1 {0, 3 for iT [0,c- 1}

E'={(v,V,) |V, V1 V' and (v;,V,) isanedgein G }.
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Since the connectivity in dimensions less than c is not influenced by the bit value of

dimensions no lessthan ¢, G’ isisomorphicto G,. As c£ k, based on the induction
assumption, thereisapath in G,,, which connects u and u'. Likewise, thereisalso a
pathin G,,, which connects v and v'. As (u',Vv') isanedgein G,,,, by concatenation,
apathisfound in G, that connects u and v, which contradicts the assumption that there

is no path between them. Therefore, G, ,, isaconnected graph.
2. There are 2" nodesin G,.  (Obvious)

3. There are exactly 2" - 1ledgesin G, .
We denote the number of links spanning in dimensioni asE, (i) (i1 [0, n- 1]).

According to Theorem 6.1, each node has a link in dimension 0, so E, (0) = 2™*.

A node has alink on dimension 1 if and only if itsrightmost bit is 1. Such links only

connect nodesin the formof (a,,a, ,*x1,a_ ,a ., o 1). S0 Ep (1) = 272,

A link spanning in dimension 2 can only connect node pairs in the form of:

(8,48, , %40, 8,3, , *d0)

SO E,(2) = 2™°.

Likewise, it is easy to provethat E, (i) = 2™"*.
nc;l sl )

Thus |En|= & E, ()= & 2"'= 2"- 1.

i=0 i=0

Combining 1-3 and applying Lemma 1, we can conclude that G, is atree. g
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From now on, we denote G, as T, to emphasize this property. We denote the node Kk in

T, as T (k). The existence of such atree is crucial for our algorithm because, for each

source and destination pair in atree, there is a set of nodes, which the packet must come
across in its journey, and which can be calculated at the source. This makes routing

much more definite and predictable.

6.4 Routing Strategy for Fault-free Gaussian Cube

6.4.1 Introduction

We first develop an algorithm which ensures optimal routing in a fault-free Gaussian

Cube GC(n,2*). The algorithm has the following properties:

1) It generatesthe shortest path for any (source, destination) pair.

2) The computation complexity is O(a(n- a)loga) at only several nodes on the
L én- 10
path, the exact number of which is bounded by g?H

3) The message overhead is O(na ). We have good methods to compress the overhead.
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6.4.2 Routingin Gaussian Tree

(Definition 6.3) k-Ending Class
In Gaussian Cube GC(n,2*), for " k1 [0,2* - 1], we call the following set EC(n,a k)

k-ending class:

EC(na k) ={a,,a,,*a,a, , %a3,| al {01, il [O,n), a,_, @, =k}

For simplicity, we abbreviate it as EC(k) when the Gaussian Cube is given. One
obvious conclusion, according to Theorem 6.1, is: if alink (v,,Vv,) spansin dimension

c3a,thenv,v,1 EC(c%2). EC(K) correspondsto T, (k) in Gaussian Tree T, .
Note these concepts are al independent of n. Let the dimensions no less than o in which

each node of EC(k) hasalink comprise set Dim(n, «, k), then Dim(n, a, k) =

[a,n- IN[K] .

To begin with, we briefly introduce the basic ideas underneath this algorithm. Suppose
the source is s and the destination isd. DenoteR= sA d. If thereisalinRand its

dimension c is no less than a, then the path from sto d must cover at least one node x,

suchthat xXI EC(c%2"). Viewed in T, , that means the path must begin from T, (s%2*),
end at T, (d%2*) and must passall nodesin S={T, (k%2*)| k3 a, R& 2“1 0}.

Since the problem has now been mapped to atree, with the starting and ending nodes as

well as the intermediate nodes given, it is simpler to find an optimal route.

Prior to the discussion of our routing algorithm in fault-free Gaussian Cube, two

fundamental algorithms are introduced. To begin with, the following one aims at finding

aroutefrom T, (s) to T, (d) in T, , whena , s, and d are given.
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(Algorithm 6.1) Path Construction Algorithm (PC)
Let s=s, .S _,>8Ss, ad d=d,_,d,_,»ed,d,. Wefirgt find the leftmost ‘1’ inR=sA

d. Supposeit corresponds to dimension c. If ¢ =0, then sand d are neighbors and (s, d)

can be appended to the path. If ¢t 0, as it must reach a node in T, whose last ¢ bits
a.,a._,xa, =c, we first go to the node s, ;, »s.a_,*8,. We can add link | =
(s,_,%08.a, %8, , S, ,*Sa_,%a,) to the final path. Then the algorithm runs
recursively on PC (s, S, ,*0SS, , S, %0S.a, %08, ) and PC (s, ,*0s.a 8, ,
d, ,d, ,>»d.d;). The recursion must be able to terminate because the leftmost ‘1’

moves at least one bit rightward after one recursion, until it reaches dimension O when the
source and destination will be neighbors. Finally, | concatenates the two paths found.
Since it is obvious that the path will not go to one node more than once and we are
routing in atree, the resultant route must be optimal. Besides, such arecursion will go no

deeper than a. The implementation of this algorithm has been put in Appendix I1. g

In our real implementation, we do not use recursive function. Instead, We use an array
and a pointer to smulate a stack. Given the nature of double side recursive function, we
cannot generate a route sequentially from source to destination. Therefore additional

attention should be paid to the labeling of each link, so that we can find the correct order

of links on that path by a simple sort on the labels with time complexity O(a loga) .

As the algorithm finds the path link by link, the complexity (both spatial and computational)

is dependent on the diameter of T, (maximum distance between node pairs). A programis
written to calculate diameter of the tree, denoted as D(T,). The principle idea of the

program is that d(u,Vv), the distance between nodeu and vin T, , equals d(u, p) +d(p,V),
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where p is the deepest common ancestor of u and v. Please refer to Appendix Il for the

source code. Theresult showsthat D(T,) is O(@@). SeeFigure 6.2 below.
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Figure6.2  Diameter of T, versus a

Granted, in real practice, we will ailmost never use a larger than 10 for reasonable node

availability. Here we calculated o up to 25 only with an eye to showing that D(T,) is
O(a). So thetime complexity for running the Path Construction Algorithm is

O(D(T,) + D(T,)log D(T,)) =O(a loga) .

Secondly, we introduce an algorithm for arranging multi-destination routing from atree
root. Several nodes belonging to the tree need to be visited and then the packet must go
back to theroot. It iseasy to find that as long as the following principle is met, the path
generated must be optimal: if the packet is currently at node p, it can never backtrack to
the parent unless no destination still exists in the subtree of p.

(Algorithm 6.2) Closed-Traverse Algorithmin tree (CT)
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Suppose we are a theroot r =r,_r, , »o,r, where r, 1 {0} foral il [0,a - 1]. Weare
tovisit D ={d,,d,,»xd_} whose members are al nodes in the tree and finally go back to

r. The prototype of the algorithmis r

CT(r,D). Wefirst pick up randomly one
Branch point

for d,
/ if

b;

d1 D and use Algorithm 6.1 to find a

route L fromr to d. Thenforeach d,T D,

d, iscovered by L, we only need to

record that fact. But if it is not covered,
we will use the technique in Algorithm 6.1
(PC) to find anodein L a which the
packet must branch away from

L. For example, in the tree shown in Fig.

6.3, the bold line represents L, and to q

reach d., the route must branch at b . Figure 6.3 Example for CT algorithm

However, to calculate b, we do not need to find the complete path fromr to d.. Similar
to Algorithm 1, we first find the leftmost ‘1’ inR=r A d,. Suppose it corresponds to
dimensionc. If c=0,thenr and d;, areneighborsand b =r. If c* 0, asit must reach a
nodein T, whose rightmost ¢ bits a__,a._, **@, = ¢, we now check link (v,,v,) =

(r,., %@ %@, I, , ».a_,x8,). If v, belongsto L while v, doesnot, then b = v,.
If both v, and v, belong to L, the algorithm only needs to search the branch point
between v, and d. . If neither v, nor v, belongsto L, then the branch point must lie

betweenr and v;. So the process can proceed in arecursive way and terminates within o
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steps after finding the branch point. Since anode in L might serve as branch point for

more than one destination in D, we use atable to record it. We denote the mapping as

B(®). For example, inthe Figure 6.3, b isthe branch point for d; and d;, so B(b) =

{d;,d}

After all membersin D are processed and table B(?) is obtained, we can begin to go from
r to d by following L. Once we arrive at anode p where B(p) * F , weonly need to run

this algorithm again by calling CT(p, B(p)) . After thiscall returns, we proceed along L,

until d isreached. Then we only need to go back tor in areverse direction of L. Since

thisisadistributed algorithm, CT is not recursive as it appears here. g

It can be easily confirmed that the rule stated above is obeyed in CT, so the route is optimal.

The conclusion about the complexity of this algorithm is: suppose we are routing in T, and

ID] = m<n for the original D, the space cost is at most O(n?) to run CT at each necessary

node and time complexity is O(na) . The overhead of packet is O(na) .

The message overhead (O(na ) ) isalittle bit large. We have effective ways to compress
it by increasing computation. The major overhead cost lies in recording each branch
pointsp and B(p). But if we calculate B(p) again at each node p a the computation
cost of O(a(n- a)), the size of overhead can be reduced toO(n). Therefore, the

resultant overall gain depends on which part is bottleneck, processor’s speed or

transmission rate.
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We have also noticed that the degree of each nodein T, istightly bounded. This provides

a compact way to record L in CT, thus reducing the overhead size. It is unnecessary to
record the sequence of node address. Instead, we only need to know through which port to
go ahead. Moreover, if the degree of current nodeis 1, then it must backtrack. If the
degree is 2, then it must go with the dimension not used in entering the node. So for both

cases we don’t need to record where to go next. It is calculated that the degree of about

81% nodesin T, islessthan 3. See Figure 6.4.
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Figure 6.4 Percentage of nodes with degree 1, 2

Even if anode’s degreeis larger than 2, we still need only to record which link to use.

For a < 11, the maximum degree is 3, and for o in a practical range, 2 bits is enough for

indicating which link to use.

Page 101 of 215



6.4.3 Routing in Fault-free Gaussian Cube

Finally, we present the complete routing algorithm for fault-free Gaussian Cube, by

combining Algorithm 6.1 (PC) and Algorithm 6.2 (CT).

(Algorithm 6.3) Fault Free Gaussian Cube Routing (FFGCR)

The input of FFGCR is: n and a for GC(n,2*), source s=5s, S, , ¥%5S, and destination

d=d, ,d, ,>»dd,.

Firstly, we map the problem from GC(n,2*) to T, . Let p=sA d. We denote:
P={il[a,n-1|p&2* 0} D={T, (x%2*)|xI P}
By viewing in T, , we are routing froms’ =T, (s% 2*) tod’ = T,(d % 2*) and we

must cover al nodes in the set D.

At s’, we use Algorithm 6.1 to find apath L1 T, to d’. Then we use the technique in

Algorithm 6.2 to find the branch point for al members in D. Go aong L. This means

traversing by using the least significant o dimensions in the original GC(n, 2*). Once

we reach a branch point b, use Algorithm 6.2 to traverse all nodes whose branch point to

L is b. Whenever the packet reaches a node x whose corresponding node in T, is a

member of D, it will go through all preferred dimensions cl [a,n- 1] N[X] - g

Obviously, FFGCR finds the shortest route fromsto d. Denote H = D(T,). Thetime

complexity is O(H + HlogH +(n- a)a logH), where each item stands for:
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o Picking up links that comprise the path L from s’ to d’ (not necessarily
' in the order of from source to destination)

HlogH Sorting the links to reorganize the path froms’ to d’

(n-a)alogH :| Time for finding branch point. There area most n- a preferred
dimensionsin [a,n- 1]. Searchin Algorithm 6.2 takes at most o rounds

of recursion. Each round involves a look-up in H sorted nodesin L.

Table6.1 Components of computation complexity

Since H =0(a) , thetotal complexity is O(a (n- a)loga). Such an amount of

computation is carried out a the source and all branch points.

The space required for each node to run the algorithmis O((n- a)+H) =0(n).

The message overhead is. O(na) . It can be reduced if the method proposed in section

6.4.2 (after the introduction of Algorithm 6.2) is adopted.

Up to now, the routing problem in fault-free Gaussian Cube has been completely solved.
It will be shown later that Algorithm 6.3 serves as a basis for our fault-tolerant routing
strategy in Gaussian Cube and it contributes to the theoretical completeness of routing in

Gaussian Cube.
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6.5 Fault-tolerant Routing in Gaussian Cube

6.5.1 I ntr oduction

When we go ahead to fault-tolerant routing strategy design, we have to take some

practical considerations. The most important one is that node degree in GC(n,2?%) is

. . énuq
+2. The minimum node degree is z—

&2

n-a

a

mostly about +1, occurring at nodes

whose address is multiple of 2“. So a natural bound isthat GC(n,2*) cannot tolerate over

%ﬁ faulty components. It is clear that once a reaches 3 or more, the network is very
likely to be disconnected and suffer from intrinsically poor fault tolerance ability. There

are two approaches to tackle this problem. A natural idea is to redrict a to be small.

Whena =0, GC(n, 2?) iseffectively abinary hypercube.  If we restrict o to within [0,

2], the problem will be very uninteresting and T, will degrade to a linear array.

Therefore, some novel notions and metrics must be used in this new setting. In this
chapter, a new approach to classify errors is introduced and the influence of errors is
analyzed. We first discuss the basic form of the fault-tolerant routing strategy, which
disposes of faulty links only. The extended form, which completely solves the fault
tolerant routing problem, will be presented in the last section with close relationship to
Exchanged Cube.

Page 104 of 215



6.5.2 Basic Fault-tolerant Routing Strategy

Firstly, a categorization of faulty components will be useful.

(Definition 6.4) A-category (link) fault

If alink error occurs a adimension c3 a , it is called A-category (link) fault.

(Definition 6.5) B-category fault

If all link failure(s) incurred by an error are in dimension(s) less than o, then the error is
called B-category fault.

Note: unlike A-category fault which can occur only in the form of link error, B-category
faults can be both link error and node error, aslong as that node has no link spanning in a

dimension c3 a . A link error is either A-category or B-category.

(Definition 6.6) C-category (node) fault
If anode error implies break down of links in dimensions both smaller and no smaller

than a, it is called C-category (node) fault.

A node error is either B-category or C-category because each node has one link spanning
indimension 0. In short, al faulty components must belong to one and only one of the
three categories.

In Gaussian Cube GC(n,2?), for " k1 [0,2* - 1], we have defined k-ending class:

EC(k) = EC(n,a k) ={a,,a, , a8, , a3, | &l {0L, a,,xa, =k}

The following definition decomposes k-Ending class into further refined classes.
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(Definition 6.7) k-Ending-t-Equivalent Class

In k-ending class EC(n,a, k), for " tT [0,2™2-Pm®I_ 1], we call the following set
EEC(n,a,k,t) k-Ending-t-Equivalent Class
EEC(n,a,k,t) ={ a, ,>»a,a, ,%a,] EC(n,a,k)| bitsother than
[0,a - U Dim (k) comprise value t}
We define k-Ending-t-Equivalent Graph GEEC(n, a,k,t) as <V(n,a,k,t), E(n,a,k,t) >,

where

V(n,a,k,t) = EEC(n,a,k,t)
E(nak,t)={(v, v,)| v,v,1 EEC(na,k,t), (v, v,)T E}

(E isthe edge set of GC(n,2*))

The following theorem is obvious, but it gives an insight into the advantage of

categorizing faulty components.

(Theorem 6.3)
If only A-category faults exigt in GC(n, 2°) , and in each GEEC(n,a,k,t)
(k1 [0,22 - 17, t1 [0,2™2-IPM)_ 77), the number of faulty component is less than

[Dim (K)| = Mgﬂ- d(k,a) (d(k,a) =k <a ?1:0), thereis afault-tolerant and

g 22 H

cycle-free routing strategy for any source and destination pair.

Proof.
Obviously, GEEC(n, a,k,t) isabinary hypercube embedded in GC(n,2%). There are

many existing routing algorithms, including FTFR | proposed, that ensure a packet to be
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sent from any non-faulty source to any non-faulty destination in a deadlock-free fashion,
as long as the number of faulty links is less than the dimension of the hypercube and no

node fault exists.

