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I  

ABSTRACT 

Highly parallel computers are playing a central role in high-performance computing.  In addition to 

network topology, reliable and efficient message routing is becoming increasingly critical with the 

rapidly growing system scale.  Although many fault-tolerant routing strategies have been proposed 

for various specific networks, there lacks a general algorithm that applies well to a wide variety of 

topologies. 

 

Fuzzy Neural Networks (FNNs) are a group of hybrid systems that incorporate fuzzy logic into 

Artificial Neural Network (ANN) architectures.  The fuzzy characteristic provides interpretable 

human-like IF-THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy 

systems by deriving membership function and/or rule base automatically.  These traits make FNN a 

promising tool for designing efficient general-purpose routers and the feasibility and difficulties are 

explored in the project. 

 

On the other hand, research in traditional routing algorithm is still not complete enough to encompass 

all interconnection networks.  Due to sparse connectivity and low node availability, there is no 

existing fault-tolerant routing strategy for node/link diluted hypercubic networks.  Among these 

networks, Gaussian Cubes (GCs) use a common parameter to link the interconnection density and 

algorithmic efficiency.  The variation of it can scale routing performance according to traffic loads 

without changing the routing algorithm.  Fibonacci-class Cubes use fewer links than the 

corresponding binary hypercube, with the scale increasing slower, allowing more choices of network 

size. 

 
To make these types of networks with such desirable properties more fault-tolerant, the project 

investigates the approaches of divide-and-conquer and fault classification so as to tolerate more faults 

than node availability.  To facilitate our discussion, a new type of interconnection network named 

Exchanged Hypercube (EH) is proposed.  It reduces the number of links to only 1/n of binary 

hypercubes with the same number of nodes (n is the network’s dimension) with little lose of structural 

advantage.  New auxiliary topologies are also proposed for illustrating EH’s desirable emulation and 

communication properties. 

 
Finally, as a new prototype for efficient simulation of incomplete networks, a software simulator is 

built and the results about the performance of our algorithms are shown to be reasonable.  FPGA 

implementation is also completed to demonstrate the feasibility of physical manufacture. 
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Chapter 1  Introduction 
 

1.1 Background 
 

With the growing demand for high-performance computing power in more and more 

software applications, highly parallel computers have attracted increasing interest in 

recent years.  Multicomputers, which are based on message–passing for interprocessor 

communications, can scale up to hundreds of thousands of processors, providing the 

capability of massive parallel processing.  Hypercube Multicomputers [37], considered 

one of the most extensively studied topology due to their structural regularity, easy 

construction and high potential for parallel execution of various algorithms, have been 

used in several experimental and commercial machines including NCUBE-2 [35] and 

Intel iPSC [36].  Many variations of the hypercube topology have been proposed to 

improve certain parameters, such as diameter, node degree, emulation and 

communication efficiency, etc [1][12-15][39- 43][52][53]. 

 

Unicasting, the focus of this project, is a one-to-one communication between a source 

node and a destination node.  Unicasting in fault-free hypercubes and its variations have 

been extensively studied in [44-47].  As in [54], when the scale of parallel computer 

systems grows, the probability of component failure  (processors and/or links) increases.  

Reliable and efficient message routing is thus becoming more and more critical, requiring 

the routing algorithm to be capable of tolerating high probability of component failures.  

There have been a number of fault-tolerant unicasting schemes proposed [6][19][48-51]. 

 

In designing fault tolerant communication strategies in large networks, there are many 

issues deserving special attention.  Firstly, besides having fault-tolerant mechanism, an 

adaptive routing algorithm, which makes more efficient use of network bandwidth and 
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provides resilience to failure [54], is also necessary for routing in faulty communication 

networks.   
 
Secondly, besides reliability, efficiency is also an important consideration.  As in [55], 

the fault-tolerant communication mechanism should not degrade the performance gained 

by parallelism and at the same time guarantee delivery of messages to their destinations 

in the presence of faulty network components.  It also should not incur message routing 

overheads in a fault-free network.   

 

Thirdly, scalable and space efficient schemes [33][34] should be used.  A fault tolerant 

routing algorithm should not require excessive space to store status information in the 

network.  It should maintain or update status information efficiently so as to ensure high 

performance under fault-free condition, be free from deadlock and livelock, and 

guarantee specified levels of reliability and efficiency in its performance. 

 

 

1.2 Purpose of Project 
 

A large variety of interconnection network topologies have been proposed, each with its 

possible unique fault-tolerant routing algorithm.  However, there is no general algorithm 

that can apply to all types of topologies.  In the exploration of a general-purpose router, 

the technology of Fuzzy Neural Network (FNN) is looming as a promising tool.  FNN is 

equipped with outstanding learning and clustering capability that have found successful 

applications in many areas.  It can also provide human-like interpretable rules that 

overcome the problem of black-box in ordinary artificial neural networks.  In this project, 

efforts are taken to evaluate the potential and feasibility of fuzzy logic routing, to 

investigate the possibility of unifying the membership functions and rules learned from 
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different topologies of networks.  In the best case, framework of software tools is to be 

studied so as to measure and compare the communications performance of fuzzy logic 

routing against existing fault-tolerant routing strategies. 

 

On the other hand, even in the realm of classic fault-tolerant routing strategies, there is a 

void for link/node diluted hypercubic networks.  The intrinsic problem lies in the sparse 

connectivity that brings about susceptibility to the occurrence of faults.  Attracted by their 

other desirable properties, we attempt to design fault-tolerant routing algorithms to make 

Gaussian Cubes and Fibonacci-class Cubes more fault-tolerant topologies.  Later on, 

these algorithms will be implemented by software simulator and FPGA, so that their 

performance can be benchmarked and the feasibility of physical manufacture can be 

assessed.  If fuzzy routing is proved a practicable approach, the simulation result of the 

performance of both FNN and classic methods can be compared as well. 

 

 

1.3 Objectives 
 
In order to fulfill the purpose of the project, the following objective are defined: 
 

• To explore fuzzy neural network applied in network communications. 

• To design a fault-tolerant routing algorithm for Gaussian cube. 

• To design a fault-tolerant routing algorithm for Fibonacci-class Cubes. 

• To propose a new interconnection topology:  Exchanged Hypercube. 

• To write software simulation tools for implementation and benchmark. 

• To implement the routing algorithm of Fibonacci-class Cubes and fuzzy routing 

strategy on FPGA with Handel-C. 
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1.4 Overview of Report Organization 
 
The report is organized into 10 chapters. 
 
In Chapter 2, the preliminaries of fault-tolerant interconnection network routing are 

presented.  Basic terms are defined and the requirements for the routing algorithm in 

question are also given. 
 
In Chapter 3, the fundamentals of Fuzzy Neural Network (FNN) are reviewed.  The 

possibility and difficulty in applying FNN to the interconnection network routing are 

explored. 
 
In Chapter 4, a new fault-tolerant routing strategy is presented for Fibonacci-class Cube.  

We also designed a generic approach for cycle-free routing. 

 

In Chapter 5, a new interconnection topology named ‘Exchanged Hypercube’ is proposed 

based on link dilution from binary hypercube.  Its structural features and emulation, 

communication properties are discussed. 

 

In Chapter 6, a new fault-tolerant routing strategy for Gaussian Cube is described.  The 

major merits and general significance are emphasized. 

 

In Chapter 7, a software simulator is constructed to test the performance of the two fault-

tolerant routing strategies presented in Chapter 4 and 6.  The architecture and many 

features of the simulator are discussed. 
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In Chapter 8, the simulation results are illustrated.  Detailed analysis is also carried out to 

investigate the result, including comparisons between different topologies and some 

seemingly irregularities. 

 

In Chapter 9, we discuss the FPGA hardware implementation of the routing strategy 

proposed in Chapter 4, as well as routing with fuzzy neural network.  Many suggestions 

are listed for future development. 

 

Chapter 10 concludes the report with discussion of findings in this project and provides a 

recommendation for future work. 
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Chapter 2  Preliminaries 
 

2.1 Communications network 
 

For many parallel applications, the interconnection network determines overall 

performance [58].  The most commonly used topology is binary hypercube.   

 

An n-dimensional hypercube can be modeled as a graph ),( nn EVG , with the node set Vn 

and edge set En, where n
nV 2|| = , 12|| −= n

n nE .  Each node represents a processor and its 

memory.  Each edge represents a communication link between a pair of processors.  The 

2n nodes are distinctly addressed by n-bit binary numbers, with values from 0 to 12 −n .  

Each node has links at n dimensions, ranging from 0 (lowest dimension) to 1−n  (highest 

dimension), connecting to n neighbors.  An edge connecting nodes u and v is said to be at 

dimension j or to be the jth dimensional edge if their binary addresses u and v differ at bit 

position j only.  Figure 2.1 shows a 4-dimensional binary hypercube. 

 

 
 

Figure 2.1  4-dimensional binary hypercube (16 PEs) 
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The length of a path is equal to the number of links contained in the path.  The distance 

between two nodes u0 and ud is equal to the hamming distance between their binary 

address, denoted by H(u0 , ud).  A path between u0 and ud is called an optimal path if its 

length is equal to the distance between the two nodes.  A shortest path is a path of 

minimal length among all possible paths between the two nodes when constrained by the 

presence of faulty components.  A shortest path may or may not be an optimal one.   

 

2.1.1    Switching Techniques 

Switching refers to the means of transferring a packet from the input channel to the 

output channel.  Four switching techniques, store-forward, circuit switching, wormhole 

routing and virtual cut-through, are discussed here.  The choice of switching technique 

has a great bearing on the network performance, especially on deadlock and livelock 

freeness. 

 

In store-forward, the received packet is stored in a buffer and then forwarded to the 

selected neighboring node based on the routing decision made by the routing algorithm.  

After the packet is forwarded, it waits for an acknowledgement from the receiver.  The 

whole process of storing and forwarding a packet is referred to as a hop.   

 

In circuit switching, a physical connection path between the source and destination nodes 

must be established.  After the path is established, the packet is allowed to move through 

the path without any buffering.  During the transmission of a packet along this path, the 

connection is not switched and thus no other packets are allowed to move along this path.  

This physical connection path is torn down after the packet has reached its destination. 

 

In wormhole routing [59], the packet to be routed is divided into chunks called flits.  

These flits spread over the entire path between the source and destination nodes where 
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each node along the path has a queue for each of its adjacent links to hold the flit.  If 

there is space in the next node or when flits are consumed by the destination node, the 

head will move and the entire packet can move by moving to the free space created. 

 

In virtual cut-through, if there is free space in the next node, the received packet is 

forwarded without buffering.  Otherwise, the received packet is stored in a queue that can 

hold the entire packet.  

 

2.1.2 Flow Control 

Flow control refers to the allocation of channels and buffers to a packet as it moves along 

the path between the source and destination nodes.  An appropriate flow control policy 

should be used for different switching techniques.  For store-forward and virtual cut-

through, flow control policy is applied on packet, whereas for wormhole routing, each flit 

will have a unique flow control.  The flow control policy determines whether packet will 

be discarded, buffered, blocked or rerouted through another channel. 

 

2.1.3 Routing 

In multiple hop topologies, routing determines the path by which a message packet 

generated by an arbitrary source is to traverse in order to reach its destination.  Routing 

can be classified into source routing and distributed routing.  

 

In source routing, the entire path for a message packet to traverse is determined by the 

source node based on the current network condition.  Once the packet leaves the source 

node, it will follow the selected path till it reaches its destination.  In distributed routing, 

when a node receives a packet, it will determine whether the packet has reached 

destination.  If packet reaches destination, this packet is delivered to the local processor.  
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Otherwise, the routing algorithm is used to determine which neighboring node to forward 

the packet to.  

 

A disadvantage of using source routing is larger packets size where routing information is 

included in every packet.  In distributed routing, the routing algorithm will normally 

produce a path with lower network latency.  Thus, distributed routing is the major focus 

of this project. 
 
 

2.2 Fault-tolerant routing 
In the presence of faulty components in the interconnection network, it is desired that 

alternative paths can be found and used to bypass the faults.  The following concepts are 

important in fault-tolerant routing. 

 

2.2.1           Types of Faults 

Component faults in a communication network can be either node faults or link faults or 

both.  A node faults will incur the breakdown of all links incident to that node. 

 

2.2.2    Types of links / dimensions 

Let the current node be u and destination be d.  The relative address r is defined as 

dur ⊕= , where ⊕  denotes the bitwise exclusive OR (XOR).  All the dimensions 

whose corresponding bit in r equals 1 are called preferred dimensions, while all the rest 

dimensions whose corresponding bit in r equals 0 are called spare dimensions.  A faulty 

dimension refers to either a faulty neighboring node or a faulty link at that dimension. 

 

2.2.3         Adaptiveness 

Routing algorithm can be either classified as static (deterministic) or adaptive.  In static  
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or deterministic routing algorithm, a fixed path is used to send messages between a given 

pair of source and destination nodes.  At the source node, the selected path is determined 

based on the destination node and the current network conditions.  As for adaptive 

routing algorithm, alternative paths between the source and destination nodes are used to 

route messages.  Each node can only determine the next node to forward a message based 

on the local or global information that it contains. 
 
In the context of minimal routing, dynamic adaptive routing algorithm can dynamically 

adjust its adaptivity based on fault distribution in the neighborhood [54].  This dynamic 

adaptivity can be further categorized as fully adaptive, partial adaptive, one-adaptive and 

zero-adaptive (also called infeasible).  Fully adaptive algorithm can use all possible 

minimal paths between the source and destination node.  As for partially adaptive 

algorithm, a subset of available minimal paths between the source and destination nodes 

is used.  Only a single minimal path is available for one-adaptive algorithm.  For zero-

adaptive, there is no available minimal path at an intermediate node. 
 
Adaptive algorithm can be characterized as progressive, backtracking, profitable and 

derouting (or misrouting).  Progressive algorithm will wait, deroute or abort if no 

preferred link is available at an intermediate node.  Backtracking refers to messages using 

the input link to route when they are at deadend nodes.  In order for a message to move 

closer to the destination, preferred links are used.  In contrast, spare links move a 

message farther away from the destination.  Profitable algorithms only consider profitable 

links.  Derouting or misrouting algorithm can use both preferred and spare links. 

 

2.2.4   Deadlock 

A deadlock maybe defined as a cyclic dependency of ungranted packet requests for  

buffer or channel resources [57].  It refers to the situation where a packet is blocked  

forever in the network.  Deadlock occurs when a packet is holding some resources while  
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Node A 

Node D 

Node B 

Node C 

Figure 2.2:  Four packets in circular waiting using store-forward 

Livelock refers to the situation where a packet is circulating in the network without 

reaching the destination.  Livelock usually occurs when misrouting is allowed in the  

requesting for other resources that other packets are holding and these other packets are 

requesting for those resources that are held by this packet which results in a circular wait.  

An example where deadlock occurs is shown in Figure 2.2. 

 

 

 

 

 

 
 

In Figure 2.2, there are four packets each holding a packet buffer represented by black 

square and four nodes represented by circles.  Each node has a packet buffer.  The packet 

in node A is requesting buffer in node B.  Packet in node B is requesting buffer from 

node C.  Packet in node C is requesting buffer from node D and packet in node D is 

requesting buffer from node A.  As a result, a circular wait is formed. 

2.2.5      Livelock 

 

 

routing algorithm in order to tolerate faults.  An example where livelock occurs is shown 

in Figure 2.3.   

 

 

 

 

 

Figure 2.3 Livelock with four link faults 

D S 
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There are four link faults represented by dashed lines.  Source and destination nodes are 

represented by a circle with ‘S’ and ‘D’, respectively.  The arrows represent the path by 

which a packet generated by the source node traverses.  These arrows form a cycle which 

means that the packet is circulating in the network without reaching its destination.  

Hence, livelock arises. 

 

2.2.6      Types of information for routing decision 

An adaptive algorithm requires either local or global information to make routing 

decision.  However, there is limited global information based approach which is a 

compromise between local information based and global information based approaches. 
 
In local information based model [6], each node exchanges information with its adjacent 

neighbors and it only knows the status of its neighbors.  This model can only achieve 

local optimization and is heuristic in nature.  However, it can be proved for some special 

network topologies that routing strategies based on local information is enough for 

tolerating faults with satisfactory performance. 
 
As for global information based model, such as the Shortest Path Routing in [20], each 

node exchanges information with its adjacent neighbors as similar to local information 

based model.  But this information is propagated throughout the entire network.  Hence, 

each node knows the status of all the nodes and this model can normally achieve optimal 

or suboptimal result.  The problem here is the huge task of gathering and exchanging 

global information, which is usually in large size. 

 

Limited global information based approach [54] requires a relatively simple process to 

collect and maintain fault information in the neighborhood (such information is called 

limited global information) and is more cost effective than local or global information 

based approaches. 
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2.2.7   Types of Communication 

Three types of communication are generally discussed: unicasting, multicasting and  

broadcasting.  Unicasting is a one-to-one communication between two nodes; one is 

called source node and the other the destination node.  Multicasting and broadcasting 

involve communication between several nodes, but the difference is that multicasting is a 

one-to-many communication that involves only one source node and several destination 

nodes whereas broadcasting is a one-to-all communication that involve one source node 

and all other nodes in a network. 
 

2.2.8   Optimality 

A routing algorithm can be categorized as optimal or suboptimal or both based on the 

path that a message traverses from source to reach its destination.  In optimal or minimal 

routing, a message moves along a minimal path (also called a Hamming distance path) to 

its destination node.  This means that each link along the minimal path is a preferred link.  

As for suboptimal or nonminimal routing, a path (where a message traverses) with the 

length more than the Hamming distance between the source and destination is generated.  

This means that nonpreferred or spare links are used for deroute or misroute when faulty 

component is encountered. 
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Chapter 3:   Fuzzy Neural Network for Routing 
 

3.1      Overview of Fuzzy Neural Network 
 
Fuzzy Neural Networks (FNNs) are a group of hybrid systems that incorporate fuzzy 

logic into Artificial Neural Network (ANN) architectures.  The fuzzy characteristic 

overcomes the problem of black box in ANN by providing interpretable human-like IF-

THEN reasoning rules while ANN supplies the learning ability to the traditional fuzzy 

systems by deriving fuzzy rule base and/or membership function automatically.  Such 

hybrid systems can be deployed in clustering, time series or stock market prediction, as 

well as automated control of large, complex systems.   

 

The main advantage of a fuzzy logic is its ability to model a problem domain using a 

linguistic model instead of complex mathematical models.  Zadeh proposed fuzzy logic 

as a new method to manage vagueness and uncertainty [60-63].  When modeling 

vagueness, fuzzy predicates without well-defined boundaries concerning the set of 

objects may be applied.  The rationale for using fuzzy logic is that the denotations of 

vague predicates are fuzzy sets rather than probability distributions.  In many situations, 

vagueness and uncertainty are simultaneously presented since any precise or imprecise 

fact may be uncertain as well.  Fuzzy set and possibility theories provide a unified 

framework to deal with vagueness and uncertainty. 