In FFGCR for GC(n,2*), let source be s and destination bed. Let p=sA d. We denote:

P={il [a,n-1|p&2* 0} D’={x % 2 |x] P} | ={ EC(x)|x] D'}

As there are only A-category faults, traversing through links spanning in the least

significant a dimensions is always successful. So it is guaranteed that for any member
EC(K) in I, a packet can reach at least one node in EC(k). Suppose a packet reaches

EC(k)T | by ariving a node x and xI EEC(n,a,k,t). The k (if k3 a),k+2?2,

gnzA—tlé x2* bits of x and d are XX *Xpimop 1

and dyd; >d|pim. 1 respectively.  Then we can focus on routing in binary hypercube

k+2x2% k +3x2% %0k + max(0,

GEEC(n,a,k,t) from XoX %Xpimuop1 t0 dody 20 inimey. 1, Which is guaranteed by
existing algorithms and the precondition of the theorem. All the bitsin [k],. are set to be

same as d, we can use links spanning in the last a dimensions to go to another member in

I, and finally we get to the destination d. g

Suppose |D’| = m, and in the k-Ending-t-Equivalent class which is encountered at the it
time, there are F, A-category faults. Then the resultant route is at most 2><é F. longer
i=1

than the optimal route found in a fault free setting.
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Now we can conclude that in GC(n,2*), if there are only A-category faults, then the

maximum number of fault tolerableis:

22-1

T(GC(n,2*)) = § 2™ % max(t, - 1, 0)
k=0 Eq. (4)
where t, =§”' K-10.1 4(ka)

The following figures demonstrate the trend of T(GC(n,2*)) with respect to n, when a. = 1,

T(GC(n2%)) — n
300000000

250000000

—
£ 200000000

150000000

GC(n,2

B~ 100000000

(

50000000

Figure 6.5 T(GC(n,2%)) ~n

To make the figure clearer, we use log, (T (GC(n,2*)) for comparison.
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An interesting observation is that when a increases, T(GC(n,2*)) decreases for small n and

increases for large n. We can see that when a = 3, the jump point of the line corresponding
to a =3 isafter n=8= 2% and when a = 4, the jump point is delayed by 4 fromn =16 =

2*. Thisisbecause only after the dimension of a network becomes large enough, can it

7.1
tolerate faults. In Equation (4), T(GC(N2)) = & 272 * max(t, - 1, 0) and
k=0

gz—a§+1- d(k,a), only when n3 2% cansome t, * Oand thus

T(GC(n,2°))* 0. Thedelay iscaused by d(k,a), because the dimension of embedded k-

Ending-t-Equivalent Graph must go larger than 1. Asfor large n, when o increases, t,

decreases, so that 2" %' grows exponentially which makes T(GC(n,2*)) larger. In other
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words, it is the exponentially increasing number of embedded k-Ending-t-Equivalent

Graphs that makes T(GC(n,2*)) also grows exponentially.

Another interesting property of this algorithm lies in the influence of each A-category fault.

If there exists an GEEC(n,a, k,t) in which the number of A-category fault is over

én-1- kq

STH d(k,a), routing will still be guaranteed to be successful if source and

destination do not differ in any dimension cl [a,n- 1] N[K], .

Since A-category fault excludes the possibility of node faults, we need an algorithm to deal
with B-category and C-category faults aswell. The following section 6.5.3 deals with this
problem. The discussion of that algorithm is closely related to Exchanged Cube.

6.5.3 Extended Fault-tolerant Routing Strategy

Suppose in GC(n,2*), T, (p) and T, (q) are neighborsin T, . For each

ki [0,2ma-Pim(pFDIm@)I _ 1) e define graph G(n,a, p,q,k) = < V(n,a, p,q,k),

E(n,a, p,qg,k)>, where V(n,a, p,q,k) isthe set of nodesin GC(n,2* ) whose bitsin
dimensions other than Dim (p) U Dim (q) U[0,a - 1] comprise value k and whose rightmost
a bitsrepresent porg. E(n,a, p,q,k) isthe subset of linksin GC(n,2%) which connect
nodesin V(n,a, p,q,k) . If thelast a bits are viewed as one dimension that can take value

onlyin{p, g}, then G(n,a, p,q,k) iseffectively isomorphic to Exchanged Cube
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EH (| Dim(p) |,| Dim(q) |) . (Note: we do not use EH (| Dim(q) |,| Dim(p) |) though both can
do.) Denote the number of faulty component in B,(G(n,a, p,q,k)) as ¢(n,a, p,q,k), and
that in B,(G(n,a, p,q,k)) as e,(n,a, p,q,k). The number of link faultsin

E,(G(n,a, p,q,k)) isdenoted as g,(n,a, p,q,k).

(Theorem 6.4)

In GC(n,2*), for al T, (p) and T, (g) which are neighborsin T, , aslong as
e(n.a, p,a.k) +g(na, p,q,k) < |Dim(p)| and g (n,a, p,a,k) +e(n.a, p,q.k) <

| Dim(q) | for al ki [0,2™2-PmPFIPIMAI_ 1] ' there isafault-tolerant and cycle-free

routing strategy for any nonfaulty source and destination pair.

Proof. (Outline)
The algorithm used in Theorem 6.3 fails only when a link in dimension [0,a - 1] is broken.
With our discussion about the fault tolerant routing in Exchanged Cube, such a problem is

solved once the fault number is restricted by the precondition of Theorem 6.4. g

Unfortunately, different from Theorem 6.3, if there exists a G(n,a, p,q,k) in which the

number of faulty component violates the restriction in the precondition of Theorem 6.4,
routing might fail even if source and destination do not differ in any dimension ¢l Dim (p)

UDim (q). That is because the B-category and C-category faults influence the routing in

Gaussian Tree T, , where many dimensions other than the preferred dimensions will be

used more than once.
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Up to now, we have completely solved the problem of fault tolerant routing in Gaussian
Cube. We used a new method to categorize faulty components so our approach is more
meaningful than dealing with the trivial bound of network node availability. For
hypercubes constructed by link dilution, this approach to analyzing routing algorithms’
ability of tolerating faults is novel and useful because it is expected that this kind of
topology will lose in traditional metric: node availability. The tree structure is very helpful

to make the problem more deterministic and controllable.
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Chapter 7: Simulator

In this part, a software simulator is constructed to imitate the behavior of the real network,
and thus test the performance of FTFR. The current simulator model is mainly based on
the work of Wong Chuen Vong [20]. In this project, we point out some rectifications and
improvements to the model, both technical and theoretical. Special attention was paid as

to how to efficiently simulate an incomplete network.

7.1 Overview of the Simulator

In this simulator, packets can traverse the network and reach the destination, with routing
decisions made at each intermediate node. There are three important components in the
simulator: _j topology of the network; K implementation of the routing strategy; il

timing methods to measure the useful metrics and statistical analysis of the result.

There are nine basic assumptions in this simulator:
@ Fixed packet-sized messages are used.
@ Source and destination nodes must be nonfaulty.
@ Destination node must not be source node.
@ Packet reaching destination is absorbed
@ Eager readership is employed where packet service rate is faster than packet

arrival rate.

Q

A node is faulty when all of itsincident links are faulty.

@ A node knows status of its links to its neighboring nodes and faulty nodes in the
network

@ No packet is generated for faulty nodes.

@ All faults are fail-stop.
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The simulation model is composed of several functional modules, with their relationship

shown Fig. 7.1:

( Start )
v

Read user inputs
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Setup network

Setup faulty components
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v

Output resultsto files

v
( End )

Design Flow Chart
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7.2 Analysisof smulator components

This part describes in detail the componentsin Fig. 7.1. Some rectifications and
improvements are mentioned in this section that are made to the previous design. Two of
them are of great significance to the final result. There are also some original proposals
for implementing incomplete networks. For simplicity, we take the regular Fibonacci

Cube of order n+ 2, for instance (n3 1).

7.2.1 Setup Network

In addition to initializing network parameters such as node availability and total number
of nodes and links, the major task in this stage is initializing the node array, which isthe
physical representation of the whole network. The number of nodes can be calculated by
the sequence presented in [12][13][14][15]. The number of links can also be easily
obtained by induction introduced in [12][13][14][15]. The data structure of anodeis as

follows:
class CNode
{
public:
unsigned avaiV ector; // availability vector
CQueue *NodeQueue, // point to first packet in node queue (injection queue)

CQueue * TransitQueue; Il point to first packet in transit queue (input queue)
CQueue * OutputQueus; // point to packet in Output Queue
CPacket *CentralBuffer;  // point to packet in Central Buffer
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Various numbers of buffers are allocated to each queue at each node. Thereisonly one
injection queue assigned to each node and with unlimited size (which is acceptable for

simulation). Depending on the topologies employed and the dimensions of the network,
each node will have node degree number of transit queues and output queues, 10 packet

buffers per transit queue and 1 packet buffer per output queue. (Refer to Figure 7.2)
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Figure 7.2 Node model

In our simulation model, there is no data structure for links or edges. Instead, each output
gueue and transit queue at the neighbor correspond to one link connection in between. A
network can obtain message from either its injection queue or transit queue. New packets
are injected into the injection queue and packets received from neighboring nodes are
queued in the transit buffer. To make routing decision, packets must be transferred to

central buffer one by one. Then it isrouted to the next node’s transit queue via a certain
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dimension if destination is not reached, or the output queue if next node’s transit queue

for that dimension is full, or injection queue if even the local output queue is full.

Anintricate problem for incomplete cube is that not all dimensions are available at each

node, even in a fault-free setting. In FC,,, the node degree varies from s—— to n- 2

én- 24
g 3 H

[12]. In EFC,, the nodedegreevarlesfrom to n- 2 [14]. In XFC, (n), the node

84H
én- (k- D@
& 3 |

availability vector beforehand. Unlike the former model, we don’t construct the queues

degree varies from ~+k-1to n- 2 [15]. Thus, we haveto calculate the

until the faulty components are selected. The benefit is we need not allocate memory
space for these faulty links, though we till allocate memory for faulty nodes. Asaresult,
the availability vector a a node contains all the information about the available

dimensions.

7.2.2 Setup faulty components

Faulty components consist of either faulty nodes or faulty links or both. The
determination of number of faulty nodes and linksis:

FC=FN+FL
FC isthe number of faulty components, FN isthe number of faulty nodes and FL isthe
number of faulty links. A faulty node will render all itsincident links faulty.
We can specify both FN and FL. We can also specify FC only, with FN and FL
determined by random selection aslong as FC = FN + FL. The selection of the location
of faulty components is same as the previous model, with careful avoidance of duplicate

selection and picking non-existent components.
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7.2.3 Gather global network status

In FTFR, each node needs to know the availability vector of all its neighbors. However,
this process of exchanging information is omitted here for two reasons.

Firstly, thisis a simple duplication costing one hop time with no calculation.

Secondly, there is no point in allocating space locally at each node since the information

isavailable in global data structure. Consequently, a large amount of space is saved.

7.2.4 Generate Packets

New packets are generated at every node if the tota allowable number of packets is not
exceeded. Thetotal allowable packet number is defined as:

(Total Links— Faulty Link — Number of links incident to Faulty Nodes)™ Buffer Size
Buffer size isthe size of transit queue of a node at each dimension. Inour test, it is set to

10.

The generation of packets follows the trend in the selected probability distribution

function. Ten choices of distribution functions are provided in the program:

@ Uniform distribution @ Normal distribution
@ Bernoulli distribution @ Log normal distribution
@ Betadistribution @ Poisson distribution
@ Binomial distribution @ Weibull distribution
@ Exponential distribution @ Erlang distribution

Asglobal information is easily accessible in the simulation tool, it is easy to ensure the

assumption that destination is not afaulty node.
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7.2.5 Process output buffer queues

Packets waiting in the output buffer queues are sent to their respective neighbors via the
corresponding links. The transmission is considered as one hop. If the transit buffer
gueue of the neighbor is full, the packet will remain in the current node’s output buffer
queue. All output buffer queues are processed in round robin fashion.

However, unlike binary hypercube, in incomplete cubes, the packet stored in the output
queue OutputQueue[i] (which means it will use the i available dimension at current
node), might not be expected to be sent to the neighbor’s TransitQueue|i], because that
dimension will possibly no longer stand as the i" available dimension there. For example,
for node 100 in a 3-dimension regular Fibonacci Cube, dimension 2 is the second
available dimension since 110 is not avalid Fibonacci address. But at the corresponding
neighbor, 000, dimension 2 will be the third available dimension. So we need a
translation table at each node, thei™ item of which records such a change in the ™"
available dimension. The value can be calculated by utilizing the availability vector of
the current node and its neighbors. In real implementation, we save that huge space by
re-calculating it at each iteration. The result showsthat this O(n) computation costs only
avery small fraction of total simulation time. The main advantage is the saving of a
significantly large amount of memory space, which enables usto test networks of higher

dimension.

7.2.6 Processtransit buffer queues

If packets are available in transit buffer queues, it is transferred to the central buffer
where routing algorithm is applied and determined whether this packet has reached its
destination or needsto be routed. If the packet is destined for the current node, it is

absorbed (deleted or de-allocated). Otherwise, it is sent to the next node’s transit buffer
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gueue (if there is available buffer space) or transferred to current node’s output buffer
gueue (again, if space is available) or appended to the injection buffer queue. All transit

buffer queues are processed in round robin fashion.

7.2.7 Processinjection buffer queue

Similar to the processing of transit buffer queues, packets generated that are waiting in
the input buffer queue are transferred to the central buffer and routing algorithm is
applied there. Then the packet is sent to the next nodes’ transit buffer queue (if there is
available buffer space) or transferred to current node’s output buffer queue (again, if

space is available) or appended to the injection buffer queue.

7.3  Special problemsand solutions

In this section, we focus on some special problems for simulating incomplete hypercubes.
These include an efficient way of storing the incomplete network, and the intrinsic timing
problem of using a single processor to simulate the parallel architecture. The precision

problem is also recapitulated.

7.3.1 Efficient Storage

Fibonacci-class cubes are incomplete cubes, so if we use the binary value of a node’s
address as index of the node array, a lot of space will be wasted. Therefore, we need a

function that efficiently maps between the order of a node and the node’s address.
An interesting property of Fibonacci code is that each integer NT [0, f_, - 1] hasa
unique order-n Fibonacci code. This can be attributed to the greedy approach used in

conversion. First, find the greatest Fibonacci number f, <N, and assign a “1” to the bit
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that correspondsto f, . Then, proceed recursively for N - f, . The unassigned bits are

0’s. InaFibonacci code, the least significant bit is f, rather than f;.

The set of Fibonacci number f,, f5,%0 f_,xxis not linearly independent on {0,1}, that is,
any f; (i3 4) can be expressed by the linear combination of other Fibonacci numbers

with coefficients taken in {0,1}, given i1 [0, f, - 1. Thus, there are more than one

n-1
(b, 2%bs,b, ) suchthat b, iseither Oor 1for 2£ j£(n-1) and i = g b, xf; . In
j=2

Fibonacci Cube, it is the greedy approach that guarantees this inner-product-like mapping

to be a bijection between [0, f,_, - 1] and the node address in Fibonacci CubeFC,,.

This property makes it possible to use an array in the size of f, to smulate the Fibonacci

Cube of order n. Inthe simulator, function Fib2Dec() can convert a (n- 2) -bit binary

n-1
address (b, ; >%b;,b,)¢ into adecimal number i by applying i = § b; xf; . The
j=2

inverse function is implemented by Dec2Fib().

Unfortunately, as the variants of Fibonacci Cube don’t employ greedy approach, different

nodes might represent the same integer. E.g. in EFCg, 100000 and 010110 are both

valid addresses. But (1,0,0,0,0,0) X f,, ¢, f,)T=13=(0,1,0,1,1,0) X, fs,200¢,)".

Hence, to simulate these cubes of order n without the loss of their foremost advantage:
low expandability, we have to find a one-one bijection which can efficiently map

between avalid node address and [0, F-1] where F is the total number of nodes in the
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network. Otherwise, it is inevitable to use an array of length 2" 2. Before presenting
this interesting method, it is better to see an algorithm that maps an n-bit Fibonacci code
‘original’ to aninteger x1 [0, f,,, - 1]. The result isthe same as what the greedy
approach produces. To useit, call Fib2Dex (X, n- 2).

/I x is a(digit)-bit Fibonacci Code
unsigned Fib2Dec(unsigned x, unsigned digit)

{
unsigned mask, top;
if(digit > 1)
{
mask = (1 << (digit - 1));
if(x & mask) /1 test whether the highest two bits are <10’
return FibNum[digit + 1] + Fib2Dec( x, digit - 2);
/I FibNum[digit+1] stores Fibonacci number Figit+1
else
return Fib2Dec( x, digit - 1);
}
else
reeurn x & 1;
}

Denote the mapping as G(®) . The principle underneath it is:
If a1 {03 foril [O,n-1],

G(a,.,>»a@)  if a,,=0

G(an- 1an- 2 )00@130) =
fria +G(an. 3 8y) if a8, ,=10

It can be easily proved that this algorithm is equivalent to the greedy approach. However,
it opens awindow to finding a one-one bijection for other Fibonacci-class cubes. The
following demonstrates an algorithm that works for Enhanced Fibonacci Cube of order n.