 

However, the fuzzy logic itself does not have learning ability, i.e. the parameters of fuzzy 

rules and membership functions can not be self-adjusted, but must be set by expert 

knowledge.  As such, fuzzy neural networks are adopted due to their recognized learning 

ability.  Generally, FNNs perform cluster analysis on each dimension of the inputs and 
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outputs of training data to determine the fuzzy sets and subsequently derive the fuzzy 

rules by connecting the input and output fuzzy sets.   

In this chapter, we explore the possibility of applying Fuzzy Neural Network (FNN) to 

interconnection network routing, though the result is pessimistic.   

 

3.2     Fuzzy Inference System 

A fuzzy inference system is composed of following components: 

 

 

The specification of fuzzy inference system encompasses the five blocks in Fig. 3.2.  The 

following components are important: 

 

3.2.1     Fuzzifier    

This part focus on the shape of membership function: Gaussian, Trapezoidal, Triangular, 

Bell-shape, etc).    

 y 

      Figure 3.1     Fuzzy Inference System 
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Still less frequently used shapes are S membership function, π membership function.   
 
The simplest forms of membership function are trapezoid and triangle.  They can provide 

high speed inference and fairly good accuracy.  The two slopes belonging to [a, b] and [c, 

d] makes fuzzy logic different from classic two-value logic.  But they are not ideal if high 

accuracy is desired.  In such cases, Gaussian membership function is preferred because of 

its soft shape and long ‘tail’, which is different from the hard cut-off in trapezoid and 

triangle. 
 

3.2.2     Fuzzy rule-based models for function approximation   

How the rules are represented is very important for the compactness and effectiveness of 

the fuzzy system.  There are three types of fuzzy rule-based models for function 

approximation: (a) the Mamdani model [23], (b) the Takagi-Sugeno-Kang (TSK) model 

[24][25][26], and (c) Kosko’s Standard Additive Model (SAM) [27].  
 

i) Mamdani model is one of the most widely used fuzzy models in practice, which 

consists of the following linguistic rules that describe a mapping from rUUU ×⋅⋅⋅×× 21  

to W.   

iirrii CisyTHENAisxandandAisxIFR ...: 11  

where, 
)...,,2,1( rjX j =  input variables 

                      y output variable 
                     ijA  fuzzy sets for xj 

                     iC  fuzzy sets for y. 
 

The contribution of rule Ri to a Mamdani model’s output is a fuzzy set whose 

membership function is computed by  
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)()...()( 21' yy
ii

CiniiC µαααµ ∧∧∧∧=  

where     ))()((sup ' jAjA
x

ij xx
ijj

j

µµα ∧=  

αi  is the matching degree of rule Ri 

αij  is the matching degree between xj and Ri’s condition about xj 

 

The final output of the model is the aggregation of outputs from all rules using the max 

operator:    

)}(),...,(),(max{)( ''
2

'
1

yyyy
LCCCC µµµµ =  

 

ii) The Takagi-Sugeno-Kang (TSK) model was introduced in 1984.  The main 

motivation of this model is to reduce the number of rules required by Mamdani model, 

especially for high-dimensional problems.  It consists of rules in the form of: 

irrii AisxandandAisxIFR ...: 11  

  THEN ririiri xbxbbxxxfy +++== ...),...,,( 11021  

where 
  fi is the linear model 

),...,1,0( rjbij =  are real-valued parameters 

The total output of the model is given as  

∑

∑

∑

∑

=

=

=

=

+++
== L

i
i

L

i
ririii

L

i
i

L

i
rii xbxbbxxxf

y

1

1
110

1

1
21 )...(),...,,(

α

α

α

α
 

The inputs to a TSK model are crisp (nonfuzzy) numbers. Therefore, the degree of input  

rr axaxax === ,...,, 2211  that matches the ith rule is typically computed using the min 

operator:    

)}(),...,(),(min{ 21 21 rAAAi aaa
irii

µµµα = . 
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TSK seems to be more effective (as in ANFIS) in the use of the number of rules in a 

fuzzy rule-based system as compared to CRI (as in POPFNN and GenSoFNN).  But CRI 

inference is more intuitive and readable. 

 

iii) The Standard Additive Model (SAM) was introduced by B. Kosko in 1996.  The 

structure of fuzzy rules in SAM is identical to that of the Mamdani model. The rules is in 

the form of  

iii CiszTHENBisyandAisxIF  

Given crisp inputs 00 , yyxx == , the output of the model is  

∑ ××=
i

CBA zyxCentroidz
iii

))()()(( 00 µµµ  

 

3.2.3 Definition of operators on fuzzy sets including: union,  

intersection, and complement.   

 

There are multiple choices for the fuzzy conjunction and fuzzy disjunction operators.  

The choice of a fuzzy conjunctions operator determines the choice of the fuzzy  

disjunction, and vice versa.  This is due to the principle of duality between the two 

operators.  A fuzzy conjunction operator, denoted as t(x,y) and fuzzy disjunction operator, 

denoted as s(x,y), form a dual pair if they satisfy the following condition: 

)1,1(),(1 yxsyxt −−=− , so as to ensure BABA ∪=∩ . 

 

Here, the set of candidate fuzzy conjunction operators called triangular norms or t-norms 

is defined as a mapping T: ]1,0[]1,0[]1,0[ →×  which is symmetric, associative, non-
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decreasing in each argument and aaT =)1,( , for all ]1,0[∈a .  In other words, any t-

norm T satisfies the properties:   

),(),( xyTyxT =  symmetricity 

)),,(()),(,( zyxTTzyTxT =  associativity 

)','(),( yxTyxT ≤  if 'xx ≤  and 'yy ≤  monotonicity 

xxT =)1,( , ]1,0[∈∀x  one identity 

Basic t-norms include the following: 

minimum },min{),( babaMIN =  
Lukasiewicz }0,1max{),( −+= babaLAND  
Probabilistic abbaPAND =),(  
week                               },min{ ba          if 1},max{ =ba  
                               0                        otherwise 
Hamacher 

,
))(1(

),(
abba

abbaHAND
−+−+

=
γγγ   0≥γ  

Dubois and Prade 
},,max{

),(
αα ba

abbaDAND =          )1,0(∈α  

Yager ppp
P babaYAND /1])1()1[(,1min{1),( −+−−= , 0>p  

 

Likewise, we can define t-conorm.  The only difference between t-norm and t-conorm is 

that in t-conorm S, aaS =)0,( , for all ]1,0[∈a .  Basic t-conorm include the following: 

maximum },max{),( babaMAX =  
Lukasiewicz }1,min{),( babaLOR +=  
Probabilistic abbabaPOR −+=),(  
strong                                     },max{ ba       if 0},min{ =ba  
                                      1                     otherwise 
Hamacher 

,
)1(1

)2(),(
ab

abbabaHOR
γ

γ
γ −−

−−+
=                      0≥γ  

Yager ppp
p babaYOR /1][,1min{),( += },                 0>p  

 

=),( baWEEK  

=),( baSTRONG  
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3.2.4         Definition of fuzzy inference schemes. 

The operations of fuzzy neural network need to be clearly defined and mapped to formal  

fuzzy inference schemes.  There are several such schemes such as Compositional Rule of 

Inference (CRI) [30], Approximate Analogous Reasoning Schema (AARS) [28] or the 

Ttruth Value Restriction (TVR) [29].  The most commonly used is CRI which works as 

follows. 

Knowledge:   If  x  is  A   then  y  is  B  

            Fact:          x is A’ 

Conclusion:                    y is B’ 

Here, RAB ''= .  VvvuRuATvB
Uu

∈=
∈

)},,(),('{sup)(' .  There are a number of 

definitions of R.  

 

Zadeh:  

         min-max rule:  

∫ ×
−∨∧=×¬×=

VU ABAm vuuvuVABAR ),/())(1())()(()()( µµµ  

)]()[( VABAARAB mm ×¬×′=′=′   

))]}(1())()([()({)( uvuuv ABAAUuBm
µµµµµ −∨∧∧∨= ′

∈
′  

         arithmetic rule:  

∫ ×
−∨∧=×¬×=

VU ABAm vuuvuVABAR ),/())(1())()(()()( µµµ  

)]()[( BUVAARAB aa ×⊕×¬′=′=′   

))]}()(1(1[)({)( vuuv BAAUuBa
µµµµ +−∧∧∨= ′

∈
′  

Mamdani:        ∫ ×
∧=×=

VU BAc vuvuBAR ),/()()( µµ  

Mizumoto:  ∫ ×
→=×⇒×=

VU BsAss vuvuBUVAR ),/()]()([ µµ  
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   ∫ ×
∨−=××¬=

VU BAb vuvuBUVAR ),/()]())(1[()()( µµ  

∫ ×
→=×⇒×=

VU BA vuvuBUVAR ),/()]()([
*** µµ  

where    )()()(1)()(
*

vuuvu BAABA µµµµµ ×+−=→  

 
There is no principle to judge which one is best on a general basis because the system’s 

performance is closely related to the specific application.  We can use experiment to 

choose the best fit one. 
 

3.2.5         Defuzzification 

Defuzzification is a process to select a representative element from the fuzzy output  
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inferred from the fuzzy control algorithm.  There are three common defuzzification 

techniques:  
 
i) Mean of Maximum (MOM):   It calculates the average of those output values that 

have the highest possibility degrees.  It can be expressed formally as:    

||

*
)( *

P

y
AMOM Py

∑
∈=  

 
ii)  Center of Area (COA):  The center of area (COA), also referred to as center of 

gravity or centroid, is the most commonly used defuzzification technique.  

∑
∑ ×

=

x
A

x
A

x

xx
ACOA

)(

)(
)(

µ

µ
 

iii)  Height Method: First, convert the consequent membership function Ci into crisp 

consequent y=ci where ci is the center of gravity of Ci. The centroid defuzzification is 

then applied to the crisp consequents. It can be expressed formally as: 

∑

∑
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3.3   Architecture of fuzzy neural networks 
There are many architectures of fuzzy neural network in existence.  One typical kind of 

architecture is what is used in Generic Self-Organizing Fuzzy Neural Network 

(GenSoFNN) [31] and Pseudo Outer Product based Fuzzy Neural Network (POPFNN) 

[32].  It is actually a Multi-Input Multi-Output (MIMO) system is a five-layer neural 

network as shown in Figure 3.2.  For simplicity, only the interconnections for the output 

ym are shown [32].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each layer in POPFNN-CRI(S) performs a specific fuzzy operation. The inputs and 

outputs of the POPFNN-CRI(S) are represented as non-fuzzy vector XT=[x1, x2, … xi, … 

xn1] and nonfuzzy vector YT=[y1, y2, … yl, … yn5] respectively.  Fuzzification of the 

input data and defuzzification of the output data are respectively performed by the input 

and output linguistic layers, while the fuzzy inference is collectively performed by the 

Figure 3.2    Structure of POPFNN-CRI(S) 
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rule-base and the consequence layers. The number of neurons in the condition and the 

rule-base layers are defined in as: 

∑
=

=
1

1
2

n

i
iJn    ∑

=

=
5

1
4

n

m
mLn    423 nnn ×= . 

where   

Ji is the number of linguistic labels for the ith input, 

Lm is the number of linguistic labels for the mth output, 

n1 is the number of inputs, 

n2 is the number of neurons in the condition layer, 

n3 is the number of rules or rule-based neurons, 

n4 is the number of linguistic labels for the output, and 

n5 is the number of outputs. 

A detailed description of the functionality of each layer is given as follows: 

 

i)   Input linguistic layer: 
 
 
 
 
 

 

 

 

ii)   Condition layer: 

Each input-label node ILi,j represents the jth linguistic label of the ith linguistic node from 

the input layer.  The input-label nodes constitute the antecedent of the fuzzy rules. Each 

node is represented by a trapezoidal membership function )(, xjiµ described by a fuzzy 

interval formed by four parameters ( jijijiji ,,,, ,,, δγβα ) and a centroid jiv ,  as shown in 

Fig. 3.3. 

net input:  i
I

i xf = ,         and 

net output:        I
i

I
i fo =  

 

where:         ix   =  value of the ith input 
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net output:   
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where  

  [ II
ji

II
ji ,, ,δα ] is the kernel of the fuzzy interval for the jth linguistic label of the ith input, 

  [ II
ji

II
ji ,, ,γβ ] is the support of the fuzzy interval for the jth linguistic label of the ith input, and 

 l
io    is the output of ith input node. 

 
iii)    Rule-base layer 
 

 net input:    )(min ,
II

jii

III
k of = ,  and 

 net output:  III
k

III
k fo = . 

where 

         ji,α      ji ,β   ji,ν ji,γ  ji,δ  

Figure 3.3   Trapezoidal-shaped membership function 
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                II
jio ,     =   output of the input-label node that forms the antecedent conditions   

 for the ith input to the kth fuzzy rule Rk. 
 
iv)  Consequence layer 
 

 net input: )(max,
II
kk

IV
lm of = ,  and  

 net output: IV
lm

IV
lm fo ,, = . 

where 

      III
ko   =  output of the rule node Rk whose consequence is Olm,l. 

 
v) Output Linguistic layer 
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where 

       IV
lmv ,          =    the centroid of the output-label node OLm,l, and 

       IV
lm,γ , IV

lm,β      =    the width of the membership function for output-label node OLm,l. 
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3.4     Self-organizing (Clustering) techniques in FNN 
 
Generally FNNs perform cluster analysis on each dimension of the inputs and outputs of 

training data to determine the fuzzy sets, which are subsequently used to derive the fuzzy 

rules by connecting the input and output fuzzy sets.  After the fuzzy inference system is 

chosen, several parameters need to be learned from training data.  The challenges lie in: 
 
  

i) Required prior knowledge such as number of clusters for different sets of 

training data, such as in Pseudo Outer Product based Fuzzy Neural Network 

(POPFNN).  

ii) No principled method to configure the parameters of membership functions 

or parameters for learning process, e.g. set support parameter and STEP in 

Discrete Incremental Clustering (DIC). 

iii) How to make the number of clusters as small as possible so that the rule 

number can be effectively reduced.  This is also known as horizontal 

reduction. 

iv) How to be resistant to noisy/spurious training data and overcome the 

stability-plasticity dilemma.  Most   partition-based clustering techniques, 

such as fuzzy C-means (FCM), Linear Vector Quantization (LVQ) and LVQ-

inspired technique such as modified LVQ, fuzzy Kohonen partitioning (FKP) 

and pseudo FKP, are all susceptible to noisy data and lack the flexibility to 

incorporate new clusters of data after the training has completed.  This is 

called stability-plasticity dilemma, making online learning difficult. 

 

There are many fuzzy clustering techniques, such as:  DIC, Fuzzy Kohonen Partition 

(FKP), Pseudo Fuzzy Kohonen Partition (PFKP), fuzzy C-means (FCM), LVQ, modified 

LVQ, self-organizing map (SOM), fuzzy adaptive resonance theory (fuzzy ART), etc. 
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As the rules used for implementing FPGA routing is generated by POPFNN, we take a 

look at the fuzzy membership learning algorithms in POPFNN: FKP and PFKP.  The 

difference between FKP and PFKP is that the latter produces pseudo fuzzy partitions 

while the former only produces fuzzy partitions. The former is a supervised learning 

algorithm, while the latter is unsupervised. 

 

Step 1:       Define c as the number of classes, 
Ω

<
1

λ as the learning constant, η as the 

learning width and a small positive number ε as a stopping criterion; where  

Ω = number of data vectors in a cluster,    n=total number of data vectors. 

Step 2:       Initialise the training iteration T = 0 and the weights )0(
iv  with  

       ))(min)(max(2/1)(min)0(
kkkkkki xx

c
ixv −
+

+=   for i = 1,…,c, k = 1,…, n. 

Step 3:       Initialize  )()1( T
i

T
i vv =+  for ci ,...,1= . 

Step 4:       For k = 1..n: 

     FKP: Determine the ith cluster the data xk belongs to from the training data. 

     PFKP: Find the winner using: 

|)(|min|| )1()1( ++ −=− T
jkj

T
ik vxvx  for cj ...,,1= . 

         Update weights vi of 

FKP: the ith cluster  

PFKP: the winner i 

with    )( )()()1( T
ik

T
i

T
i vxvv −+=+ λ  

Step 5:  Compute )1( +Te using  ∑
=

++ −=
n

k

T
ik

T vxe
1

)1()1( ||  

Step 6:  Compare )1( +Te  and )(Te  where 0)0( =e , using )()1()1( TTT eede −= ++ . 

Step 7:  If ε≤+ )1(Tde , stop, otherwise, repeat step 3-7 for 1+= TT . 
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Step 8:  Initialize )1( +===== T
iiiiii vϕγδβα  for ci ...,,1= . 

Step 9:   For nk ,...,1=  

FKP:      Determine the ith cluster the data xk belongs to from the  

   training data. 

PFKP:    Find the winner using |)(|min|| jkjik xx ϕϕ −=−  for   

   cj ,...,1= . 

 Update pseudo weights iϕ  of 

 FKP:   the ith cluster  

 PFKP:  the winner i 

 the ith cluster using )( ikii x ϕηϕϕ −+=  

 Update the four points of the Trapezoidal Fuzzy Number (TrFN) with 

 FKP:  ),min( kii xαα =  

 PFKP: 

 

 

 

 

 

 FKP:  ),max( kii xγγ =  

 PFKP:    

 

 

 

 

min(αi, xk)   for i = 1  

1−iδ          for i > 1 

αi =  

),min( iii ϕββ =  

max( iγ , xk)   for i = c 

1+iβ             for i < c 

αi =  
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3.5      Rule formulation techniques in FNN 
 

The rule formulation techniques are different between TSK-based and CRI-based models.  

Even in CRI-based models, different approaches might be adopted.  In GenSoFNN, 

RuleMap is used while the method used in POPFNN to identify the fuzzy rules is the 

Pseudo Outer-Product (POP) learning algorithm.  The POP learning algorithm is a simple 

one-pass learning algorithm.  In POPFNN-CRI(S), each node in the condition and 

consequence layers represents a linguistic label once the membership functions have been 

identified. Under the POP learning algorithm, the set of training data {Xp, Yp}, where 

Xp is the input vector and Yp is the output vector, is simultaneously fed into both the 

input linguistic and output linguistic layers. The membership values of each input-label 

node oII are then determined. These values are subsequently used to compute the firing 

strength fIII of the rule nodes in the rule-base layer. Similarly, the membership values of 

each output-label node are determined by feeding the output value back from the output 

layer to the consequence layer. The weights of the consequence layer linking the rule-

based layer are then determined using:   ∑
=

×=
n

p

p
mlm

pIII
klmk yXfw

1
,,, )()( µ  (*) 

lmkw ,,        = weight of the link between the kth rule node and the lth linguistic label for 

         the mth output, and 

)( pIII
k Xf  =  firing strength of kth rule node when presented with input vector Xp, and 

)(,
p
mlm yµ  =   membership value of the mth output of Yp with the fuzzy subset Ym,l that 

            semantically represents the lth linguistic label of the mth output. 