To use the agorithm, call Fib2Dec (x, n - 2).
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unsigned Fib2Dec(unsigned x, unsigned digit)

{
unsigned mask, top;
if(digit > 4)
{
top = x >> (digit - 2); /] test the leftmost 2 bits
if(top == 0) /1'if they are 00
{
mask = (1 << (digit - 2)) - 1;
return Fib2Dec(mask & X, digit - 2);
/I extract the last digit — 2 bits for recursion
}
eseif(top == 2) Il'if they are 10
{
mask = (1 << (digit - 2)) - 1;
return 2 * FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & X,
digit - 2); /I extract the last digit — 2 bits for recursion
}
top = x >> (digit - 4); /] test the leftmost 4 bits
if(top == 5) /1 if they are 0101
{
mask = (1 << (digit - 4)) - 1;
return FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & X,
digit - 4);
}
else I1'if they are 0100
{
mask = (1 << (digit - 4)) - 1;
return FibNum[digit] + Fib2Dec(mask & x, digit - 4);
}
}

/I the following disposes of theinitial conditions
eseif (digit == 4)
{
if(x<3)
return x;
eseif(x>7)
return x-3;
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ese

return x-1;
}
elseif(digit==3)
{
if(x<3)
return x;
else
return x-1;
}
else
return x;

A weak point of the algorithm above isthat it is recursive, which is not suitable for
hardware implementation. Thanks to the left-induction nature of Fibonacci Cube’s
definition, we can simply convert it into a non-recursive function. Please refer to

Appendix 1V for these algorithms.

It is easy to extend this method to Extended Fibonacci Cubes. It isalso straightforward
to design an algorithm that maps an integer back to a Fibonacci code. For details, please

refer to Appendix 1V.

Now, we have found an efficient bijection which will help us save a lot of memory space
in simulation. Asis shown later, we can safely simulate Fibonacci-Class cubes to
dimensions over 20. This isworthwhile because the scale of n-dimensional Fibonacci-

Class Cube is about the same as a binary hypercube with dimension n/1.46. Here,

2
(1++/3)

2

1.46 »
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The discussion above also gives a valuable hint that if we want to study Fibonacci-Class
Cubes in a unified way, it is better to focus on node labels’ bit pattern, instead of their

corresponding decimal numbers.

7.3.2 Timing strategy

In actual communication network, routing is performed in a distributed fashion by all
processors in parallel. As only one processor is available for simulation, special
approaches must be adopted for conversion. Actually, two metrics are related to timing:
packet latency and throughput time. The latter will be discussed in 7.3.3. As for the
former, the elapsed time for a node to service a packet is recorded. For the serviced
packet and other packets in the current node’s queues except the injection buffer queue,
the recorded elapsed time is added to their accumulated time. This recorded elapsed time
is not added to the accumulated time for other packet in other nodes’ queues. Thetimeto
generate a packet will not be included in the elapsed time of that packet. Hence, the total
accumulated time for each packet is dependent on the time it is being serviced and the
time it is waiting in queue of a node while that node is servicing another packet. By
using accumulation of elapsed time for packets, it seems like all packets are processed in

nodes concurrently.

To control the total simulation time, a timer is used to record the time passed since the
beginning of simulation. Each node is processed in a round robin fashion and it
processes output queue, transit queue and injection queue successively. At the end of the
node’s process, the timer is checked to see whether the total elapsed time has exceeded

the specified simulation duration.
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7.3.3 Timing precision issue

The library function provided by system can measure time by milliseconds. However, if
we use that ‘large’ unit, the result will be all zero. To achieve the accuracy at
microsecond level, a set of assembly directives were written, which can make timing
accuracy up to the level of processor clock cycle number. The contribution of the project
is to encapsulate the original approach into a separate class, providing P( ) and V()
methods for measuring time. Its usage is like a stop watch, with P() starting it and V()
stopping it. For example, after executing the sequence: Reset, Pi, V1, P2, Vo, . . ., P, Vi,
the value returned by calling getDuration( ) is én d(V,,R), where d(V,, P) representsthe
i=1
time passed between V; and P;. Besides, the implementation is more efficient, with the
use of ULONGLONG data type, which is far faster than computing by ‘double’ type.

Please refer to Appendix V for the details of implementation.

7.3.4 Two Improvements

Firstly, the original throughput time is calculated in a very inaccurate way. There, the
start and end time of processing each node are recorded. After all nodes have been
iterated, the latest end time among all nodes is subtracted from the earliest start time
among all nodes. This produces the processing time of all nodes processing packets in

parallel which is then accumulated.

However, it uses arandom number generator to produce the start time for each node:

StartNode_Time = (double) rand()/(double)(RAND_MAX * SCALE_FACTOR);
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Here, SCALE_FACTOR is set to 1000.0. The scale of StartNode_Time is about ﬁ of

the unit of throughput time. So after the accumulation of hundreds of thousands of

rounds, it was detected to be the major contribution to the throughput time. In other
words, in the expression TP = % , where TP, DP, and PT are the throughput of network,

number of packets that have reached destination, and the total processing time taken by
all nodes, respectively, the result is mainly composed of the accumulation of difference
of randomly generated numbers. Some statistical variables were added to measure the

time contributed by random number generator, and the result confirms this conclusion.

To patch up the problem, a new method is used in this project. It recordsthe total time of
processing all nodes. Let it be T. Then the throughput time is calculated as % , where N

isthe total number of nodes. Here, T is effectively the simulation time specified in the
input file. Maybe in the final iteration, some nodes have been processed while some have
not. However, asthe total number of iteration is very large, such a minor difference can

be neglected. The experimental result shows that as long as the simulation time is long
enough and thus % is large enough, the throughput fluctuatesin a very small range, such

that no result is discarded by the 95% confidence interval technique (see Section 7.4).
The assumption underlying this model is that all nodes always run in parallel.
The second problem is that nearly 10 percent of the packets are lost halfway. Actualy,
when the neighbor’s transit queue and local output queue are both full, the packet is not
added to the injection queue due to a mistake in programming. The prototype of the
function is: void Requeue(CPacket * Target, CPacket **Packet) and it is called by:
Regueue (Nodeg] CurrentNode].NodeQueue->Packet, & (Node] CurrentNode].
CentralBuffer));
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Obviously, the pointer to central buffer is copied to the formal parameter of Requeue,
instead of the real parameter Nodg CurrentNode].NodeQueue->Packet. This causes the
loss of packet and leakage of memory. A simple way to fix the problem isto cal by

reference the first parameter of Requeue, i.e. the prototype is changed into:
void Requeue(CPacket * & Target, CPacket ** Packet).

Now, the debugger of Visual C++ reports no memory leakage and the batch mode
proposed by Yan Yan [22] can be run safely.

7.4 Filter of amulation results

The confidence interval check isused in processing the simulation results. This
technique is more necessary in incomplete cubes than in binary hypercube, Folded Cubes
or Josephus Cube. The reason isthat the incomplete cubes are not stable networks. Here
stable network is defined as follows:

(Definition 7.1) Stable Network
For any node address p in network N, if all nodes xI N arere-labeled as x XOR p, the
new network N, isisomorphic to the original one, then we call network N as Stable

Network.

Obviously, binary hypercube, Folded Cubes or Josephus Cube are all stable networks.
As most routing algorithms are based on XOR operation, it can be easily proved that in
stable networks, for any node address p, a faulty node located at x is equivalent to being

located at x XOR p, while any faulty link (x, y) isequivalent to (x XOR p, y XOR p).
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Thus, the location of faulty componentsis less important for stable networks than for
Fibonacci-class Cubes. In other words, in the latter class of networks, simulation result
might change noticeably due to the location of faulty components. Therefore, the
confidence interval check is more useful to ensure the result is representative of the given
situation setting.

An example in point is node 0" in an n-dimensional Fibonacci Cube. The main idea of
routing in FC is basically as follows: invert all 1’sin preferred dimensions to 0 and then

invert all 0’sin preferred dimension to 1 [13]. Assuch, if node 0" is faulty, the influence

n

will be far more significant than if node (10)E is faulty.

Each time simulations runs, five sets of results are generated with each simulation run
and each set of result takes about 60 seconds. Each set of result is generated by different
simulated network that has random distribution of faulty nodes and/or faulty links if the

total number of faulty components is specified.

A 95% confidence interval is based on the n results. Denote the n results as x;, X, %X, .

n n
Then define the mean of them as m:%é x , and standard deviation s = [ (% - m)?.
i=1 i=1

X-0nn

s/vn’

The simple ztest is by defining z(x) =

As for 95 % confidence interval, define areal number z, o5 such that

XZ
O "e 2dx =095

Then, the 95% confidence interval is defined as {x1 R| | z(X) |< z, o5} , O equivalently,

(m- 20.95%,m+ 20.95%). Here z,,, =1.96. The consequence is:
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A S S . X- 1
for " xI (m- — . m+ —), the probability P(- 1.96 <
( 20.95\/3 2095 \/ﬁ) p y P( s /n

<1.96) >0.95.

To analyze the result, we discard all resultsthat are located outside the 95% confidence

interval.

7.5 Commentsfrom the per spective of Software

Engineering

The new simulator is organized in a very different way from the original version. Inone

word, it isobject oriented. That brings a lot of convenience for programming because the
routing strategy is unified for all Fibonacci-Class Cubes. To demonstrate the benefit, it is
good to see the definition of class. CExtFibCube, which is a class for Extended Fibonacci

Cube.

class CExtFibCube : public EnhFibCube  // inherit from Enhanced Fibonacci Cube

{
public:

CExtFibCube(int dim, int sub, int nodeFault, int linkFault, int distribution,
CString *Doc);

virtual ~CExtFibCube();
protected:
virtual bool CheckValid(unsigned x, int digits = Num_Bits);

virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits);
virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits);
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unsigned k; /I subscript of XFCy(n)
1

Only four functions need to be overridden for this new class inherited from Enhanced
Fibonacci Cube. They are CheckValid, Fib2Dec, Dec2Fib, and the construction function.
All other functions that are not ‘virtual’ can be inherited and used with no change. See
the definition of EnhFibCube below.

class EnhFibCube

{
public:

EnhFibCube (int dim, int nodeFault, int linkFault, int distribution, CString * Doc);
virtual ~EnhFibCube();
void Run(CWnd *win,CDC *pDC);

protected:

/I Shared functions
void Clear();
unsigned OneBest(unsigned source, unsigned destination, unsigned x2, unsigned
DT, int *m);
unsigned GetNext(unsigned int source, unsigned int destination, unsigned int
available, unsigned int *DT);
void BuildPacket(void);
unsigned char CalDimOrder(unsigned current, unsigned char *orderDim,
unsigned char *inverseDim);
void Initialise_Dimmap(unsigned current, unsigned char * mapDim, unsigned
char total, unsigned char * map);
void Simulate(CDC *pDC);
unsigned countPos(unsigned current);
void Initialise_Node(void);
void Initialise_StatParams(void);
void BuildFault(void);
unsigned GetNeighbor(unsigned available, int dimension);
void Initialise_Network(void);

/I Only three virtual functions that need to be overriden by sub-classes
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virtual bool CheckValid(unsigned x, int digits = Num_Bits);
virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits);
virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits);

protected:

/I atritbutes

CString * report;

unsigned *Link1,;

unsigned *Link2;

unsigned * Fault;

unsigned * FibNum;

unsigned Node_Availability;
};
The structure of the whole program is therefore more streamlined and modular. Actualy,
it can serve as a base class for many incomplete hypercubes. Besides, the code is now

scattered in several files and classes thus it is more convenient to manage.
Another improvement of organization is extracting all globally accessed variables and

functions such as random distribution functions into one file (Common.h). Then it can be

included into the implementation file (.cpp files) of other classes if necessary.
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Chapter 8: Analysisof Simulation Results

8.1 Introduction

Using the completed simulation tool, the performance of FTFR in term of network
efficiency, can be measured by network efficiency. This chapter summarizes the
simulation procedure, analyses and compares performance in terms of average network
latency, mean throughput with respect to network dimension, network topology and
faulty component number. The raw data collected are placed in Appendix V1.

Comparison diagrams illustrated in this chapter comply with the raw data

To make afair comparison, several factors are fixed concerning the simulation procedure,

environment and result selection:

@ All ssimulations must be run on a same computer. In this experiment, the Intelligent
System Laboratory PC 8, DELL CPU 2.0GHz and Physical Memory 512MB is used.

@ During the simulation process, al other non-system applications must be shut down.
The network line is also disconnected to ensure no hidden CPU uses of Internet
applications.

@ Each set of input parameters must ensure that the CPU is running at 100% usage.
Thisisto ensure that no swap in and out for virtual memory occurs. Otherwise, the
timing will be very inaccurate because communicating with hard disk is of several
orders slower than accessing physical memory. The upper bound of dimension is
determined by this requirement.

@ Each set of input parameters is simulated for 5 times, with each time lasting 60

seconds for network communication. Note, the 60 second is not how long the
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simulation program runs, because of the overhead for simulation tool in addition to
the useful communication simulated for the network.

@ Uniform probability distribution is adopted for packet injection probability function
and appliesto all cases.

@ The average network latency and mean throughput for the 5 simulations are
calculated at the end of the program, together with their respective standard
derivation.

@ Simulation starts from network with dimension n = 5, since we are not interested in
small size networks.

@ The 95% confidence interval or 5% significance level is used for filtering undesired

or deviating results.

8.2 Technical considerationsfor accurate smulation

8.2.1 Traitsof expected result

Since we are simulating a very large number of packets within one round, it is naturally
expected that the result of 5 rounds for agiven set of input parameter should not fluctuate
too much, i.e. the standard deviation should not be too large. Secondly, with dimension
increasing, the network latency isto increase due to the longer path while the network
throughput is also supposed to increase thanks to the increasing parallelism available.
Thirdly, with the number of faulty components increasing, the latency is to increase and
throughput to decrease. These are expected results and we will verify them in the

following sections.
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8.2.2 Buffer size

The current buffer size is set to 10, i.e. the maximum length of the transit queue for each
dimension at every node is 10. Thisnumber is closely related to the likelihood of
deadlock occurrence. If it isset to be small, it is morelikely to bring about deadlock
while setting it too big will cost more memory space because more packets will be

generated. The influence of buffer size will be further discussed later.

823 Hoptime

The hop time can be specified in the input file. However, in all our simulations, it is set
to 500ns for afair comparison. This value is determined empirically based on C104.
Similar trends are also observed by varying hop times. In the network routing problem,
there is atrade off between the path length and time for making routing decisions. The
more intricate the decision making process is, the more time it takes, but possibly the
shorter the final path will be. Conversely, a decision made quickly tends to result in
longer path. If we set the hop time longer, the final result will more reflect the difference
in path length while setting it smaller will make the time for running the routing
algorithm more dominant. In FTFR, the routing algorithm is fixed, so the choice of hop
time will not influence the final result much. If we set hop time longer, the difference
between the decision making time for using spare dimensions and using preferred

dimensions will be less significant.

8.2.4 Simulation duration time

How long the simulation should run is an important problem. In our simulation, the
maximum possible number of allowable packetsis:

(Total Links— Faulty Links— Number of links incident to Faulty Nodes)” Buffer Size.

For small and medium sized networks, they get saturated with packets shortly after the
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beginning of simulation. Before saturation, the latency must be shorter than the stable
value and the throughput lower. However for large sized networks, the network gets
saturated very slowly. It was observed that after 60 seconds, the metrics do not converge.
Setting the simulation duration longer will alleviate the problem. However, since one
simulation duration is applied to all cases, it is not worthwhile to double or even triple the
simulation time just for a few extremely large dimensions. Thus, for such irregular cases,

they are deleted from the final valid data set. This point will be discussed later.

8.3 Comparison of FTFR’s performance on various networ k
sizes
In this section, FTFR is applied to fault-free regular Fibonacci Cube (FC), Enhanced

Fibonacci Cube (EFC) and Extended Fibonacci Cube (XFCy) and binary hypercube. The
throughput and latency of them are shown in Figure 8.1 and 8.2 respectively.

Log2(Throughput) - Dimension
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Figure 8.1 Throughput (logarithm) of Fault-free Fibonacci-class Cubes
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In Figure 8.1, it is demonstrated that the throughput of all networks is increasing as the
dimension is increased from 12 to over 20. This is due to the parallelism of the networks

and the increase in the number of nodes (where n is the dimension) that can generate and

route packets in the network, is faster as compared to the time complexity of O(nlogn).

By increasing the network size, the number of links is also increasing at a higher rate than
the node number. This in turn increases the total alowable packets in the network. With
parallelism, more packets will reach destination in a given duration. For the same reason
mentioned in the previous discussion of latency, Enhanced Fibonacci Cube has the
largest throughput among the three types of Fibonacci-class Cube. An interesting
observation is that for dimensions between 11- 13, the throughput decreases for a two

dimensions and increases again afterwards. One possible explanation is: the complexity

of FTFR is O(nlogn). For large n, the variation in logn is small compared to the case of
small n. Thus the difference brought by logn will be small and the trend of throughput

is the same as what an O(n) routing algorithm produces. For small n, however, the

contribution of logn is comparable with the increase rate of networks size, which leads to
the seemingly irregularity. On the other hand, when dimension is small, the network
scale is too small to display that characteristic. For Fibonacci Class Cube, the irregular

range is 11-13, while for binary hypercube, such arange is 8-9. This again accords with

1++/3

12:85» 2: — Note the smulation for binary hypercubes with dimension over 15is
not carried out because there is no enough physical memory on the computer.

It is guaranteed that FTFR is cycle-free. But in the face of concurrency, does it guarantee
deadlock-freeness? It is clear that if we decrease the parameter BUFFER_SIZE, the

deadlock problem will become more evident if the routing algorithm is not deadlock free.

When BUFFER_SIZE is set to 10, the irregular range is 11-13. When BUFFER_SIZE is
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reduced, the range will move leftward (decrease). When BUFFER_SIZE is 1, such an
irregular phenomenon will disappear.  These reflect that FTFR is possibly NOT
deadlock-free. Asthe BUFFER_SIZE is reduced, networks of even smaller dimensions

will suffer from deadlock. Once deadlock occur, it will make a significant contribution to
the packet latency. This in turn will make the irregular range caused by O(nlogn)

complexity less apparent.
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Figure 8.2 Latency of Fault-free Fibonacci-Class Cubes

In Figure 8.2, it can be observed that the average latency of regular/ Enhanced/ Extended
Fibonacci Cubes increases as the networks dimension increases below 19. As the
network size increases, the diameter of the hypercube also increases. A packet to be
transmitted has to take a longer path to reach its destination, resulting in a higher average
latency. The Enhanced Fibonacci Cube has the highest latency among three because
when dimension is large enough, the number of nodes in Enhanced Fibonacci Cube is the

largest among regular/Enhanced/Extended Fibonacci Cubes of the same dimension.

Page 138 of 215



After the dimension reaches 19 or 20, the latency decreases. This is because the scale of
the network becomes so large that the simulation time is insufficient to saturate the
network saturated with packets. This is evident from the fact that for those dimensions,
the number of packets reaching destination is lower than the total allowable packet
number. So the packets in these networks spend less time waiting in output queue or
injection queue, while that portion of time (incurred by concurrency) comprises a large
part of latency for low dimensional networks that get saturated with packets in the
simulation duration. A straightforward solution is to increase the simulation time.
However, to make comparisons fair, the simulation time for other cases should also be
increased proportionally. Thiswill double or even triple the total time for simulation. As
19-20 dimension is already adequate for demonstrating the performance of FTFR, this
effort is spared. Binary Hypercube, a special type of Extended Fibonacci Cube,

demonstrates a similar trend, with latency beginning to decrease since 15. This also goes

1+ \/_

well with the fact that the number of nodes in Fibonacci-class Cube is O((———)") and

1+\/_

the node number of binary hypercube is O(2"). :2»15:20. Note here that due

to the insufficiency of physical memory, no simulation is carried out for binary

hypercubes with dimension over 15.
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84 Comparison of FTFR’s performance on various

number s of faults

In this section, the performance of FTFR is measured by the varying the number of faulty

components in network.
The result for XFC,5(14) is as follows:

14-Dim Extended Fibonacci Cube XFC;5(14)
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Figure 8.3 Latency and Throughput (logarithm) of 14-dim Extended Fibonacci Cube

It is clear that when the number of faults increases, the trend of average latency is to
increase while the throughput is to decrease. This is because when more faults appear,
the packet is more likely to use spare dimensions which makes the final route longer. In
consequence, the latency increases and throughput decreases. However, there are some

exceptional cases when the existence of faults reduces the number of alternative output
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port available, and thus expediate the routing decision. The influence of different faults
number is more evident when the network size is small. With fixed number of faults,
there are fewer paths available for routing in smaller networks than in larger ones. Thus
making some of the paths unavailable will bring about more significant influence on the

former. While in large networks, with the total number of nodes in n-dimension network

1++/3

being O((T)”) and maximum faulty component number tolerable being O(n), the

influence of faulty components will bring about less and less significant influence on the
overall statistical performance on the network. That explains why the throughput and
latency fluctuate in Fig. 8.3. Nevertheless, the overall trend is still correct despite the

glitches.

However, as the number of faults tolerable in Fibonacci-class Cubes of order n is
. éeng _ éenq . .
approximately QEH or SAZH [12][14][15], we have to use networks of large dimension to
provide a large enough number of faults for comparison. That makes the underlying
trend less likely to be evident in the experimental results. The following figures present

the result for 20-dimension regular Fibonacci Cube, 19-Dim Enhanced Fibonacci Cube,
18-Dim Extended Fibonacci Cube.
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18-Dim Extended Fibonacci Cube EFC;
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Figure 8.6 Latency and Throughput (logarithm) for
faulty 18-Dim Extended Fibonacci Cube

The fluctuation of the result is actually needs to be examined carefully. For example, the
latency in Figure 8.6 varies only in the range of below 1%. We know that with different
simulation reading, the fault location is randomly distributed. Similarly, messages
generated have different destinations based on the uniformly distributed packet
destination. If we examine the standard deviation of the result, it is shown that such a
small variation in Figure 8.6 is not too much outside the 95% confidence interval for any
situation. Thus, it is more reasonable to focus on the trend of the statistical results,

instead of the exact number.
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8.5 Resaultsof Gaussan Cube

The simulation results of Gaussian Cubes display very similar trend and properties as in
Fibonacci-class Cubes. Thus in this section, we only present the Figures that are drawn
based on the simulation result. The only thing that deserves attention is that the location
of faults in the Gaussian Cube is very important. So different from the simulation
scheme in FTFR in which we only specify the number of faults and randomly distribute
the faults, now we specify the location of the faults. In this simulation test, we see how

the faulty node located at 0" influence the system performance.

Latency & Throughput ~ Dimension for GC(n,1)
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Figure 8.7 Average Latency and log,(Throughput) versus dimension for GC(n,1)

Since the algorithm’s complexity includes aterm loga and does not include log n, it is

satisfying to see that the temporary decrease interval for average latency does not appear
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in Figure 8.7. However, such an interval does appear again in Figure 8.8, where the x-

Latency & Throughput ~ alpha
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The following two figures (Figure 8.9 and 8.10) illustrate the influence of faulty node 0"
on the network average latency and throughput, respectively. The discussions (including

the effect of glitch) in FTFR also apply to Gaussian Cube.
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Figure 8.9 Influence of faulty node 0" on network average latency
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Chapter 9: FPGA Implementation of FTFR

9.1 Background

From the experience of software simulation, it is evident that the strength of software
applications is the ability to be easily changed to suit customer demands. However,
inevitably, hardware applications of the same are always much faster, but the tradeoff is
its lack of programmability and reconfigurability. With the advent of high-density, high-
performance and low-cost Field Programmable Gate Array (FPGA) that can be easily
reconfigured, the situation had since changed. It promises to give vendors an added edge
in supplying custom-made applications to suit the customers varied requirements in
shorter product development cycles and lower costs substantially, by using the latest
software technology and design flows such as Celoxica DK1 [71]. The commercial
potential is indeed enormous. Figure 9.1 demonstrates the design flow of DK1 software-

compiled system design [65].
External IP @
Cores Specification

VHD L-'V@

VHDLVerilog DK Direct Calls

Design Suite

So fu\D

Instruction
Set Simulator
Compiler

[Epow ([eicaeyaq BojusnaHA

HDL
Simulator

Handel-C
Simulator

L 4

Co-
Simulation

Co-
Sirnula tion

4103

b b
VHDL.W EDIF __/'\-Te_ndor Flace

Synthesis /&Rou te Tools
L

Hardware Input

System M

N \/‘ 413

Figure 9.1 DK1 Design Flow
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Celexica DK1 Design Suite, which is used in this project, enables direct migrating
designs to hardware without requiring the generation, simulation, or synthesis of
hardware description language. It uses the unique language Handel-C and the design
suite focuses on the design, validation, iterative refinement and implementation of
complex algorithms in hardware. Handel-C, an ISO/ANSI-C based programming
language can be used to express algorithm without worrying about how the underlying
computation engine works [66]. This philosophy makes Handel-C a programming
language rather than a hardware description language. In some senses, Handel-C is to
hardware what a conventional high-level language is to microprocessor assembly
language. The output of the compiler is an architecture optimized EDIF netlist
appropriate for FPGA or PLD devices, or RTL VHDL for existing tool suites. Thus, due
to its high level nature, Handel-C has made it possible for the same person to do both
software and hardware implementation, which greatly reduces the manpower and

development codts.

Besides, areadily available development board, the RC100, also made by Celoxica, can
be used to physically implement and test the designed router for this project. It featuresa
high-performance Xilinx Spartan-11 FPGA, with 200,000 system gates, 5,292 logic cells
and 1,176 CLBs. It has a maximum of 284 user 1/0 and 56K block Ram Bits. System
performance is supported up to 200MHz. As the centerpiece of the board and main

reconfigurable logic that users can target, the FPGA is directly connected to [67].

Two SSRAM banks - PS/2 connectors (Mouse and Keyboard)
Flash RAM (8M Bytes) . CPLD

Video DAC - LEDs

Video Input Decoder - Two 7 segment displays

The Xilinx CoolRunner CR3128XL CPLD, which is used to configure the FPGA from

various data sources and implement other glue logic, can configure the FPGA
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with data received from host PC via File Transfer Utility or with a configuration file
retrieved from the Flash RAM. The structure of RC100 board is showed in Figure 9.2-
9.3 below.

JTAG
TAP

Flash )
RAM Video DAC

SRAM 1 — ' T S Ok casT111
a* - decoder

FPGA

Figure 9.2 RC100 Board Components

parallel

port keyboard mouse

connector connector

power
supply

power
switch
CWVES video
input
S video input

expansion header

Figure 9.3 RC100 Development Board
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Viaparallel port cable, the File Transfer Utility can be used to [69]:

@ Transfer Xilinx BIT filesto the FPGA
@ Transfer files or raw data from PC to a specified location in the Flash RAM
@ Transfer files or raw data from the Flash RAM to PC

9.2 Overview of Experimental M ethodology

Our objective isto obtain a circuit that implements FTFR correctly and efficiently.

Obviously, two aspects are of our major interest:

@ Correctness. The router must produce the correct decision that FTFR generates.
@ High performance. Thisinvolves DK1 gate count, number of logical components
(Luts and FFs), number of Slices’Routes, PAR timing and maximum clock

frequency.

Therefore, we divide the experiment into two stages, namely software simulation stage

and hardware implementation stage.

In the software simulation stage, we focus on programming the design in DK1, using
Handel-C. It is easy to check the result because chanin and chanout can now be
extensively utilized to show the value of critical variables directly, making debugging
and verification of code correctness very simple. This stage is just like software
development, with focus on the correctness of our program. Besides, DK1 Waveform
Analyzer [72] can now be used to roughly estimate and analyze the performance of our
router. Also the result of DK1 compilation can give the raw image of the relationship

between total gate number and port number.
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In the hardware implementation stage, the Celoxica DK1 Design Suite had to be set to
compile the output file in EDIF format. When compiling in EDIF mode, DK1 would
optimize away all unused code, i.e. those code that do not affect the final output.
Similarly, if no meaningful output were specified, i.e. no 1/0 bus or Flash Ram specified,
the design would not generate any EDIF files. Statements that could not be implemented
in hardware such as chanin and chanout are required to be removed as well for error-free
compilation. With optimized number of gates and LUTs (Look Up Tables), the
generated EDIF file can be used by Xilinx Design Manager to generate BIT files, which
is in turn downloaded onto the RC100 Development Board using Celoxica RC100 File
Transfer Utility.

The performance indexes are easily available from the report of Xilinx Design Manager’s
implementation. However, without the availability of chanin and chanout, two problems
arise: 1) how to initialize the data variable, 2) how to verify that the FPGA router was

working correctly.

On the first issue there are three foreseeable solutions. Comparison is outlined in Table

9.1[67][69)].

SiNo. | IPut | Implementation | Additional Gate | ) yipje Tes Data
1 Hardcoding Easy Negligible Limited and Inflexible
2 Keyboard Medium Very Significant Unlimited
3 Flash Ram Hard Acceptable Nearly Unlimited

Table9.1 Comparison of Input Methods

Since we are only testing the implementation, the number of additional gate count is of

less importance because it will be finally removed after verification. If hardcoding is
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used, then each time we want to test for a new set of data, the EDIF and BIT file will
have to be regenerated, which costs a lot of time and thus inflexible. For keyboard, it
needs the manpower of input each time. Flash memory can provide 8M byte space,
which is enough for testing. If more testing cases are required, it is easy to transfer the
testing data to RC100 again via FTU, which is far simpler and quicker than regenerating
EDIF and BIT file. The strength of testing with Flash memory is that the process is
automatic. A large amount of test can be carried out with no human interference. As for
difficulty, both keyboard and Flash memory need additional conversion functions to
change the data into binary or integer format for the router to execute, because these
forms of input were in ASCII format, i.e. 0x30 represents 0Ob00, which is zero in integer
terms. Furthermore, for numbers above 9, e.g. 10 that is 2 ASCII numbersof 1 and O in

consecutive locations, a function would be needed to concatenate to their true value of 10.

In view of all, it was decided that Flash Memory is used for inputting the testing data.
However, after the correctness is ensured, we have to remove the part for Flash Memory
and adopt the rea form of input. It is only at that sage can we take a fair comparison
between the performance and scale of the router with respect to the port number.
Moreover, it should be noted that due to the nature of DK1, designs of varying sizes
would be generated for differing sets of data because of the optimization process. Thus, a
fixed test case (extensible over various port sizes) would be hardcoded into routers of
different port sizes so as to compare them in terms of gate counts, delay and maximum

operating speed.

Going on to the issue of verification of the workings of the FPGA router, we need to be
able to collect the output data generated by it. Five methods are proposed and the
comparisons between them had been tabulated in Table 9.2.

S/No. | Output Method | Implementation | Additional Gate | Multiple Results

Nifficrltyv Counta
|~ 4B R EAY] LY UUTItO
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1 Direct File Output Very Hard Indeterminate Indeterminate

2 VDU Display Hard Very Significant Unlimited

3 Flash Ram Medium Acceptable Limited by RAM size
4 Pin Outputs Easy Negligible Unlimited

5 7 Segment Display Easy Negligible Limited by display

Table9.2 Comparison of Output Methods

Similar to the analysis before, taking account of the advantages and disadvantages of
each method, it is decided that the Flash Ram Output option would be most suitable for
use in saving multiple test results for routers of differing sizes. However, one would
expect that the additional gate counts would limit the router that can be implemented on
the FPGA.

Again, after the verification of the design, the Flash Ram functionality would be removed
and replaced with the Pin Output options. This was because this option adds the least
gates to the design and would be suitable when making comparisons for routings of

differing port sizes in terms of gate counts, display and maximum operating speed.

9.3 Testing scheme

First, routers of different dimension will be compiled into different BIT files before the

demo. It can be transferred to the RC100 by File Transfer Utility during the test.
For afixed dimension, several testing cases can be designed in the input file. Then, they

are transferred to RC100’s Flash Memory. After the router makes decision, the result
will also be recorded in the RC100’s Flash Memory. Then, we use File Transfer Utility
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again to transfer the result to PC and check the correctness. The format of input file that

storestesting casesis as follows. (take a 3-dimension router as an example)

000 110 101
(Current node address) (the availability vector for current node)  (input mask)
010 101 (the availahility vector of the neighbors of the current node)

(the total number equals the number of 1’s in the availability vectorof current node)

111 000
(destination) (DT of the packet)

1 0 1 # (the history, meaning that the packet used dimension 1, 0 and 1
successively, the ‘# signifies termination)

@ termination of the whole file

In real practice, the numbers above are in hexadecimal, so it iswritten as:

0 6 5

5
0
0

@ ~ N N

If several testing cases are to be used, the character ‘$’ is used for separating cases:

P N N O
o o u o
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$ // there is another testing case in the following
1 3 5

1 4

6 2

2 1 0 #

$ // there is another testing case in the following
0 5 5

3 4

3 1

0 2 1 #

@ /I no moretesting cases. File ends

The output will be arranged in the following format:

000 dimension=2 DT=0

001  Abort

002 Dedtination Reached

The first column is the testing case number. If the destination is reached, it will write
“Destination Reached”. If aborted, it writes ‘Abort’. Otherwise, it outputsthe dimension

that is chosen to use, and the updated DT after the routing process.

Different testing cases can be posed and transferred to RC100 dynamically. This makes

testing more flexible.

9.4 Resault of implementation
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With Flash Without Flash
Memory for 1/O Memory, use pin
NAND Gates after compilation 42558 11250
NAND Gates after optimization 32761 9627
NAND Gates after expansion 68997 36476
NAND Gates after optimization 15157 4039

Table 9.3 Comparison of NAND Gate Number between with/without Flash

Memory for 4-dimension reqular Fibonacci Cube using classical approach

With Flash Without Flash
Memory for 1/O Memory, use pin
NAND Gates after compilation 251952 226213
NAND Gates after optimization 117044 97743
NAND Gates after expansion 138142 109376
NAND Gates after optimization 48232 39285

Table 9.4 Comparison of NAND Gate Number between with/without

Flash Memory for 4-dimension binary hypercube using FNN

9.5 Useful Tipsfor development

Although DK1 Development Suite provides a lot of freedom to FPGA design, its
compiler is far from perfect. Some procedura tips are drawn from experience and are

summarized in this section for future reference.