 

The weights in Equation (*) are initially set to zero.  After performing POP learning, 

these weights represent the strength of the fuzzy rules having the corresponding output-

label nodes as their consequences.  Among the links between a rule node and the output-
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label nodes, the link with the highest weight is chosen and the rest are deleted.  The links 

with zero weights to all output-label nodes are also deleted.  The remaining rule nodes 

after this link selection process subsequently represent the rules used in the POPFNN-

CRI(S). 

 

3.6       Problems in applying FNN to network routing 
 
Although FNN is a powerful data analysis and prediction tool, it is very difficult to apply 

FNN to interconnection network due to the following reasons: 
 

3.6.1    Exponentially growing number of rules 

With careful re-examination of the Virus Infection Clustering and clustering techniques 

in POPFNN and GenSoFNN, it is clear that the clustering process is related only to the 

input of training examples, with no relationship with the respective output.  To make 

routing decision, it is indispensable to take the binary address of nodes into consideration.  

So they are selected as part of FNN’s inputs.  However, in a n-dimension network, if in 

the training set, we feed all the 2n combinations to FNN, then obviously, each input i will 

be assigned two linguistic labels, namely Hi centering on 1 and Li centering on 0.  Recall 

the process of rule formulation.  No matter whether Mamdani or TSK, SAM model is 

used, the rule antecedent is always in the form of irri AisxandandAisxIF ...11 .  So 

the rule number is always in the magnitude of 2n with each tuple ( nxxx ,...,, 21 ) 

( },{ iii LHx ∈ ) corresponding to a rule.  In other words, the FNN is just memorizing each 

case without any intelligence demonstrated.  In practice, this number is intolerable. 

 

A trial to circumvent this problem is to convert the n-digit binary number into its 

corresponding decimal value for input.  This is supported by the fact that the n bits are 
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Figure 3.4 Error rate versus Resolution for learning bitwise XOR 

independent.  However, as what counts is the bit pattern of the node address, this attempt 

suffers from the following problem.  For example, at current node, a packet is to be sent 

to 10000 and another packet is to be sent to 01111.  In decimal value, their difference is 

only 1.  However, the routing decisions for them are quite different.  Experiments also 

show that this conversion will not reduce the number of rules effectively because more 

linguistic labels are needed for each input. 

 

Another attempt to overcome the problem is to use pure CMAC and feed in the decimal 

value.  The result still shows that unless the resolution grows exponentially with 

dimension, the error rate is intolerable.  The test is run on learning the function of bitwise 

XOR.  The inputs are two integers ranging from 0 to 127.  The output is the bitwise XOR 

of the inputs.  In the training set, all 128*128 combinations of inputs are enumerated and 

the testing set is same as the training set.  The following Figure 3.4 demonstrates the 

trend of error rate with respect to the resolution r.  The resolution r applies to both inputs 

simultaneously. 
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Fig. 3.4 shows that the error rate decreases slowly when the resolution is far from 128.  

Actually, the error rate goes below 50% only when CMAC is nearly memorizing all 

individual maps from input space to output space.  This rote is not acceptable due to its 

large space cost for storing rule base. 

 

3.6.2     Too long off-line training time 

Suppose the input for FNN is three n-bit binary strings: current node address, destination 

address, and safety vector of current node [54].  Then for a 5-dimension network, if we 

use all the 522 ×  combinations of (source, destination) pair, the training time is about 2 

minutes with POPFNN on a 1.7GHz CPU computer.  For networks of practical size, say 

11 dimensions, the training time will be intractable.  The problem in nature is that the 

application of routing in interconnection network is based on binary discrete numbers.  

The FNN is heavily dependent on the clustering of each dimension of input, also called 

horizontal reduction.  So the range of each input can be very large but the number of 

input can not be too high because the algorithm’s time complexity is )(
11

TOIO
m

j
j

n

i
i ⋅⋅∏∏

==

, 

where Ii stands for the number of linguistic labels for the ith input, Oj stands for the 

number of linguistic labels of the jth output, and T stands for the number of training 

examples.  However, our binary application makes Ii = 2 for ],1[ ni ∈  and n linear to 

network dimension, so that the complexity is exponential to the dimension.   

 

Besides converting binary numbers into one decimal number, another way to tackle this 

problem is to reduce the number of training examples.  If we provide all possible cases of 

input in the training set, then as the training time is linear to the training set size, it is 

inevitable to suffer from )2( nO  time complexity where n is the dimension of the network.   

We have noted that in most cases, the routing decision in a network with faults is the 
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same as that in the fault-free setting.  The proportion of those decisions affected by faults 

is so small that an FNN even neglecting them will also achieve a very high percentage of 

correctness (asymptotically approaching 100%).  Thus, to prepare the training set, we 

choose a small proportion of those cases that are not affected by faults while recording all 

the cases that are affected.  The choice of the former is just by random.  However, the 

harvest is not significant.  And the new problem is what proportion of the former cases 

need to be preserved in order to reach the best performance. 

 

3.6.3      Difficulty in discussion of non-fuzzy metrics 

In network routing by FNN, the most important problem in theory is the discussion of 

metrics of performance.  For example, there can be no theoretical deduction of whether 

the routing strategy is deadlock free or livelock free.  We can’t prove how many faults 

can be tolerated.  It is also hard to derive in theory the upper bound of path found. 

 

One way to deal with the problem is by simulation.  But to compare with other routing 

strategies, such an approach is not appropriate, because currently no routing strategy is 

measured by how likely it will lead to deadlock or livelock.  The occurrence of deadlock 

and livelock might result from the routing decision of many packets at many nodes.  So 

such a benchmark is not easy.  More importantly, there is no way to predict how many 

faults can be tolerated.  This will put the routing strategy at a disadvantage when high and 

predictable reliability are desired. 

 

3.7 A possible method for using FNN 
For low dimensional networks, the FNN can be applied.  But we have to be careful with 

designing inputs and outputs of the fuzzy neural network.  For example, at 000, if a 

packet is to be sent to 111, then it can use any of the 3 dimensions.  However, which one 
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is adopted in training example is important because choosing randomly will lead to 

inconsistent training examples.   

 

The final approach used in implementing FPGA is not a direct routing strategy based on 

FNN.  At each node, it uses the FNN to estimate the distance of each neighbor to the 

destination.  And then choose the best one together with such considerations as not 

immediately backtracking to the sender, and not using a faulty link.  In other words, the 

input of the FNN is: 

(n bits for current address), (n bits for destination address), (n bits for current node’s 

safety vector) 

 

Output of FNN is the real distance between current node and the destination in the 

presence of faulty components.  

 

Note here, when using trained FNN to route, the ‘current address’ above is actually fed 

by the neighbors address and ‘current node’s safety vector’ is actually fed by the 

neighbor’s safety vector.   
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Figure 4.1   Relationship between binary 
hypercube, regular Fibonacci Cube and 
Enhanced Fibonacci Cubes 

Figure 4.2   Relationship between binary 
hypercube, regular Fibonacci Cube and 
Extended Fibonacci Cubes 

Chapter 4:   A Fault-tolerant Routing Strategy for  

         Fibonacci-Class Cubes 
 

4.1 Introduction  
 
Fibonacci-class Cubes originate from Fibonacci Cube (FC) proposed by Hsu [12][13][16], 

and its extended forms are Enhanced Fibonacci Cube (XFC) by Qian [14] and Extended 

Fibonacci Cube (XFC) by Wu [15].  This class of interconnection network uses fewer links 

than the corresponding binary hypercube, with the scale increasing slower because 

Fibonacci number is of order )2())
2

31(( nn OO <
+ .  That allows more choices of network 

size.  In structural aspects, these two extensions virtually maintain all desirable properties 

of FC and improve it by ensuring the Hamiltonian property [14][15].  Besides, there is an 

ordered relationship of containment between the series of XFC and EFC, together with 

binary hypercube and regular FC [15] as shown in Fig. 4.1 and 4.2:  
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Lastly, they all allow efficient emulation of other topologies such as binary tree 

(including its variants) and binary hypercube.  In essence, Fibonacci-class Cubes are 

superior to binary hypercube for low growth rate and sparse connectivity, with little loss 

of its desirable topological and functional (algorithmic) properties.  
 
Though Fibonacci-class Cubes provide more options of incomplete hypercubes to which 

a faulty hypercube can be reconfigured and thus tend to find applications in fault-tolerant 

computing for degraded hypercube computer systems, there are no existing fault-tolerant 

routing algorithms.  This is a common shortcoming of link-diluted hypercubic variants.  

In this chapter, we propose a unified fault-tolerant routing strategy for Fibonacci-class 

Cubes, named Fault-Tolerant Fibonacci Routing (FTFR).  It has the following properties: 
 

• It can be applied to all Fibonacci-class Cubes in a unified fashion, with only minimal 

modification of structural representation.  

• The maximum number of faulty components tolerable is the network’s node 

availability [18] (the maximum number of faulty neighbours of a node that can be 

tolerated without disconnecting the node from the network). 

• Each node requires only one round of fault status exchange with its neighbours. 

• For a n-dimension Fibonacci-class Cube, each node, with degree deg, maintains and 

updates at most (deg )2+  n-bit vectors, among which: 1) a n-bit availability vector 

indicates the local non-faulty links, 2) a n-bit input link vector indicates the input 

message link, 3) deg copies of its deg neighbors’ n-bit availability vector indicate 

dimension availability of its neighbors. 