9.5.1 Error report problem

The errors reported by the compiler are very inaccurate, especially concerning the
location. Some times, the real location of error and the place reported by the compiler

may be afew hundred lines apart. To overcome this problem, the incremental debugging
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approach isused. First, comment out most of the suspected parts of the program, leaving
asmall portion that is controllable. Now, it is easy to locate the problem and fix it in the
small range. After that, release the commented parts little by little, with each round
ensuring that no error occurs. The advantage is we can now focus the problems in the
newly released parts, no matter where the compiler reports that the error exists. This

method is proved very useful.

95.2 Runtime Error

This wired kind of error occurs during debugging. For example, if three sentences a, b, ¢
are to be executed successively. If we debug it step by step, then maybe when executing
b, a runtime error is reported. But if we place a breakpoint at c, then after executing a,
we use ‘go’ or press ‘F5’ to run to the nearest breakpoint, ¢, the runtime error doesn’t
occur. This problems shows that Handel-C must have not encapsulated the lower
hardware particulars completely, and problems in that level are looming in an
unpredictable way. As this problem does not influence the final result we only need to

pay attention to it and refrain from being stuck by this irregularity.

9.5.3 Compiling strategy

The time for compiling EDIF fileislong for DK1. The time for Xilinx implementation is
even longer. Therefore, we should use the debug mode as much as possible. It is only
after ensuring that no logic error exists can we proceed to hardware implementation,
during which, the only possible problem left is concerning hardware interface, or 1/O
utilities.  This will be very helpful because debugging the program logic on RC100 is
impossible. To save some time, we can set the option in Xilinx Design Manager to

fastest, and then set it to optimal after ensuring no problem exists.

9.5.4 Programming methodology
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It is not wise to write Handel-C in an object-oriented thinking. So it is free to use global
variables. Besides, its unique macro expression is helpful in making the routine generic.
Another important method to minimize the changes necessary for different port size is
using macros like Num_Bits, Log_Num_Bits.... They can calculated the proper width of
variables with respect to the port size. It is found that Handel-C is not excellent in
processing stacks, so macro expressions is preferred to functions and recursion had better

to be avoided.

As for loops, the traditional “for(;;)’ format is not welcomed in Handel-C. We had better
use ‘while’. Aswe often deal with an array in aloop, the following problem looms. The
index for an array with the length of L isrestricted to be logx(L). However, to control the

loop, we often need to use :
while(i <L)
{
do something on array[i].
i++;

}

Thisisimproper when L is power of 2. For example, when L=4, then the bit width of i is
2, 0 wheni =3, afteri++,1is0. Soi <L is always satisfied and a dead loop is formed.
If we set the bit width of i to 3, then it can’t be used as array’s index. One compromising
method is to set the width of the control variablei to logx(L+1). Then inthe ‘while’ loop
body, use another variable of width logx(L), say ii, to index the array. At the beginning
of the loop body, let ii =i [logz(L) — 1: O]. Inthis way, the problem is solved in a unified
fashion. If the first sentence of the body does not quote i, then the assignment can be
executed parallelly, incurring no extratime. To be economic, such a technique can be
used only for those arrays whose length is power of 2. For other cases, the control

variable with width logx(L) can be used as index without any problem.
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9.5.5 Design of common interface

To drive hardware on RC100 board, it is advisable to develop some higher-level interface
libraries. The primitives provided by the RC100 are not powerful and are unwieldy to
realize a useful function. It is helpful if some library functions or MFC-like encapsulated
hardware calls be designed so that the following developers can program on a higher

level and focus on problem-specific logics.

9.5.6  Floating point library

When implementing the router using fuzzy neural network, real numbers are used in
addition to integer. Thus, floating point library isincorporated [73]. However, the library
is not perfect and possibly contains bugs. One most significant problem is that when
using floating-point numbers, the resource consumption for compiling is very huge, both

in memory and in time, making it difficult to debug.

Thus, the strategy actually used in this implementation is scaling up. For example, if we
calculate 1.5/0.3, then the result is same as (1.5*10)/(0.3*10) = 15/3. Of course, there
exist some loss of precision if it is not wholly divided. This disadvantage is overcome by
delaying division operation to the last step, because addition, subtraction and
multiplication all result in no loss of precision. So avoiding division as intermediate
steps can eliminate the accumulation of error. Besides, we used a scaling factor of 1000,

as aresult, the precision is very satisfactory.
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Chapter 10 Conclusion

This chapter concludes the report by discussing the accomplishment, project limitations,

and future work.

10.1 Concluson

Fuzzy neural network has been successfully applied in many areas, such as clustering,
prediction of time series, traffic and stock market, as well as automated control of large,
complex systems. However, just as no model in artificial intelligence can apply to all
applications, so does FNN. The problem in nature is that the application of routing in
interconnection network is a based on binary discrete numbers. The FNN is heavily
dependent on the clustering of each input (horizontal reduction). So it works efficiently
in situations where the range of each input is large but the number of input is not too high.
However, our binary application makes each input attached with two linguistic labels and
the number of input is linear to network dimension. In consequence, the time and space
complexity is exponential to the dimension. If we combine several independent binary
inputs into one corresponding decimal value as input, then the number of linguistic labels
required for each input will grow exponentially with network dimension. So it does not

help.

On the other hand, an encouraging result is that efficient fault-tolerant routing strategies
have been designed for such link/node diluted hypercubic networks as Gaussian Cube
and Fibonacci-class Cube. They can tolerate more faults than the trivial bound of node
availability. The simulation result demonstrated the desirable properties of these
algorithms and the implementation on FPGA aso shows the feasibility of physical

manufacture.
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Finally, it is proved theoretically that the Exchanged Hypercube can efficiently reduce
the number of links from binary hypercubes, preserving nearly all topological and
communication merits. The author believesthat it is a promising type of network as a

substitute for binary hypercubes in many applications.

10.2  Accomplishments

In reviewing the purpose of this project as defined in section 1.2, the author has
illustrated that the fuzzy neural network is not suitable for the problem of routing in
interconnection network, at least at present. An encouraging result is that despite the
intrinsic low node availability in node/link diluted hypercubic networks, still a fairly high
number of faulty components can be tolerated by our fault-tolerant routing strategy. The
simulation result aso shows that the performance of our algorithm is reasonable..
Besides, it is demonstrated that the implementation of it on hardware such as FPGA is

feasible.

The Exchanged Hypercube provides one more possible topology when constructing

multi-computer systems.

10.3  Project Limitations

Although extensive experiment on the Fault-tolerant Fibonacci Routing (FTFR)
algorithm finds on exception in which routing aborts when the number of faulty
components is less than the minimum node availability, it is extremely difficult to prove

it theoretically.

Furthermore, the simulation tool still has some deficiencies. The most important one is

how to simulate a parallel architecture with only on CPU. Some problem can and has
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been satisfactorily solved while some other problems, such as how to calculate the time
for the computation of throughput in the presence of unevenly distributed workload, still

leave much to be desired.

Last but not least, as the new approach of fault categorization is adopted in the discussion
of our routing algorithms, it is hard to compare our strategy with ordinary ones. Besides,

the comparison of reliability between different network topologies will also be difficult.

104 FutureWork

The following are a number of areas where future work and research can be conducted

for this project.

Firstly, further investigation into the feasibility of applying FNN to fault-tolerant routing
can be conducted. There are two possible directions. If FNN isintrinsically inapplicable
to this application, then rigorous theoretical proof, may be based on Vapnik-
Chervonenkis dimension, need to be given. Otherwise, a new architecture of FNN or
pure artificial neural network should be designed for this kind of high-dimension binary
application. After that, the performance of fuzzy routing and traditional routing strategy
can be compared on various network topologies. Whether fuzzy routing can apply to a

wide variety of networks in a unified way is also worth research.

Then, it will contribute to desirable theoretical soundness if FTFR is proved to aways
work properly given the restriction on the number of faulty components is met. Theorem
4.2 and the discussion after that have presented an initial and useful result that paves way

for a complete proof.
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Thirdly, the architecture of the simulator needs to be improved to achieve results of
higher accuracy. Multi-threaded or multi-process algorithms can be used to simulate the
concurrency in the real network. Although the simulator will still depend on time slicing,

the result can be possibly more accurate than the current model.

Lastly, new metrics for comparison of fault- tolerant routing strategies need to be
designed and introduced, especially for GC, Fibonacci-class Cubes and other node/link
dilution cubes. The author deems it advisable that three aspects about a faulty component

should be taken into consideration:

1) Number of faulty components,
2) Type: faulty node or faulty link.
3) Location: Similar to the discussion in GC. We should also discriminate

different types of fault distribution: evenly distributed or clustered.
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Appendix |  Proof of Caselll for Theorem 4.2

The case 1l for Theorem4.2is:
In a fault-free Enhanced Fibonacci Cube, there is always a preferred dimension available

at packet’s present node before the destination is reached.

Proof:

For convenience, the definition of Enhanced Fibonacci Cube is copied here.

Let EFC, = <V,,E, > denote the Enhanced Fibonacci Cube of order n, then
Vv, =00]|V,.,U10|V,.,UJ0100]|V,., ||UO101|V,.,. Two nodesin EFC, are connected
by an edge in E, if and only if their labels differ in exactly one bit position. As initial
conditions for recursion, V; ={1,0} , V, ={01, 00, 10},

Vs ={001, 101, 100, 000, 010} and

Vs ={0001, 0101, 0100, 0000, 0010, 1010, 1000, 1001} .

For Enhanced Fibonacci Cubes of low dimension, it is easy to prove the theorem by
enumeration. So now, we assume that dimension n is larger than 6. According to the
definition above, the leftmost four bits of any valid Enhanced Fibonacci Cube with
dimension over 6 can only be: 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010. Suppose

the address of current node is a,_,a,,, *a,a, while the address of the destination node is

b,..b,., o b,. We prove the theorem by induction. Assume that the theorem hold for

dimensions less than n.
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1) If a,,a, ,a, s, ,= 0000, then:

If b, ,b,.,b, b, ,= 0000, then either destination is reached or apply the induction
assumption for dimension n - 4.

If b, ,b,.,b, 3b, ,= 0001, thenas a, ;a, , *>xaa, and b,_sb,_, *dbb, arevalid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.
If b, ,b,.,b, b, ,= 0010, then dimension n-3 is an available preferred dimension.
If b,.4b,.,b,. b, ,=0100 or 0101, then dimension n-2 is an available preferred
dimension.
If b,.,b,.,b,.3b,.,= 1000, 1001 or 1010, then dimension n-1 is an available

preferred dimension.

2) If a,,a, ,a, s, ,= 0001, then:

If b, ,b,.,b, 3b, , =0000, 0010 or 0100, then as a,_sa,, , *>aa, and
b,.3b,. , @b, arevalid (n-2)-dimension EFC addresses and they are different, we can
apply the induction assumption for dimension n-2.

If b, ,b,.,b, 3b, , =0001, then either destination is reached or apply the induction
assumption for dimension n - 4.

If b, .b,.,b, sb,., =1000, 1001 or 1010, then dimension n-1 is an available
preferred dimension.

If b,_,b,.,b, 3b, , =0101, then the analysis goes the following way:

As a,_,a, ,a, 58, ,= 0001, thus a, ,a, ,a, ;a, ,a, 5= 00010. If a, =0, then

inverting a,,., to 1 will produce a new valid address and n-2 will be an available preferred
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dimension. Otherwise, a, =1, a,.,8,.,8, 38, &, 58, ¢ = 000101. So b, 5 must be 1,
otherwise dimension n-6 will be an available preferred dimension. Then, b, must inturn
be 0 and b, must be 0, according to the definition of EFC. b, _,b, ,b, 5b, /b, b, ¢ =

010101. The deduction flow isillustrated in the following Figure Al.1. The@ represents

that it is deduced by avoiding making dimension n-2 an available preferred dimension.

Figure Al.1  Deduction flow for step 1

Then, a, , must be O, otherwise n-7 will be an available preferred dimension. If a,.g=0,
then n-2 will be an available preferred dimension. So assume a,, =1, a, 4 =0. If &, (=
0, then n-2 will be an available preferred dimension. So assume a,, ,,=1. If b, ,,=0, then

n-10 will be an available preferred dimension. So assume b, ,,=1. Thus, b, 4=0. The

deduction flow isillustrated in Fig. Al.2.

Figure Al.2  Deduction flow for step 2
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So for a, 0 and 1 appear aternately until the least significant four digits are met.
With careful analysis of the initial condition, it is easy to see that in such aworst case

studied above, n-2 will finally turn out to be an available preferred dimension.
3) If a,,a, ,a, sa, ,= 0010, then:

If b, ,b,.,b, 3b, , =0000, 0100, 0101, 1000 or 1001, then dimension n-3 is an
available preferred dimension.

If b, b, ,b, 3b, , =0001 thenas a, ja, , *aa, and b, jb, , >0 b, arevalid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.
If b, ,b,.,b, 3b, , = 0010, then either destination is reached or apply the induction
assumption for dimension n - 4.

If b, ,b,.,b, 3b, , = 1010, then dimension n-1 is an available preferred dimension.

4) If a,,a, ,a, s, , = 0100, then:

If b,..b,.,b,.3b,. 4 = 0000, 0001, 0010, 1000, 1001 or 1010 then dimension n-2 is
an available preferred dimension.

If b, ,b,.,b, 3b, , =0100, either destination is reached or apply the induction
assumption for dimension n - 4.

If b, ,b,.,b, 3b, , =0101, then dimension n-4 is an available preferred dimension.

5) If a,,a, ,a, s, , = 0101, then:

If b, ,b,.,b, 3b, , =0000, 0010, 0100, 1000 or 1010, then dimension n-4 is an

available preferred dimension.
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If b, ,b,.,b, 3b, , =0101, then either destination is reached or apply the induction

assumption for dimension n - 4.

If b, ,b,.,b, 3b, , =1001 or 0001, then the proof is similar to the proof for
a, ,a, ,a, za, ,=0001and b,_,b, ,b, b, , =0101. Here, weonly show the deduction

flow in Figure Al.3.

01010@)0@?@0@0 ......
0 0 0 1 0 01 0 1 0 01 0 1 0O
xR xR

Figure Al.3  Deduction flow for case 5

6) If a, ,a, ,a, sa, , = 1000, then:

If b, ,b,.,b, 3b, , =0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an
available preferred dimension.

If b, ,b,.,b, 3b,. , = 1000, then either destination is reached or apply the induction
assumption for dimension n - 4.

If b, b, ,b, 3b, , =1001, thenas a, ja, , *>aa, and b, jb, , > b, arevalid

(n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.

If b, ,b,.,b, 3b, , = 1010, then dimension n-3 is an available preferred dimension.
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7) If a, ,a, ,a, sa, , = 1001, then:
If b, ,b,.,b, 3b, , =0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an

available preferred dimension.
If b, ,b,.,b, 3b, , =1000or 1010, then as a,_ja, , *>&aa, and b,_jb, , > b, are

valid (n-2)-dimension EFC addresses and they are different, we can apply the induction

assumption for dimension n-2.
If b, ,b,.,b, 3b, , = 1001, then either destination is reached or apply the induction

assumption for dimension n - 4.

8) If a,,a, ,a, sa, , = 1010, then:
If b, ,b,.,b, 3b, , =0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an

available preferred dimension.

If b, ,b,.,b, b, , =1000 or 1001, then dimension n-3 is an available preferred

dimension.

If b, ,b,.,b, 3b, , = 1010, then either destination is reached or apply the induction

assumption for dimension n - 4.