• Provided the number of component faults in the network does not exceed the 

network’s node availability, and the source and destination nodes are not faulty, 

FTFR guarantees a message path length not exceeding Hn +  empirically and 

Hn +2  theoretically, where n is the dimension of the network and H is the Hamming 

distance between source and destination. 
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• Generates deadlock-free and livelock-free routes. 

• Can be implemented almost entirely with simple and practical routing hardware 

requiring minimal processor control (refer to Chapter 7 for the FPGA 

implementation). 
 
The rest of this chapter is organized as follows.  Section 4.2 reviews several versions of 

definitions of Fibonacci-class Cube, together with comments and initial analysis.  Section 

4.3 presents a Generic Approach for Cycle-free Routing (GACR), which is used as a 

component of the whole strategy. Section 4.4 develops the fault-tolerant routing 

algorithm FTFR and Section 4.5 illustrates its application with an example. The design 

of a simulator and simulation results will be presented in the Chapter 4 and 5 respectively.  

Finally, the routing strategy is implemented on an FPGA chip.  This is described 

separately in Chapter 7.   
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4.2      Definition and analysis 
Though Fibonacci-class Cubes are very similar and are all based on a sequence with 

specific initial conditions, they do have some different properties that call for special 

attention. 
 

4.2.1      Definitions of Fibonacci-class Cubes 
 
We first quote the definition Fibonacci Cube proposed by Hsu [12].   

(Definition 4.1)  Fibonacci number 

The well-known Fibonacci number is defined by: 2110 ,1,0 −− +=== nnn fffff  for 

2≥n .   

 

(Definition 4.2)  order-n Fibonacci code 

The order-n Fibonacci code of integer )3(]1,0[ ≥−∈ nfi n  is defined as Fn bbb ),,,( 231 ⋅⋅⋅−  

where jb  is either 0 or 1 for )1(2 −≤≤ nj  and ∑
−

=

⋅=
1

2

n

j
jj fbi .   

 

(Definition 4.3)  Fibonacci Cube of order n ( 3≥n ) 

Fibonacci Cube of order n ( 3≥n ) is a graph nFC  = >< )(),( nn fEfV , where 

}1,,1,0{)( −⋅⋅⋅= nn ffV  and )(),( nfEji ∈  if and only if 1),( =FF JIH , where FF JI ,  are 

the Fibonacci codes of i and j, respectively. ),( FF JIH  stands for the Hamming distance 

between FI  and FJ .   

 

Another equivalent definition which is more unified with Enhanced Fibonacci Cube and 

Extended Fibonacci Cube is: 
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(Definition 4.3’)  Fibonacci Cube of order n ( 3≥n ) [12][14] 

Let ),( nnn EVFC = , then 21 ||10||0 −−= nnn VVV   for 5≥n , where || denotes the 

concatenation operation. }0,1{3 =V , }10,00,01{4 =V .  Two nodes in nFC  are connected 

by an edge in nE  if and only if their labels differ in exactly one bit position. 

 
 (Theorem 4.1)  

Fibonacci Cube of order n ( 3≥n ) can be equivalently defined as a graph whose node 

addresses are )2( −n -bit binary number in which there are no two consecutive 1’s.  Edges 

exist between nodes whose Hamming distance is 1.   
 
Proof:  

Let 0143
' ...{ aaaaV nnn −−= | }1,0{∈ia , for ]3,0[ −∈ ni  and for ]4,0[ −∈∀ nj , 111 ≠+ jj aa }. 

Obviously, to prove Theorem 4.1, it is sufficient to prove that '
nn VV =  because the 

definition of link in Theorem 4.1 is the same as that in Definition 4.3’.  First, it is obvious 

that '
nn VV ⊆ .  We prove '

nn VV ⊇  inductively.  As the basis, it is clear that '
nn VV =  for n = 3, 

4.  If '
nn VV =  holds for kn < ( 4>k ), then when kn = , for each binary address 

'
0143 ... kkk Vaaaa ∈−− , we discuss two cases. 

1)  03 =−ka .  As '
1014... −− ∈ kk Vaaa , thus 1014... −− ∈ kk Vaaa .  Then =−− 0143 ... aaaa kk      

     kkk VVaaa ⊆∈ −− 1014 ||0...0 .     

2)  13 =−ka .  Then 04 =−ka .  As '
2015... −− ∈ kk Vaaa , thus 2015... −− ∈ kk Vaaa .  Then  

     kkkkk VVaaaaaaa ⊆∈= −−−− 20150143 ||10...10... . 

Combine 1), 2), we get '
nn VV ⊇ .  So '

nn VV =  holds for kn = .   Theorem 4.1 is proved.   g 

 



Page 42 of 215 

The definition in Theorem 4.1 is more suitable for discussing routing strategies in 

Fibonacci Cube. 
 
Enhanced Fibonacci Cube and Extended Fibonacci Cube can be defined in a similar way: 
 
(Definition 7.4)  Enhanced Fibonacci Cube of order n ( 3≥n ) [14] 

Let ><= nnn EVEFC ,  denote the Enhanced Fibonacci Cube of order n, then  

4422 ||0101||||0100||10||00 −−−−= nnnnn VVVVV  .  Two nodes in nEFC  are connected 

by an edge in nE  if and only if their labels differ in exactly one bit position.  As initial 

conditions for recursion, }0,1{3 =V ,     }10,00,01{4 =V   

}010,000,100,101,001{5 =V  and 

}1001,1000,1010,0010,0000,0100,0101,0001{6 =V . 

 

(Definition 7.5)  Extended Fibonacci Cube series of order n [15] 

A series of Extended Fibonacci Cubes is defined as { 1, ≥kXFCk }, where 

)}(),({)( nEnVnXFC kkk = .  )2(||10)1(||0)( −−= nVnVnV kkk   for 4+≥ kn .  Two nodes 

in )(nXFCk  are connected by an edge in )(nEk  if and only if their labels differ in exactly 

one bit position.  As initial conditions for recursion, }1,0{|{)2( 011 ∈⋅⋅⋅=+ − ikk aaaakV  for 

]1,0[ −∈ ki }, }1,0{|{)3( 01 ∈⋅⋅⋅=+ ikk aaaakV  for ],0[ ki ∈ }. 

 

4.2.2          Comments and Analysis 
 
The following property is important for our routing algorithm.  Let current node address be 

u and destination node address be d, then each dimension corresponding to 1 in u ⊕ d is 
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called preferred dimension, where ⊕ stands for bitwise XOR operation.  Due to the 

definition of Fibonacci-class Cubes, when a packet is routed in the network, it is quite 

likely that links in one or more preferred dimensions are not available at current node.  But 

the following Theorem 4.2 guarantees that in a fault-free setting, there is always at least one 

preferred dimension available at its present node.  Unlike binary hypercube, this is not a 

trivial result. 

 

(Theorem 4.2)   

In a fault-free Fibonacci Cube, Enhanced Fibonacci Cube or Extended Fibonacci Cube, 

there is always a preferred dimension available at the packet’s present node before the 

destination is reached. 

 

Proof : 

Suppose we are discussing an n-dimension Fibonacci-class Cube.  This means that we are 

discussing FC, XFC and EFC of order 2+n .  Let the binary address of current node be 

011 aaan ⋅⋅⋅−  and the destination be 011 dddn ⋅⋅⋅− .  Let the rightmost (least significant) bit 

correspond to dimension 0 while the leftmost bit correspond to dimension 1−n . 

 

Case I:  Fibonacci Cube 2+nFC .  Obviously, if the destination has not been reached, there 

is always a preferred dimension ]1,0[ −∈ ni .  If 1=ia  and 0=id , then there is always a 

preferred link available at dimension i because changing one ‘1’ in a valid address into 0 

always produces a new valid address.  So we only need to consider 0=ia  and 1=id .  

When 3≤n , Theorem 4.2 can be easily proven by enumeration.  So now suppose 4≥n .  

Obviously, if ]2,1[ −∈ ni , then 01 =−id , 01 =+id .  If 11 =−ia , then 1−i  is an available 

preferred dimension.  If 11 =+ia , then 1+i  is an available preferred dimension.  If 
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011 == +− ii aa , then dimension i is an available preferred dimension because inverting ia  

to 1 will not produce two consecutive 0’s in the new nodes address.  This satisfies the 

precondition of Theorem 4.1, so that the new address is ensured to be a valid node 

address.  If 0=i , then 01 =d .  If 11 =a , dimension 1 is an available preferred dimension.  

If 01 =a , then dimension 0 is an available preferred dimension for the same reason as in 

]2,1[ −∈ ni .  If 1−= ni , then 02 =−nd .  If 12 =−na , then dimension n-2 is an available 

preferred dimension.  If 02 =−na , then dimension 1−n  is an available preferred 

dimension for the same reason as for ]2,1[ −∈ ni .  In whatever case, Theorem 4.2 holds. 

 

Case II:  Extended Fibonacci Cube )2( +nXFCk  

Suppose there is a preferred dimension i.  If ki < , then it always produces a valid  

address if we invert ia .  If ki ≥ , the discussion is the same as case I. 

 

Case III:  Enhanced Fibonacci Cube 2+nEFC . 

The discussion is similar to case I.  We only need to pay attention to the leftmost 

preferred dimension.  Please refer to Appendix I for detailed proof.         g 

 

Theorem 4.2 implies that whenever a spare dimension is used, either a faulty component 

is encountered or all neighbors on preferred dimensions have been visited before.  For the 

latter case, all such preferred dimensions must have been used as spare dimensions before.  

So both cases can be boiled down to the encounter of faulty components. 

 

Theorem 4.2 implies the possibility that FTFR can be applied to all type of networks 

which can always ensure the existence of at least one preferred dimension.  Actually, we 
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applied FTFR to all Fibonacci-class Cubes and find that it works well in all cases, 

including binary hypercube.   

 

 

 

4.3    A Generic Approach for Cycle-free Routing (GACR) 
 

4.3.1    Overview 
 
This approach aims at providing a way of avoiding cycles in routing by checking the  

traversal history.  The most valuable strength is that the algorithm only takes )1(O  time 

to check whether a neighbor has been visited before, and only )1(O  time to update the 

coded history record.  Other advantages include its wide applicability and easy hardware 

implementation.  It applies to such routing algorithms that deal with a network in which 

links only connect node pairs whose Hamming distance is 1 (called Hamming link).  All 

networks constructed by node or link dilution meet the requirement.  An extended version 

of the algorithm can be applied to those networks which have )1(O  types of non-

Hamming links at each node.  Thus, such networks as Folded Hypercube, Enhanced 

Hypercube and Josephus Cube can also use this algorithm.  

 

The weakest point of this approach lies in the size of message overhead )log( nLO m , 

where n is the dimension of the network and mL  is the maximum length of a path a 

packet can traverse.  However, in most cases, it is still within an acceptable bound [19].  

4.3.2    Basic GACR 
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The traversal history is effectively an 

ordered sequence of dimensions used 

when leaving each visited node.   For 

example, in Figure 4.3, the route that 

originates from 000 can be recorded as: 

1210121.   An obvious equivalent 

requirement for cycle-freeness is that: 

if  ‘(’ and ‘)’ are inserted into the 

sequence, then for any combination of 

the places of ‘(’ and ‘)’ (as long as 

‘(‘ precedes ‘)’), there must be at least 

one number between the brackets 

which appears for an odd number of times.  Put it another way, the equivalent condition 

for a route to contain cycle is: there exists a way of inserting ‘(’ and ‘)’ into the sequence 

such that each number in ( ) appears for an even number of time. 

 

For example, in 1(21012) , 0 appears only one time, which is an odd number.  In  

(1210121), 1 and 2 appear for an even time but 0 still appears for an odd number of time.  

So neither forms a cycle.  But for a sequence of 1234243, there must be a cycle: 

1(234243).  Suppose at node p, the history sequence is naaa ⋅⋅⋅21 , and it is guaranteed 

that no cycle exists hitherto, then to check whether using dimension 1+na   

will cause any cycle, we only need to check whether in )( 1+nnaa , )( 112 +−− nnnn aaaa ,  

)( 11234 +−−−− nnnnnn aaaaaa  … each number will appear for an even time.  Here we can 

omit dimension na  because immediate backtrack will certainly cause cycle.   

Figure 4.3  Example for routing history 

d0 

d1 d2 
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We first introduce the basic form of this algorithm that applies only to networks 

constructed by node/link dilution from binary hypercube.  This algorithm is run at each 

intermediate node so as to ensure that no cycle is formed. 

 

(Algorithm 4.1) Basic GACR 

The data structure is a simple array: port[ ], with each element composed of  nlog  bits.  

port[i] records the port used when exiting the node that the packet visited 1+i  hops ago.  

So when a packet leaves a node, it only needs to append the dimension adopted to the 

head of the array port[ ].  As each node has only n ports and the meaning of dimension is 

common at all nodes, that is, dimension c at node a has the same meaning at node b, 

obviously only  nlog  bits are necessary for representing these n possibilities.   At the 

source node, the array port[ ] is null. 
 
Suppose at node x, the length of the array is L.  After running the following short code 

segment, each 0 in mask corresponds to a dimension, the using of which will cause an 

immediate cycle.  Thus, the test time only takes one clock cycle. 
 
unsigned Preprocess( unsigned port[], int L) 
{ 

unsigned dim, mask = 0, history = 1 << port[0]; 
int k, flag = 1; 
for (k = 1; k < L;  k++) 
{ 
 dim  = 1 << port[k]; 
 history ^= dim; 
 if (! flag )     // flag ensures that OnlyOne is called every other time 

{ 
 if ( OnlyOne (history) ) // check if history has only one 1 
  mask |= history; 
 flag ++; 
} 
else  
 flag --; 



Page 48 of 215 

 

} 
return  ~mask; 

} 
 
For instance, for the dimension sequence 875865632434121 from source to present, the 

mask is: 000010011.  Because in 875865632434121 a , there is a cycle formed when a = 

2, 3, 5, 6, 7, or 8. 
 
The operations in this algorithm are all basic logic operations.  The OnlyOne function 

which tests whether history has and only has one 1 is also easy to implement such that 

only one clock cycle is required.  Suppose 0121 xxxxhistory nn ⋅⋅⋅= −− ( }1,0{∈ix  for 

),0[ ni ∈ ), then OnlyOne (history) = 

       0121 xxxx nn ⋅⋅⋅−−  + 0121 xxxx nn ⋅⋅⋅−− +⋅⋅⋅+ 0121 xxxx nn ⋅⋅⋅−− + 0121 xxxx nn ⋅⋅⋅−− ,  

The implementation of this only costs n AND gates and 1 OR gate, taking only one clock 

cycle.  But in software simulation, it takes )(nO  time.  Attention should be paid to this 

problem.  The logic circuit of function OnlyOne is drawn in Fig. 4.4. 

 

 

 

 

 

 

 AND gate 

 OR gate 

 Inverter 

Figure 4.4 Logic circuit of function OnlyOne 
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Another strength of this algorithm is that the time for running the code above can be 

reduced to nearly zero because it is orthogonal to the routing algorithm.  This makes 

parallelism and pipelining possible.  At first sight, the time complexity is )( maxLO , where 

maxL  is the length of the longest path the packet can traverse.  In a network with heavy 

load, this preprocess of calculating mask can be done when the packet is still waiting in 

the buffer.   

 

4.3.3    Extended GACR 
 

If the network has )1(O  number of non-Hamming link types at each node and these links 

can be represented by a common and uniform way, then Algorithm 4.1 can be easily 

extended.  For example, in Josephus Cube )(nJC  [64], we denote the complementary 

link as dimension n  and the Josephus link as dimension 1+n .  Then the function of 

Preprocess can be modified into the following form: 
 
(Algorithm 4.2) Extended GACR 

void Preprocess( unsigned port[], int L, unsigned *mask1, unsigned *mask2,  

unsigned *mask3) 

{ 

unsigned dim, history = 1 << port[0]; 

*mask1= *mask2 = *mask3 = 0; 

for ( int k = 1; k < L;  k++) 

{ 

 if ( port[k] < n ) 

dim  = 1 << port[k]; 

  else if ( port[k] == n ) 
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   dim = ((1<<n) – 1); 

  else  dim = (unsigned) 3; 

 history ^= dim; 

if ( OnlyOne (history) ) // check if history has only one 1 

*mask1 |= history;  // for cycle caused by Hamming link 

  else if  (AllOne(history) ) // check if history has straight 1’s 

   *mask2 = 1;  // for cycle caused by complementary link 

  else if ( history == (unsigned) 3) // check the rightmost two bits 

   *mask3 = 1;  // for cycle caused by Josephus link 

} 

*mask1 = ~( *mask1); 

} 

 

mask2 = 1 represents that the use of complementary link will result in a cycle, while 

mask3 = 1 stands for the fact that using Josephus link will bring about a cycle.  The 

meaning of mask1 remains the same as mask in the basic algorithm. 

 

It might be noticed that the biggest shortcoming lies in the size of message overhead.  For 

most routing algorithms, )(nOLm =  thus )log()log( nnOnLO m = .  However, this is still 

within the acceptable bounds in most applications.  For example, the “visited stack” used 

by [19] incurs message overhead of (n+ 1)  n2log  bits for an n-dimension binary 

hypercube. 
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4.4    Fault-Tolerant Fibonacci Routing (FTFR) 
 

4.4.1     Definition and notation 

 

In a Fibonacci-class Cube of order n + 2 (n-dimensional), each node’s address is an n-bit 

binary number where n > 0.  Let the source node, u, be identified by (an-1 … a1a0), where 

ai ∈ {0, 1} for all 0 ≤ i < n, and the destination node, v, by (bn-1 … b1b0), where bj ∈ {0, 1} 

for all 0 ≤ j < n.  Then, the identity of the neighboring node of u along the dth dimension, 

is )(du  for any 0 ≤ d < n, where )(ku  means inverting the kth bit of the binary address of 

node u.  

 

(Definition 4.5)    route vector 

When a packet reaches current node c, four r-bit route vectors are calculated as follows: 

     cdR &~1 = ,      dcR &~2 = ,     dcR &3 = ,           )|(~4 dcR =  

Here, ‘|’, ‘&’, ‘~’ represent OR, AND and bitwise NOT operation, respectively.  

Obviously, nRRRR 1||| 4321 = , 0& =ji RR  for all 4,1 ≤≤ ji  ji ≠ , where n1  stands 

for a sequence of 1 with the length of n. 