With all the situations considered carefully, we have completely proved the case 111 of

Theorem 4.2, and thus Theorem 4.2.
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Appendix 11

| mplementation Codefor algorithm 6.1

int getPath(unsigned from, unsigned to) I/l Assume from !=to

{

int top, bottom, current; /I current stack is from O to top-1, current available

/I record index is last;

unsigned x1, x2, mask, diff, midl, mid2;

result[0].from=from;

result[Q].to = to;

result[0].topl = n; /I dimensionisfrom1ton
result[0].index = 0;

top=0;
bottom = last;

while (top >=0)

{

x1 = result[top].from;

X2 = result[top].to;

current = result[top].topl,;

mask = 1 << (result[top].topl - 1);

diff = x1 " x2;
while(1) /I it is guaranteed that no item in result array
/I has same from and to

{

if (mask & diff)

break;

mask >>= 1;

current --;
}

/I x1 and x2 are different in dimension ‘current’ (1 to n)
if (current ==1)
{

result[bottom].from = x1;

result[bottom].to = x2;
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}

result[bottom].index= result[top].index + 1,

bottom --;
top --;
continue;

top--;

mask = (1<<(current - 1)) - 1;
midl = x1 & (~mask);

midl |= (current - 1);

mid2 = x2 & (~mask);

mid2 |= (current - 1);

result[bottom].from = mid1,
result[bottom].to = mid2;

result[bottom].index= result[top+1].index + (1<<current);

bottom --;
if(midl !'= x1)
{

top ++;

result[top].to = midl;
result[top].topl = current - 1;

}
if(mid2 = x2)
{
top ++;
result[top].from = mid2;
result[top].to = x2;
result[top].topl = current - 1;
result[top].index = result[bottom+1].index;
}

Sort(bottom + 1, last)
return bottom + 1;
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Appendix Il Program that calculatesthe diameter of T,

class entry

{

public:
unsigned content;
entry * previous;

¥
class Stack
{
public:
entry *current;
Stack()
{
current=NULL,;
}
void Push(unsigned i)
{
if('current)
{
current = new entry;
current->previous=NULL;
current->content=i;
}
else
{
entry *temp;
temp = new entry;
temp->previous=current;
temp->content=i;
current=temp;
}
}
unsigned Pop()
{
if('current)

return INFINITY;
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unsigned result;

entry * pre=current->previous,

result=current->content;

delete current;
current = pre;
return result;
}
bool Empty()
{
if(current)
return false;
else
return true;
}
};
class node
{
public:
bool visited;
int all;
int current;

unsigned *nneighbors,

node()
{
al=2;
current=0;
neighbors = NULL;
}

~node()

{
delete [ neighbors;

}

void Construct(unsigned p, int n)

{
unsigned record[30];

/] there are n bits
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unsigned mask;

al=1,;

record[0]=0;

mask = 1 << (n-1);

mask --;

for (unsigned i = n-1; i>0; i--)

{
if( (p & mask) ==1)

record[all++] =1i;

mask >>= 1,

}

/l now we get all the dimensions at which a link exists
neighbors = new unsigned [all];

current = 0,
while (current < all)
{

mask = record [current];
mask = 1 << mask;
neighborg current++] = (p * mask);

}
current =-1;
visited = false;
if(al==2)
d2++;
if(al==1)
di++;
}
unsigned getNext() /I get the next unvisited neighbor
{
current++;
while (current<all)
{
if( nodeq[neighborg[ current]].visited )
{
neighborg] current]=0; // will not be chosen
current++;
continue;
}
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return neighborg current];

}
return -1,
}
unsigned longestPath() /I return the longest path down. By the way,
/I compare the max route with record
{

unsigned templ, temp2;
int dimension1=0, dimension2=0, i;

if(all==1) /I leaf, only one link (to father)
return O,

templ = temp2 = 0;
for (i=0; i<all; i++)

{
if(neighborgi]>temp1l)
{
templ = neighbord[i];
dimensionl = i;
}
}
if(all==2)
{
if(templ > max)
max =temp1,
return temp1,
}
for(1=0; i<all; i++)
{
if(i==dimensionl)
continue;
if(neighborgi]>temp2)
{
temp2 = neighbord[i];
dimension2 = i;
}
}
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if( templ + temp2 > max )
max = templ + temp2;

return templ,;
}
void sonDepth()
{
unsigned result = 0, son,
if(all==1)
return;
son = neighborg current];
result = nodeq son|.longestPath();
neighborg current] = result + 1;
}

};

void main(void)

{

nodes= NULL;

for(n=4;n<27; nt++)

{

d1=0;

N=1<<n
d2=0;

if('nodes)

delete [[nodes;
nodes = new node[N];
max = 0,

for(unsigned i = 0; i < (unsigned) N; i++)
nodeg[i].Construct(i,n);

/I now we calculate the distance
Stack stack;
unsigned p =0, q;

while( !stack.Empty() || p != INFINITY)

/I calculate the max of current son's longest path down
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if(p!= INFINITY)

{

}
}

nodeg p].visited=true;
stack.Push(p);
p=nodeq p].getNext();

/! backtrack

p = stack.Pop():
nodeg]p].sonDepth();

g = nodeq p].getNext();

if( q'= INFINITY)
{

stack.Push(p);
pP=q

}

else
p=INFNITY;

cout<<"\n The longest distance in the graph with n="<<n<<" N="<<N

<<" is; "<<max<<endl;
cout<<"The percentage of 2 degree nodesis. "<<d2* 100.0/N<<"%"<<endl;
cout<<"The percentage of 1 degree nodesis. "<<d1* 100.0/N<<"%"<<endl;
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Appendix IV Conversion functionsfor Extended

Fibonacci Cube

unsigned CExtFibCube :: Dec2Fib
(unsigned x, unsigned digit)
{
unsigned result;
result = 0;
digit = Num_Bits;

while(digit > k+1)
{
if( x >= FibNum[digit+1])
{
result |= (1 << (digit - 1));
X -= FibNum[digit + 1];
digit -= 2;
}
else
digit --;
}

result |= x;

return result;

unsigned CExtFibCube::Fib2Dec(unsigned
X, unsigned digit)
{
unsigned result, mask;
digit = Num_Bits; // how many
/I digits are | eft

resultlt = O;
mask = (1 << (Num_Bits - 1));
while(digit > k+1)

{

if( mask & x) // test the most
/I significant bit

{

/litisl
result += FibNum[digit+1];
digit -=2;

mask >>= 2;
}
dse /litis0
{
digit --;
mask >>= 1;
}
}
if(digit == k+1)
result += (x & ((1<<(k+1))-1));
dse
{
ASSERT (digit == k);
result += (x & ((1<<k)-1));
}
return result;
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Appendix V CTimer I mplementation

#define PENTIUM SPEED 2457.6
#define MHZ 1000000.0

class CTimer

L
public:

/I ULONGLONG is 64-bit unsigned
ULONGLONG start;
ULONGLONG duration;

CTimer()

duration = (ULONGLONG) 0;
}

void Reset()

duration = (ULONGLONG) 0;
}

void P()
unsigned temptime, temptime2;

asmf
_emit OxOf;
emit 0x31; [Irdtsc
mov temptime, eax;
mov temptime2, edx
}

dtart = temptime2;
Sart <<= 32;
dart += temptime;

}
void V()

unsigned temptime, temptime2;
ULONGLONG temp;

_emit OxOf;
emit 0x31; /lrdtsc
mov temptime, eax;
mov temptime2, edx

h

temp = temptime2;
temp <<= 32,
temp += temptime;

duration += (temp - start);
}

double getDuration() // the unit
is micro-second
{

double temp, result;

// thereis no direct conversion
from ULONGLONG to double
available, so we haveto convert
ULONGLONG to unsigned first

temp = (double) ((unsigned)
(duration >> 32));
temp *= 4294967296

result = temp + (double)((unsigned)
(duration & 0x00000000ffffffff));

result = result * 1000000.0 /
((PENTIUMSPEED) * (MHZ));
return result;

}
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Note:

RDTSC (ReaD Time Stamp Counter) is a set of assembly directives. The _emit
directives are inline assembly code for directly insert/declare a byte into the current

text location.

The assembly directive RDTSC returns the number of clock cycles since the CPU was
powered up or reset. The number of clock cycles is measured by a 64-bit counter and is
stored in processor register EDX:EAX, where EDX contains the higher 32-bit value and
EAX the lower 32-hit.

The experiment is carried out on a 2.4GHz CPU, so PENTIUMSPEED is set to 1024~
2.4 = 2457.6. Since the 64-bit counter can represent more than 82850 days, it is free
from overflow. When running on other computers, this parameter may need to be
modified correspondingly.
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APPENDIX VI

MALatency:
AL SD:
Mthroughput:

Throughput SD:

EN:
EL:

Mean Average Latency

Average Latency Standard Derivation

Mean Throughput

Mean Throughput Standard Derivation

Erroneous nodes, faulty nodes

Erroneous links, faulty links

Raw Data of S mulation Result

For regular Fibonacci Cube, with no fault. Simulation duration is 60 seconds.

Dimension

© 00 ~NO O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

MALatency
5.731
7.807
9.992
13.08

16.095
16.455
20.155
32.974
54.566
87.058
114.863
151.413
190.072
232.201
275.059
303.067
289.345
242.265
189.133

AL SD
0.212
0.279
0.305
0.296
0.521

0.35
0.406
0.449
0.979
1.752
2.767
3.259
3.628
3.315

4.76
5.738

1.61
2.305
1.747

MThroughput Throughput SD

2083902.953
2509919.394
3230724.711
4200724.86
5590315.3
6649473.716
5658421.504
3191762.076
2938218.173
3701941.373
7103450.59
13099109.48
23680371.47
43698701.97
75878409.95
112260412.5
162391187.7
243288065.4
350782433.1

39478.423
54907.034
40587.542
52155.955
50274.17
104408.736
139069.747
135310.57
100489.502
47461.994
74553.727
107931.935
404451.255
180854.325
711924.2
816434.957
2288984.601
10032688
18131088.72

For binary hypercube, with no fault. Simulation duration is 60 seconds

Dimension

© 00 ~N O O

10

12
13
14
15

MALatency
6.996
10.093
13.31
15.935
27.196
44.961
70.103
106.431
148.386
170.444
157.378

AL SD
0.208
0.383
0.416
1.056
0.252
0.776
0.567
1.369

1.39
2.784
0.81

MThroughput
3046390.319
4667176.013
6313704.597
6279516.186
7334754.301
13764698.95
28554984.68
58404606.18
111371365.7
193501166.9
346341553.8

Throughput SD

127271.508
95245.157
131947.345
166424.374
74366.35
190518.435
345918.469
527898.822
455649.988
1435244.624
9767170.654
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For Enhanced Fibonacci Cube, with no fault. Simulation duration is 60 seconds.

Dimension

© 00 ~N o Ol

10

12
13
14
15
16
17
18
19
20
21
22

For Extended Fibonacci Cube XFC;, with no fault. Simulation duration is 60 seconds.

Dimension

© 00 ~N o Ol

10

12
13
14
15
16
17
18
19
20
21

MALatency
6.118
7.754
10.56

14.422
19.084
19.623
26.128
44.148
78.206
113.292
155.442
202.393
274.073
347.074
390.71
383.481
312.276
246.282

MALatency
6.111
8.398

10.506
13.589
16.449
19.643
25.031
41.716
70.684
102.635
132.692
165.983
213.803
261.356
293.774
299.232
263.198

AL SD
0.334
0.153
0.249
0.634
0.423
0.302
0.493
1.543
1.528
1.345
3.533
4.199
2.346
7.622
7.771
5.161
2.172
2.134

AL SD
0.548
0.441
0.525
0.435
0.483
0.232
0.312
0.815

1.9
2.163
1.857
3.745
3.865
5.957
2.818
1.542
2.144

Mthroughput Throughput SD

1867121.121
2282489.291
3092194.369

3649553.66
4574387.498
4071091.475
4620221.082
3512369.454
4530388.221
6578548.289
14938441.68
23031271.55
48805511.77
74274771.66
118787792.3
156077315.7
251850034.3
344473927.4

32300.797
104697.344
45348.138
46371.699
40678.36
58355.813
132135.598
80139.695
188164.791
109678.648
208868.714
276336.661
270534.491
172534.607
1045183.748
1477467.015
12029546.57
20065672.56

Mthroughput Throughput SD

1997666.045
2544305.343
3022916.698
3763136.654
4091118.929
4164382.708
3275873.753
2714505.551
3192470.325
4735510.016
8988125.719
16699058.48
31539444.04
57534241.64

93071257.8
133804007.5
200622752.2

129741.239
68773.57
40881.233
61615.341
102616.141
25607.429
43656.724
73940.93
87453.553
68645.701
187721.677
123745.832
127224.894
425847.624
338624.828
822463.41
7332553.462
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For binary hypercubes with faulty nodes only. Simulation duration is 60 seconds.

Dimension
14
14
14
14
14
14
14
14
14
14
14
14
14
14

For regular Fibonacci Cube with faulty nodes only. Simulation duration is 60 seconds.

Dimension
20
20
20
20
20
20
20

For Enhanced Fibonacci Cube with faulty nodes only. Simulation duration is 60 seconds.

Dimension
19
19
19
19
19
19

m
©OCo~NOoOOUuMWNEFRLOZ

el el
WN BRF O

EN

o0k WNPEFEO

MALatency
170.444
170.908
170.767

171.05
171.331
171.15
171.64
171.309
171.457
170.89
171.153
171.021
171.908
172.762

MALatency
303.067
302.155
303.922
300.991
301.532
302.823
303.247

AL SD
2.784
2.317
2.733
1.752
2.636
2.523
3.356
2.507
2.965
3.169
2.205

3.55
2.281
2.749

AL SD
5.738
3.766
2.429
4.642
5.531
4.883

5.94

EN Average Latency MALatency

0

1
2
3
4
5

389.103
389.226
389.36
389.487
389.874
390.34

7.771
4.438
6.259
6.328
8.033
9.299

Mthroughput
193501166.9
193452666.5
192553922.8
193229950.5
193922825.4
192788940.4
192156973.4
192740750.9
192409636.3
193015906.2
192640297.3
192151673.6
192509583.2
192678761.5

Mthroughput
112260412.5
111999010.1
112390575.2
112372574.4

112122284

112363961.4

111776616.1

Mthroughput
118787792.3
119188267.7
118588758.3
119074739.5
119112338.6
118558303.6

Throughput SD

1435244.624
1099476.623
1775080.445

1196041.28
1274647.738

1433044.25
2101961.334

718702.298
2235970.311
2094651.531

903856.609
1964048.968
1060578.947
1179273.101

Throughput SD

816434.957
541699.452
392661.017
1336658.26
530947.712
581985.825
1101095.928

Throughput SD

1045183.748
863318.596
345219.298
819653.202

1245026.195
672637.849
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For Extended Fibonacci Cube XFC; with faulty nodes only.
Simulation duration is 60 seconds.

Dimension
18
18
18
18
18
18
18

EN

o0k WNPEO

Collective data for

Dimension

© 00 ~NO O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

© 00N O O

10
11
12
13
14

m
2z

P PFRPFRPPPPPPPOOODOCOOOO0OO0O0OO0COO0COO0OOOODO

MALatency
261.356
258.198
259.587
259.561
257.964
260.374
257.031

AL SD
5.957
2.785
2.886
2.207
5.649
4.093
6.869

Mthroughput
57534241.64
57444466.25
57502706.45
57398983.78
57688070.44
57366672.28
57740320.65

Throughput SD

425847.624
333138.835
305976.943
249533.696
1426735.889
220644.97
559855.318

regular Fibonacci Cube. Simulation duration is 60 seconds.

EL
0

e elNeoleolNeololololololNolNolololololololNeolololololNolNolNolNolNe]

MALatency
5.731
7.807
9.992
13.08

16.095
16.455
20.155
32.974
54.566
87.058
114.863
151.413
190.072
232.201
275.059
303.067
289.345
242.265
189.133
5.841
7.351
10.145
13.292
16.739
16.5
21.529
33.45
55.81
87.192

AL SD
0.212
0.279
0.305
0.296
0.521

0.35
0.406
0.449
0.979
1.752
2.767
3.259
3.628
3.315

4.76
5.738

1.61
2.305
1.747
0.386

0.39
0.353
0.504
0.993
1.097
0.853
0.728
2.192
1.149

Mthroughput Throughput SD

2083902.953
2509919.394
3230724.711
4200724.86
5590315.3
6649473.716
5658421.504
3191762.076
2938218.173
3701941.373
7103450.59
13099109.48
23680371.47
43698701.97
75878409.95
112260412.5
162391187.7
243288065.4
350782433.1
1618549.516
2126026.976
2761105.574
3372483.103
4304299.715
4861723.763
4273978.892
2970892.611
2822988.235
3750585.78

39478.423
54907.034
40587.542
52155.955
50274.17
104408.736
139069.747
135310.57
100489.502
47461.994
74553.727
107931.935
404451.255
180854.325
711924.2
816434.957
2288984.601
10032688
18131088.72
72194.816
113579.376
90267.137
64298.75
195288.141
143332.959
86374.399
118091.51
81006.148
92523.637
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15
16
17
18
19
20
21
22
23

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
10
11
12
13
14
15
16
17
18
19
20
21
22
23
13
14
15
16
17
18
19
20

ADNAEADNAEADRADIDDRNOWWWWWWWWWWWWWNNNRNNNNMNNMNNMNNNNNMNNNNRRPRREPERRPRPR

el eoleoleolNeoleolololNolNolNolNeolololololNolNeolNolololololNolNeololNolNololololNeololNeololololNolNolNolololololNololNolNe]

112.604
146.284
193.371
228.362
276.543
302.155
287.889
242.436
189.254
9.834
12.962
16.481
17.117
22.314
34.379
55.788
86.611
111.645
147.621
189.557
232.7
278.776
303.922
287.411
244.045
189.183
17.602
21.675
33.061
55.599
87.865
117.009
151.481
193.618
234.779
276.977
300.991
289.744
243.417
188.369
55.289
86.307
115.346
148.617
191.644
234.495
277.937
301.532

1.456
1.068
5.441
3.619
9.206
3.766

3.68
1.367
1.425
0.457
0.365
0.726
0.447
0.807
1.836
1.207
1.384
1.548
1.313
6.229
4.317
4.242
2.429
2.868

1.89
1.294
1.981
0.657
0.945

1.47
1.621
2.888
3.376
4.854
2.631
6.405
4.642

1.73
1.349
1.149
1.597
2.557
1.603
2.178
3.571
5.669
3.948
5.531

7171639.391
13068279.02
23525662.46
43880389.04
75734875.52
111999010.1
161551742.5
241733277.3
352411767.5
2673296.987
3281306.28
4248450.497
4318529.501
3802018.538
2899333.034
2827076.315
3661348.803
7167980.838
12922902.61
23715267.72
43537637.1
76261005.38
112390575.2
162237785.1
242105643.7
351914363.9
4053731.24
3501868.693
3072415.772
2847679.812
3792607.37
7155727.834
12895748.08
23872469.42
43623510.47
75651568.99
112372574.4
160943842.6
242547865.8
351941789.4
2807826.854
3697107.437
7157687.081
13037838.15
23605535.18
43405108.42
75911122.39
112122284

89578.961
129118.695
230885.207
236422.429
333895.796
541699.452
2901851.687
9015897.691
19880373.02

121027.335

87370.985
175355.554
112847.492

67406.071
279764.286
137049.032
111057.116
303127.802
227256.572
326830.328
116949.548
549153.146
392661.017
2675653.88

8285151.7

18288048.95
381424.032
432017.043

54872.898

84563.958
127188.396
115170.834
184784.944
225886.935
628782.563

1182848.891
1336658.26
2597467.327
9674494.215
19237030.7

68066.228
169624.455
275615.391
261051.447
125514.916
208137.297
617764.067
530947.712

Page 191 of 215



21
22
23
16
17
18
19
20
21
22
23
19
20
21
22
23
22
23

© 00N Ol

10
11
12
13
14
15
16
17
18
19
20
21
22
23

oo

10
11
12
13
14
15
16
17

OO OO0 O0O0O0OO0OO0OO0D0D0D0D0DO0DO0D0D0D0D0D0DO0DO0DO0DO0ODO0DO0ODOoOON~NOOCOOOO O ULl 01Ol 01 O1O1OLEA D

NNDNNNNMNNMNNMNNMNNMNNPEPRPPRPPPPRPPPRPPRPPRPRPPRPPRPPRPRPPRPPPOOO0OO0OO0OO0OO0O0O0O0O0O0OO0OOOOODO

287.936
242.596
188.031
151.647
189.658
234.082
278.013
302.823
286.8
241.441
187.879
273.405
303.247
288.296
242.883
188.372
243.434
188.519
6.097
7.617
9.876
13.741
17.135
18.982
22.066
34.805
55.586
87.152
113.826
145.261
186.044
232.573
278.354
304.017
287.328
244.863
188.295
9.779
12.656
16.127
17.628
22.46
34.24
55.877
89.591
112.918
150.229
192.874

4.619
1.688
0.893
3.61
3.958
2.601
6.432
4.883
3.94
1.253
1.663
3.079
5.94
1.199
0.266
1.216
1.387
0.904
0.462
0.321
0.264
0.52
0.446
0.702
0.55
0.512
1.306
2.031
2.418
3.331
5.554
2.801
5.378
6.072
1.625
2.146
1.254
0.33
0.593
1.415
0.756
0.6
0.723
1.135
1.079
1.949
2.882
3.601

160748440.7
242899126.6
352360852.8
12895138.08
23711335.99
43850272.85
75747040.73
112363961.4
161293466.8
239650845.7
351191231.1
75397343.12
111776616.1
161496358.9
243473027.6
352543696.4
242832192.6
351617990.2
1726640.593
2182032.631
2738781.763
3377856.11
3933021.1
4176426.926
3494240.258
2945132.317
2873227.469
3697591.115
7085188.141
12794124.43
23519854.81
43135061.68
76279807.61
112479316.7
161746953.7
242518784.7
351867941.6
2802521.589
3518964.724
4349712.159
4176483.821
3581334.523
2961031.809
2864100.956
3692789.936
7219054.51
13095535.83
23625762.59

2047598.54
9647192.063
19045274.37
129809.399
294883.227
441577.508
727315.024
581985.825
2432747.019
9331981.02
17631945.04
964119.355
1101095.928
2356425.875
10952392.96
15539182.15
9331375.855
17437587.55
98924.5
36757.316
42109.965
28762.92
100574.699
54626.762
105971.85
123370.165
122647.05
105786.394
85301.345
167862.113
287804.907
968377.075
646134.003
1401271.608
2281468.207
8230428.261
18445606.29
119372.526
35118.731
137129.389
91787.965
89022.239
97220.94
86629.739
85996.717
159439.033
83780.784

392668.198
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18
19
20
21
22
23
10
11
12
13
14
15
16
17
18
19
20
21
22
23
13
14
15
16
17
18
19
20
21
22
23
16
17
18
19
20
21
22
23
19
20
21
22
23
22
23

eNeleoleolNeoleololNolololNolNeoloNololololNeolNeolololololNolNeololeolNolololololNolNeoliolololololNololololNolNolNe

N~Nooooooooooaoooo”rdDSBDADARAEDMMDMEAEDREDEWWWWWWWWWWWWWWDNDNDNDNDNDDNDDND

233.495
287.79
304.549
289.082
242.9
188.672
17.32
22.032
33.536
55.69
87.129
114.518
150.57
188.052
233.928
278.64
303.413
290.387
243.535
189.263
57.292
89.303
112.32
148.099
190.316
234.931
276.827
306.673
287.735
244.242
189.009
148.207
193.847
232.828
274.506
306.385
288.236
241.491
189.089
275.523
301.867
288.467
242.885
188.927
243.267
187.924

4.189
5.453
4.808
2.329
2.657
0.717
0.504
0.931
0.547
1.729
0.646
1.331

3.98
2.865
4.436
6.693
3.892
5.056
1.639
1.051
1.753

1.44
0.809
4.263
2.809
5.005
3.517
4.105
5.154
1.344
1.679
3.971
5.429
3.864

4.64
5.223
4.162
2.279
1.359
3.469
8.611
1.411
1.266
1.768
1.537
1.022

43668385.69
76274428.92
112627107.9
161944709.8
241599965.2

350587767
3711813.572
3533562.056
3019382.803
2844721.862
3721347.095
7118970.867
13052741.42
23593775.54
43451445.28
76155587.76
112228353.9
162390931.8
242304501.6
352163094.2
2788187.992
3654662.547
7174184.481
12945073.51
23817456.21
43424581.28
75686593.32
112476295.8
160781004.7
243464016.5
350583164.3
13091493.97
23797481.04
43764896.03
75819387.85

112254312
161979297.4
243080694.9
350743196.8
76123014.35
111961538.8
161668584.8

243385355
352804366.1
242964575.4
351066937.1

175002.276
593318.292
585352.334
3531325.42
9807168.625
18556023.75
546014.565
53993.652
135932.695
65727.717
59245.802
144171.111
166682.883
362548.149
738088.005
501383.903
969003.748
3430973.882
8608072.177
18593234.63
59873.767
145141.466
247667.038
75679.358
362849.662
374666.141
211857.105
775496.677
4558053.091
12076438.39
15822572.61
252983.409
310887.189
196767.528
516854.958
426331.319
1634858.237
9227651.419
14963819.5
946650.689
1357248.707
2459544.243
9457780.62
18667659.5
10349595.84
19037467.13
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Collective data for Enhanced Fibonacci Cube. Simulation duration is 60 seconds.

Dimension
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6.118
7.754
10.56
14.422
19.084
19.623
26.128
44.148
78.206
113.292
155.442
202.393
274.073
347.074
390.71
383.481
312.276
246.282
571
8.204
10.208
13.265
18.327
20.713
25.916
42.068
78.27
115.706
152.267
209.334
270.691
346.876
389.226
385.027
314.34
247.042
11.133
14.65
19.084
20.871
25.628
43.028
76.712

AL SD
0.334
0.153
0.249
0.634
0.423
0.302
0.493
1.543
1.528
1.345
3.533
4.199
2.346
7.622
7.771
5.161
2.172
2.134
0.233
0.551
0.404

0.53
0.438
0.905
0.722
0.482
1.757
1.572
1.944
5.279
2.291
6.341
4.438
3.376
0.896
1.762
0.398
0.514
1.056
0.834
0.228
0.732
2.691

Mthroughput Throughput SD

1867121.121
2282489.291
3092194.369
3649553.66
4574387.498
4071091.475
4620221.082
3512369.454
4530388.221
6578548.289
14938441.68
23031271.55
48805511.77
74274771.66
118787792.3
156077315.7
251850034.3
344473927.4
1806157.496
2274568.786
3076542.438
3623835.395
4555702.767
4152025.833
4585471.892
3642861.426
4393053.915
6441498.929
15046982.34
23003218.71
48922694.62
73737042.87
119188267.7
155825532.7
249601221
344035808.4
2771060.221
3528522.659
4433637.198
4062656.006
4598448.576
3598269.413
4262932.036

32300.797
104697.344
45348.138
46371.699
40678.36
58355.813
132135.598
80139.695
188164.791
109678.648
208868.714
276336.661
270534.491
172534.607
1045183.748
1477467.015
12029546.57
20065672.56
69316.26
68934.367
86355.255
93915.813
85419.56
182298.417
80212.826
115700.707
109338.073
157801.34
203165.737
177685.27
199340.486
354749.655
863318.596
1769757.061
7778148.909
18404266.83
107246.006
63827.118
227404.401
224152.334
150059.556
92982.134
68213.402
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111.339
153.825
202.543
277.992
345.463
389.36
383.166
314.969
246.796
26.426
42.891
75.908
112.416
152.845
208.456
275.9
346.384
389.487
380.408
313.956
246.449
156.31
206.398
274.663
344.365
389.874
382.306
314.385
246.371
390.34
383.077
314.231
245,701
5.913
8.454
10.314
14.105
18.817
20.157
25.427
42.895
78.235
112.703
152.969
211.559
271.56
347.174
391.082

0.988
1.334
5.096
7.182
10.003
6.259
3.139
1.242
1.627
1.042
1.204
3.086
1.531
2.237
6.422
2421
7.898
6.328
3.562
2471
2.823
3.007
5.587
5.086
4.659
8.033
7.16
1.608
3.922
9.299
2.094
2.089
3.081
0.606
0.157
0.329
0.305
0.4
0.325
0.462
0.853
0.601
1.924
1.905
571
4.735
4.646
3.139

6559022.755
14930533.78
22896998.21
48969139.38
73669825.81
118588758.3
156490431
249694022.6
343678362.9
4133120.75
3574800.007
4873139.713
6539897.814
15017944.48
22967991.32
48962135.26
73936986.34
119074739.5
155081077.5
250556457.7
342505667.2
14834361.69
23057417.98
48863649.37
73784511.28
119112338.6
155713921.5
250967736.2
343893082.2
118558303.6
156335015.9
250423555.3
345318373.1
1738072.97
2128601.381
3030071.585
3712643.842
4589546.343
3920837.921
4383760.221
3511298.085
4421358.734
6550176.688
14870029.12
22865480.7
48709198.79
74148256.74
118899222

80519.54
91939.792
276669.631
297260.358
684904.337
345219.298
1662560.385
9597898.654
17699673.98
755453.876
150248.202
733733.12
214966.603
158367.045
91091.56
289153.107
188041.717
819653.202
1991664.857
8478897.847
20639260.24
174277.391
237013.718
315978.506
486207.859
1245026.195
1206456.477
7878142.644
15642781.34
672637.849
2237025.259
10536274.42
14166987.47
54078.904
57988.136
35245.483
68783.47
145671.878
67124.555
104734.372
94526.91
92258.085
154399.633
149333.778
181100.807
356366.441
467713.211
373324.041
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381.917
313.457
246.09
10.861
15.161
20.597
20.915
26.315
43.356
79.142
113.31
154.629
204.266
275.528
347.004
393.537
383.687
314.682
246.645
27.622
44571
77.243
112.682
151.975
206.454
272.376
344.358
394.308
382.58
313.468
246.389
156.033
199.774
270.988
343.493
390.904
384.115
314.838
245.821
390.806
382.057
312.647
245.92

4.058
2.209
4.139
0.463
0.417
0.891
0.63
0.588
0.808
1.361
1.789
0.897
4.345
6.063
6.016
3.98
3.15
1.553
1.588
0.513
0.967
1.586
2.115
2.888
4.427
4.855
7.897
2.715
1.863
2.54
4.667
2.155
6.628
1.392
6.995
8.031
5.605
1.682
3.64
15.652
1.05
2.212
2.193

156285886.8
250591097.2
343276434.8
2814787.708
3613595.657
4056322.533
3660536.852
4637002.448
3532656.083
4467803.84
6512454.05
14996845.95
22998459.83
49273206.53
73913898.29
119019819.5
155959662
250923979.6
346237730.9
4111040.053
3401995.803
4410671.022
6656273.537
14950240.91
22983022.88
48783163.68
73917757.8
118612891.1
156519151.8
250977576.2
343592958.9
14610265.86
22947311.83
48830965.89
74185642.88
118380790.8
156363799.5
250898967.1
344261416.4
118847907.8
156022912.9
250825025.8
344638066.7

1646609.492
9896198.119
18627791.84
134346.328
77756.136
100120.965
101170.579
174019.213
80737.812
140991.044
154709.263
77816.02
364659.954
333990.466
1628582.269
459906.788
1495539.401
11023890.63
19729948.56
419462.646
106968.962
113806.882
103666.951
180415.723
128445.298
504878.403
413888.247
241032.091
1779986.328
9411008.265
16184394
318944.431
261322.581
307736.668
566054.476
331526.558
1741559.548
8157147.348
21121078.05
1102955.553
1447976.38
7926472.788
19158723.89
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Collective data for Extended Fibonacci Cube XFC;. Simulation duration is 60 seconds.

Dimension Subscript
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MALatency
263.198
299.232
293.774
261.356
213.803
165.983
132.692
102.635

70.684
41.716
25.031
19.643
16.449
13.589
10.506
8.398
6.111
265.219
296.97
293.887
258.198
215.471
167.814
134.265
100.534
70.75
40.924
24.75
19.234
16.534
13.743
10.714
7.885
6.091
265.971
299.762
292.358
259.587
210.825
169.772
132.692
102.837

AL SD
2.144
1.542
2.818
5.957
3.865
3.745
1.857
2.163

1.9
0.815
0.312
0.232
0.483
0.435
0.525
0.441
0.548
3.161
2.504
1.872
2.785
4.197
3.105
1.759
0.458
1.362
1.132

1.21
0.312
0.351
0.588
0.189
0.217
0.224
1.285
2.077
2.463
2.886
3.521
4.991
2.691
2.337

Mthroughput Throughput SD

200622752.2
133804007.5
93071257.8
57534241.64
31539444.04
16699058.48
8988125.719
4735510.016
3192470.325
2714505.551
3275873.753
4164382.708
4091118.929
3763136.654
3022916.698
2544305.343
1997666.045
199088120.6
133436741.5
92905390.07
57444466.25
31525904.34
16841782.87
9088189.582
4783634.634
3236308.469
2706430.195
3481050.429
4155260.1
4350247.757
3704667.997
3059107.766
2495627.764
2052280.149
200331426.7
133444323.9
93298069.21
57502706.45
31619763.34
16732718.49
8940323.215
4807856.749

7332553.462
822463.41
338624.828
425847.624
127224.894
123745.832
187721.677
68645.701
87453.553
73940.93
43656.724
25607.429
102616.141
61615.341
40881.233
68773.57
129741.239
7303813.555
771502.698
1351086.941
333138.835
249118.385
237712.569
157547.852
277797.116
117527.675
45522.29
737040.567
83642.79
72987.535
118894.186
59656.619
29566.618
66398.359
6732831.867
878399.877
533850.245
305976.943
230008.725
183719.05
117265.276
81899.904
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70.127
41.236
24.933
19.363
17.199
14.096
10.463
7.756
6.256
265.262
296.77
294.193
259.561
210.228
171.007
133.238
102.363
68.799
41.952
24.405
19.434
17.385
14.669
266
296.992
292.927
257.964
211.891
165.688
131.462
102.64
67.502
41.317
24.709
265.047
296.934
292911
260.374
214.567
168.595
131.737
102.002
266.969
297.524
292.98
257.031
217.06
266.117

1.916
1.931
0.264
0.796
1.136
0.481
0.463
0.362
0.377
4.414
1.682
2.314
2.207
3.894
2.464
1.655
2.097

1.66
0.812
1.378
1.013
1.334
0.286
3.273
2.113
2.508
5.649
4.025
3.052
1.222

1.61
0.968
1.191
0.814
3.059
3.088
4.067
4.093
2,777

4.15
1.697
2.825
1.374
1.572

1.61
6.869
3.138
1.682

3131084.288
2918028.031
3314056.278
4149873.43
4550593.055
3758240.471
2949211.73
2513267.792
1901078.027
199684343.4
133274466.3
92832158.88
57398983.78
31315760.46
16590856.54
9043464.201
4789679.141
3263554.472
2796851.13
3519281.432
4285503.26
4710003.484
3950009.379
200881711.6
133419870.7
92883316.93
57688070.44
31475005.84
16768644.21
8905400.523
4776977.777
3159847.425
3572525.236
3547430.753
201178621.7
133606854.8
92802440.8
57366672.28
31545974.96
17003736.79
9017893.049
4980801.951
199302577.7
133976585.7
93147551.45
57740320.65
31522824.11
200664295

71053.123
737677.167
523110.038
250568.257
228117.283
118674.347

42588.169

40896.691

77532.58
7468818.212
1366219.362

574327.548
249533.696
290424.634
333729.919
152959.693

70501.799

68176.457

81633.806
768508.652
397783.673
272999.955
188964.102

7309829.236
1229102.729
229330.581
1426735.889
361711.042
149272.382
155797.718

26544.413
366031.919
471813.232
334499.955

8274876.642
666252.068
920262.299

220644.97

189719.366

318931.2
309165.247
316371.054
7297633.83
1177269.866

627383.95
559855.318
460011.848

6536290.811
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300.143
265.572
297.015
294.224
255.241
208.725
168.918
132.915
99.754
70.186
40.987
24.418
19.422
16.275
13.609
11.101
8.498
6.005
265.967
295.156
292.187
257.205
212.226
168.068
133.163
102.299
69.697
40.487
24.952
19.666
16.683
13.677
10.696
8.305
6.449
264.61
297.657
293.128
256.248
212.189
173.482
132.887
101.812
68.596
41.719
24.598
19.421
16.637

1.94
2.172
2.151
3.016
1.876
5.344
4.693
2.042
2.007
1.208
0.853
0.263
0.301
0.262
0.742
0.359
0.226
0.461
1.687
3.415
1.405
4.534
1.638
3.747
1.653
1.638
1.967
0.353

0.37
0.898
0.834
0.194
0.207
0.469
0.497
2.163
2.243
2.175
1.703
1.858
6.424
0.998
2.216
1.659
1.012
0.615
0.267
0.377

132977548.1
199385330.5
133627413.9
92647415.64
57350700.07
31796454.76
16724094.66
8991897.849
4776551.37
3202758.981
2716972.14
3329010.302
4359067.714
4450664.645
3905100.304
2964917.13
2445427.197
2026803.782
199600120.9
134119309.3
92992569.53
57560594.59
31203823.75
16691231.79
8997325.64
4740069.734
3169418.418
2719432.101
3193031.031
4100552.058
4485865.045
3791233.691
3052559.3
2570836.011
2121097.91
199448640
133299337.4
93308591
57419114.64
31243565.65
16875165.17
9003571.707
4841758.091
3306859.903
2727866.412
3179344.055
3933510.969
4134940.935

609171.502
5733065.957
1255472.491
665297.084
422341.553
460435.078
99699.997
133163.856
125197.212
36236.102
33192.018
31272.175
115008.857
85206.181
89791.69
37992.225
57025.154
72590.5
5273566.624
884143.156
297372.361
613404.955
323857.221
135221.991
93368.63
68881.209
59662.239
51808.733
38434.247
364657.107
279743.274
76439.006
48833.829
40704.135
39028.761
5780222.65
1238084.378
800260.93
340689.725
389286.49
156700.73
187107.415
117702.954
66659.529
60890.266
42413.222
118726.283

122416.438
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13.833
266.315
297.983

295.06
258.236
209.739
165.187
131.898
103.619

69.624

41.893

24.457
266.437
296.127
293.935
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Collective data for Gaussian Cube GC(n,2* ). Simulation duration is 60 seconds.
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APPENDIX VI
A New Approach to Routing in Hyper cube
Based on Fuzzy Neural Network

VI1.1 Two architectures of decision-making using Fuzzy Neural Networ k

There are two ways to use Fuzzy Neural Networks (FNNs) for decision-making. The
first is called implicit system, in which all possibly related information is fed into the
FNN. Then the FNN outputs the result of decision. For example, in the area of financial
market decision-making, the architecture of implicit trading isillustrated in Figure V11.1.

current price —|
last high — implicit
lastlow — trading —— buy or sale
other
aspects FNN

Figure VI1.1 architecture for implicit trading

The second architecture is called explicit processing. Here FNN is used only as a
component while traditional algorithms are also incorporated. Figure VI1I.2 and VII.3
show examples of this explicit processing system.

current price A
last high '
|ast low processing with
' FNN
other
aspects
B:
traditional trading lz)ury
algorithm sale

Figure VI1.2 one architecture for explicit trading
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current price

) A:
last high
last low traditional trading
other : agorithm
aspects :

B: buy
processing with or
FNN sale

Figure VI1.3  another architecture for mixed explicit trading

Here, | stands for the intermediate results produced by A, and inputted to B. Inthis
trading example, | may encompass the prediction of the price of one hour later or three
days later.

Actually, the mixed structure reflects a decomposition of the original problem. Some
tasks can be efficiently done by FNN, especially learning and predicting. However, some
other jobs maybe more suitable for traditional approaches. A casein point islearning
bitwise XOR operation, on which most existing routing algorithms depend. It can be
easily proven that for learning the XOR function between two n-bit binary numbers or
two decimal numbers both ranging from 0 to 2"- 1, FNN must use O(2") rules. However,
this function can be realized by hardware in one clock cycle. So by carefully and
properly dividing tasks into different functional components (A or B), the original
problem can be solved far more efficiently than purely using FNN or traditional
algorithms.

VI1.2 Design of input and output of FNN

If the explicit architecture is to be adopted, then the first challenge lies in the
decomposition of the task. What is to be done by FNN and what is supposed to be done
by traditional algorithms? What is the proper interface? From the angle of FNN, these
guestions are equivalent to what is the input and output of FNN.
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As the space and time cost for gathering global information is too high and such
information is too intractable for FNNs, it is more feasible to use local information. One
type of such strategy is to base the routing decision solely on the status of links incident
to current node. For binary hypercube, this simple strategy can achieve good
performance [6]. A more far-sighted approach is to take into consideration the status of
the links incident to all of the current node’s neighbors. We call it 1-hop look-ahead. For
example, in Figure V1.4, the routing decision made at P not only incorporates the status
of linksfromPto A, B, C, and D, but also considersthe status of ey, &, ..., €.

Figure VII1.4 lllustration for 1-hop look-ahead approach

So for each packet that arrives at P, say from A, P uses a new metric M to compare all the
possible outlet ports. This metric is based on B, C, and D’s link status, packet destination,
and encoded history that helps to avoid deadlock and livelock. M can be a tuple of
several crisp values or fuzzy values, or combination. If we view the crisp values as fuzzy
values in the form of singleton, then M is actually a set of fuzzy values. This process is
also known as feature selection. It helps to reduce the number of total factorsthat require
to be considered in the next step of comparison. The number of final rules will also be
reduced significantly (possibly exponentially) with this horizontal reduction.

With regard to comparison, as we are only interested in the best alternative, there is no
need to rank all neighbors according to their corresponding M and pick up the highest one.
That approach costs time complexity O(nlogn), where n is the network dimension.
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Instead, only O(n) comparisons are needed to derive the best one. This comparison is
suitable for FNN. The mechanismisillustrated in Fig. VII.5.

VII.3 Choiceof M

M for neighbor Ny - Oif Ny ispreferred
— 1 FENN L 1if Nyispreferred

M for neighbor N, 2 if Ny and N, are equally preferred

Figure VI1.5 mechanism of comparison by FNN

The choice of M is critical for the whole strategy. It can not include any binary value (or
its corresponding decimal value) related to node address. Otherwise, the number of rules
will inevitably grow exponentially with network dimension.

It should also be applicable to al kinds of fault distributions. It isour goal that one fuzzy
neural network be used for evenly distributed faults, concentrated faults and other types
of distribution. So for different underlying fault distributions, different parts of the rule
base in FNN are to be fired so that the system has adaptivity to fault distribution. This
requires that the input of FNN under different fault distribution types should also be
sufficiently discriminable.

Lastly, M should contain or encode enough information that can ‘deduce’ the result of
comparison. One possible design is to introduce three fuzzy variables called optimistic
distance, pessimistic distance and neutral distance from respective neighbors to the
destination. Such fuzzy values are calculated based on the neighbors’ address, packet
destination and the status of links incident to the neighbor. For example, the membership
function for the three fuzzy variables might be like Figure V11.6:

Page 209 of 215



1 _——_—_e—ee—ee,_—_— e—_— e, e, e, e —,ter——— —_t—_—E e, e, e, e—,e—_—,,te,_—,—,, e e e e — -

distance

Figure VI1.6 membership function of possible fuzzy variables

Vil.4 Generating training examples

As the routing strategy is based only on the information of connectivity within 2 hops’

distance, there is no point in allocating a faulty component over 2 hops away from current

node. In other words, if we are focusing on node 0" (n sraight 0’s) i.e. collecting training

examples by examining routing decisions at 0", then we can locate all faulty nodesin S=
n-1

{a,,8, .43 |al {013 foril [0,n-1] and § a £2} with al faulty links in S” S.
i=0

Otherwise, the training example set will be inconsistent.

Start off simulating the network communication and focus on the packets arriving at node
0". In Figure 5, M for N; and N, are easily available. Whether N; or N, is preferred is
decided by applying Dijastra’s shortest path algorithm. If they are not equally preferred,
then we can exchange the M for N; or N, and exchange the result of preference. Thus

one example can be made use of twice.

VII.5 Combining FNN and traditional algorithms

The whole picture of the routing strategy is as follows. Each node maintains an n-bit
fault vector F that records the status of local links. If the link on the corresponding
dimension is faulty, then the corresponding bit in F is 0. Otherwise it is 1. The packet
overhead is composed of the destination address and an n-bit traversal vector DT. At the
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source, DT is set to draight 1's.  Whenever a preferred dimension is used, the
corresponding bit in DT is masked to 0. And all dimensions masked by O in DT can not
be used as spare dimensions any more. When a packet is received, the router calculates
the optimistic, neutral and pessimistic distance from all neighbors to the packet’s
destination, except those that are faulty (as is recorded in F) and those that are masked by
DT. Finally, FNN is used to determine the best outlet port.

VII.6 Problems

The major problem here is that there has already been saturated research in this area of
network routing. One algorithm uses the similar strategy [4]. It first examines non-faulty
preferred dimensions. If there are more than one preferred dimensions available, then it
chooses a neighbor on a preferred dimension that has least faulty incident components. |f
there is no non-faulty preferred dimension, then it chooses a neighbor on a spare
dimension that has least faulty incident components. Rigorous theoretical deduction is
available to demonstrate that this algorithm generates deadlock and livelock free routes.
It also has a route with strictly bounded length and the message overhead and time for
making routing decision are both O(n). It is very easy to be physically implemented. So
it has already provided a set of rules and choice of M that are applicable to hypercube and
its symmetric variants with satisfactory performance.

Let us go back to the motivation of using FNN. We adopt it with an eye to deriving a
unified or generalized routing strategy for as many variants of binary hypercube as
possible. However, without considering binary address, the current approach to using
FNN is not suitable for asymmetric networks, which is the majority of hypercubic

variants.
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Appendix VIII User’s Guide

This guide includes the usage of software smulation tool and introduces the source code
of FPGA implementation written in Handel-C.

VI Using softwar e simulation tool

The simulation tool is called SimuRt. It can simulate three types of Fibonacci-class Cube
and Gaussian Cube. There are two things to be specified before running simulation:
parameters in the code and testing cases in the input file.

VIl1.1 Setting parameters

The following parameters must be set according to the computer platform and testing
objective:

#define PENTIUMSPEED  2048.0
It is defined in file Structure.cpp. It specifies the speed of CPU. The unit is MHz.

#define BUFFER_SIZE 10
It is defined in Common.h. The influence of BUFFER_SIZE on the simulation result is
discussed in Chapter 8.

#define NO_READINGS 5
Defined in Common.h, it specifies how many rounds of test are carried out for each
testing case.

VII.1.2 Input file

It is driven by an input file, in which all the testing cases are enumerated and the
simulation is run on a batch mode. The input file is named as “input.txt”. It should be
placed in the same directory of the executable file. If running under Visual C++, then it
should be placed in the working directory (specified in Project:\\settings\Debug\Working
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Directory). For example, if the input file is as follows:
Begin
1 15 2 3 1 500 60
13 3 0 1 500 50
11 10 5 2 1 500 60
11 3 1 500 60

o b~ WN

then

‘Begin’ means the beginning of testing cases. All characters before ‘Begin’ are filtered
so that it is possible to add some comments at the beginning of the file as long as the
string ‘Begin’ does not appear in the comments.

Line 1: ‘1’ means the testing case is for regular Fibonacci Cube. ‘15’ means the
dimension is 15 (strictly speaking, it means we are testing a regular Fibonacci Cube of
order 17). ‘2’ means that the number of faulty nodesis 2. ‘3’ means that there are three
faulty links. ‘1’ means that packets are generated according to even distribution. ‘500
means that the hop time is 500ns. ‘60’ means that the simulation runs as long as 60
seconds.

Line 2: ‘2’ means the testing case is for Enhanced Fibonacci Cube. ‘13° means the
dimension is 14 (strictly speaking, it means we are testing an Extended Fibonacci Cube
of order 15). ‘2’ means that the number of faulty nodesis 3. ‘O’ means that there is no
faulty link. ‘1’ means that packets are generated according to even distribution. ‘500
means that the hop time is 500ns. ‘50’ means that the simulation runs as long as 50
seconds.

Line 3: ‘3’ means the testing case is for Extended Fibonacci Cube. ‘11’ means the
dimension is 11 (strictly speaking, it means we are testing an Extended Fibonacci Cube
of order 13). ‘10’ means that the subscription is 10. So we are teting XFCyo(11). ‘5’
means that the number of faulty nodesis5. ‘2’ meansthat there are two faulty links. ‘1’
means that packets are generated according to even distribution. ‘500’ means that the
hop time is500ns. ‘60’ means that the simulation runs as long as 60 seconds.
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Line 4. ‘4’ means that the testing case is for Gaussian Cube. ‘11’ means that the

dimensionis 11. ‘3’ meansthat the M = 2°. So we are testing GC(11, 8). ‘0’ means that

there is one faulty node. ‘500° means that the hop time is 500ns. ‘60’ means that the

simulation runs as long as 60 seconds. Now we have only implemented having one

faulty node and no faulty link (see: void CGaussianCube::BuildFault()). The faulty node

isfixed as 00...0, where n is the dimension of the Gaussian Cube. The program has
o

provided two functions to add faulty nodes and faulty links respectively:

void CGaussianCube:: AddFaultyNode(unsigned address)

void CGaussianCube::AddFaultyL ink(unsigned addressl, unsigned address?2).

The only task left isto design and interface so that faulty links and over one faulty node
can be added to the network.

Line5: ‘0’ stands for the end of the input file. The user can add comments after this line

and these characters will not be processed.

VII1.3 Output file

There are two output files:

Regular Fibonacci Cube RegOutput.txt RegTable.txt
Enhanced Fibonacci Cube EnhOutput.txt EnhTable.txt
Extended Fibonacci Cube ExtOutput.txt ExtTable.txt
Gaussian Cube GaussianOutput.txt GaussianT able.txt

TableVIII.1 output files of simulation

These files are automatically created. If they exist before running the simulation, then the
results will be appended to the file. The XOutput.txt records the result for each reading
of one testing case. XTable.txt records the datistical result for each testing case by
processing the result of all readings. In the batch mode, this provides a succinct

presentation of result.
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VIII.2 FPGA implementation with Handel-C

Very detailed comment has been added to the source code of both programs. Macros are
extensively used in the programs so that it is very easy to change the dimension of the
network, which is controlled by a macro called Num_Bits. Some other macros also need
to be modified if a new Num _Bits isused. Please refer to the comments in the source
code. Equations of calculating these macros are given in detail.

A useful programming skill is using conditional compiling. This makes it possible to
switch the source code between Debug mode and EDIF mode by only commenting out or
releasing ‘#define MYDEBUG’. If this macro definition is released, then the code is for
Debug mode. If it is commented out, then the code is for EDIF mode. Likewise, if
‘#define FINAL’ is released, then the router’s input and output are fixed and the router
eliminates all the gates needed for controlling Flash Memory that stores testing cases and
results. However, with regards to fuzzy router, rules are stored in Flash Memory, it is
impossible to completely exclude gates used for controlling Flash Memory. Thus the
comparison of number of gates between classical router and fuzzy router is not on a fair

ground. In other words, the comparison is not based only on the complexity of logic.

In the Debug mode, the testing files are transferred to the Flash Memory of RC100 board
beginning at address READ_START_ADDRESS. The results are stored in the Flash
Memory starting at address WRITE_START_ADDRESS. The rules are stored from
address RULE_BASE.

To generate the circuit diagram, we need to use Schematic Editor. It is atool of Xilinx
Project Manager. Choose File: \\Generate from netlist. Then choose the .edf file. The
Schematic Editor will automatically generate the circuit graph. However, errors occur
frequently because .edf file is generated by DK 1, a product of Celoxica Ltd, while Xilinx
is another company. So there are some discrepancies and small modifications on .edf is
necessary for successful conversion. Some technical problems can be solved by posting

them in Xilinx’s forum. The circuit generated in put in the CD attached with the report.
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