 

(Definition 4.6)   availability vector 

At each node x, the n-bit binary number availability vector (AV(x)) records a bit string, 

indicating by ‘1’ what dimensions are available at x, and by ‘0’ what dimensions are 

unavailable.   
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Here a dimension d is available means there is a nonfaulty link at x to )(dx .   For example, 

in Figure 4.5, node 1001 and link (0000, 0001) are faulty.  The availability vector of each 

node is listed in Table 4.1: 

 

 

 

 

 

 

 

 

 

 

 

node AV  node AV  node AV 

0000 1110  0100 0101  1001 0000 

0001 0100  0101 0101  1010 1010 

0010 1010  1000 1010    

 

 

Availability vector is crucial for generalizing the applicability of the routing algorithm to 

other Fibonacci-class Cubes.  It is effectively a distributed representation of the network 

topology, connectivity and fault distribution. 

 

(Definition 4.7)  input link vector 

An n-bit input link vector at node w is defined as I(w) = [ln-1 … l1 l0], where li = 0 if the 

message arrives at w along the dimension i link, otherwise li = 1 for 0 ≤ i < n.  Setting the 

Table 4.1  availability vector for Fig. 4.5 

 

Figure 4.5   Example of availability vector 

0 
2 

1 

3 
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corresponding bit to 0 for a used input link prevents the link from being used again 

immediately for message transmission, causing the message to “oscillate” back and forth.  

An input link vector has all n bits set to ‘1’s for a new message generated at the node and 

after transmission of a received message. 
 
(Definition 4.8)  mask vector 

To prevent cycles in the message path and to restrict the freedom of selecting output port, 

it is also necessary to keep track of link dimensions traversed.  As part of the message 

overhead, a mask vector may be defined as DT = ][ 011 tttn ⋅⋅⋅− .  At source node, we clear 

DT = [1 … 11].  After that, whenever a spare dimension is to be used, it must be 

guaranteed that the corresponding bit in DT is 1.  But the use of preferred dimension is 

never restricted.  Different from many existing algorithms, each originally preferred 

dimension (preferred dimension at the source) can be used more than once.  When it is 

used for the first time, DT doesn’t record it.  But at the second time when it is to be used 

as a spare dimension, its corresponding bit in DT is masked, so that it can’t be used as a 

spare dimension again.  It will then be used as a preferred dimension.  Any 0-bit in DT 

cannot be set back to 1.  As for originally spare dimensions, they can be used for at most 

two times, which is ensured by masking the corresponding bit in DT the first time it is 

used. 
 
(Definition 7.9)  neighbor condition vector array (NCk) 

Each node periodically exchanges its own availability vector with all neighbors.  So it 

costs at most )( 2nO  space to store the neighbor condition.  The availability vector of the 

neighbor on dimension k is denoted as NCk . 
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4.4.2 Detailed description of FTFR 
 
Empirically, the number of faults FTFR can tolerate is the network’s node availability.  
There is an intricate mechanism in choosing candidate dimension when more than one 
preferred dimension are available, or when no preferred but several spare dimensions are 
available.   First of all, the GACR is used to generate a mask 
M.  Only those dimensions whose corresponding bit in (M AND I (w) AND AV) is 1 are 

further investigated.  These dimensions are called available.  To illustrate the algorithm, 

the following Figure 4.6 is useful.  In Figure 4.6, ‘s’ stands for spare dimension or 

neighbors on it, while ‘p’ stands for preferred dimension.   

 

 

 

 

 

 

 

 

 

 

 

We divide our discussion into two cases. 

(Case I) 

We first check the 1’s in 21, RR (preferred dimensions).  If there are several available 

preferred neighbors (like A and B), we compare which one has the largest number of 

non-faulty preferred dimensions.  If tie, then compare their number of non-faulty spare 

dimension.  If still tie, choose the lowest dimension. Actually, the value to compare is 

Decision 
made here 

s 

p 

p 

p 

s 

Deadlock (ignore) 

p p 

p 

s 

s 
s 

s 

s A 

B M 

C 

D 

E 

Figure 4.6    Illustrative example of FTFR 
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given by ⋅n (No. of prefer) + (No. of spare).  Here, For A, ⋅n  (No. of prefer) + (No. of 

spare) = 22 +n , while for B, the value is 3+n .  So A is chosen. 

 

(Case II)  

If at current node M, there are no preferred dimensions available, spare dimensions have 

to be used, like D and E.  Firstly, the eligibility is checked by DT.  Then just like in case I, 

we compare ⋅n (No. of prefer) + (No. of spare).   After one spare dimension is finally 

chosen, its corresponding bit in DT is masked to 0, so that it will not be used as spare 

dimension again. 
 
In Case II, if all spare dimensions are masked by DT, the algorithm has to abort. 
 
The ⋅= nm (No. of prefer) + (No. of spare) is a heuristic metric.  After extensive 

experimentation, it is found that small modifications can be made to m so as to improve 

the performance of FTFR.  Suppose the dimension under consideration is i and inverting 

the ith bit of destination d produces d’= d XOR 0n-i10i-1.  If d’ is a valid node address in 

that Fibonacci-class Cube, attaching some priority to dimension i will be helpful in 

reducing the number of hops.  Hence, we add the value of node availability of the 

network to m for that dimension in such case.  In Enhanced Fibonacci Cube, this is an 

indispensable measure for the algorithm to generate a path to destination when the 

number of faults in the network is no more than its node availability.  

 

The following are two core routing functions.  They are very easy to understand. 
 
// this function is run at M, which looks ahead at A, B, C, D and E 

// available = )(MAV  AND )(MI  AND (mask generated by GACR) 

// source and destination are both in Fibonacci code 
unsigned EnhFibCube::GetNext(unsigned int source, unsigned int destination,  

unsigned int available, unsigned int *DT) 
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{ 
 int max1, max2; 
 unsigned x2, temp1, temp2; 
 
 if (source == destination) 
  return  DEST_REACH; 
 
 // first get preferred 1->0 dimensions 
 x2 = (~destination & source); 
 x2 &= available; 
 max1 = -1; 
 
 if(x2) // if there exists some available 1->0 preferred dimensions, 

 // choose the one that has the largest  
//  n*(No. of // prefer) + (No. of spare),  
// the value is recorded in max1 (called by reference). 

  temp1 = OneBest(source, destination, x2, *DT, &max1);  
 
  
 // check preferred 0->1 bits 
 x2 = (~source  & destination); 
 x2 &= available; 
 max2 = -1; 
  

if(x2) // such a dimension exists 
  temp2 = OneBest(source, destination, x2, *DT, &max2); 
 
 if(max1 > max2) 
  return temp1; 
 else if(max1 < max2) 
  return temp2; 
 else if( max1 != -1 )  
  return temp1; 
 
 // check spare 1->1, now make 1->0 
 x2 = (source & destination); 
 x2 &= available; 
 x2 &= *DT; 
 max1 = -1; 
 if(x2) 
  temp1 = OneBest(source, destination, x2, *DT, &max1);  



Page 57 of 215 

 
 // check spare 0->0, now make 0->1 
 x2 = ~(source | destination); 
 x2 &= available; 
 x2 &= *DT; 
 max2 = -1; 
 if(x2) 
  temp2 = OneBest(source, destination, x2, *DT, &max2);  
 
 if(max1 > max2) 
 { 
  *DT ^=  (1 << temp1);      // remember to mask spare dimension once used 
  return temp1; 
 } 
 if(max1 < max2) 
 { 
  *DT ^= (1 << temp2); 
  return temp2; 
 } 
 if( max1 != -1 )  
 { 
  *DT ^=  (1 << temp1); 
  return temp1; 
 } 
 return ABORT;  
} 
 

// each running of this function corresponds to the neighbors of A, B, C, D, E… 

// each 1 in x2 corresponds to the candidate dimensions waiting to be tested  

// m records the largest n*(No. of prefer) + (No. of spare) 

// the return value indicates the selected dimension.   

// If all neighbors in x2 are leading to deadlocks or these neighbors have no nonfaulty  

// links, m is set to -1 (unchanged as before calling OneBest) and return INFINITY. 
unsigned EnhFibCube::OneBest(unsigned int source, unsigned int destination, unsigned  
int x2, unsigned int DT, int *m) 
{ 
 unsigned x1, mask, neighbor, prefer, spare, i; 
 int max, temp, total; 
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 mask = 1; 
 max = 0; 
 
 for( i=0; i < Num_Bits ; i++)  // iterate for each dimension 
 { 
  if(x2&mask)     
  { 
   neighbor = source ^ mask;      // get the neighbor (A, B, C, D…) 
   temp = Fib2Dec(neighbor);      // get the array index of neighbor 
   prefer = neighbor ^ destination; // relative address. 
   if(!prefer)    // the neighbor is destination 
   { 
    *m = 0x7fffffff;  // set m to INFINITY 
    return i;  // return corresponding dimension 
   } 
 
   total = CalOnes (prefer & Node[temp].avaiVector & ~mask) *Num_Bits;  

// how many preferred dimensions are available at the neighbor 
    
   spare = (~prefer  & DT & Node[temp].avaiVector& ~mask); 
 
   total += CalOnes(spare);  

// how many spare dimensions are available at the neighbor 
 
   if (CheckValid(destination ^ mask, Num_Bits)) 
    total = total + Node_Availability; 
 
   if(total > max)   // record the max value 
   { 
    max = total;   
    x1 = i;           // record the corresponding dimension 
   } 
  } 
  mask <<= 1; 
 } 
 
 if(max == 0)    // return no qualified dimension is found 
  return INFINITY; 
 *m = max;    // record the max value 
 return x1;              // record the corresponding dimension   
}
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4.5 An illustrative Example: 
 

In an 9-dimension Regular Fibonacci Cube F11 :    

It can tolerate at most 1
3

29
−



 + = 2 faulty components 

 

Faulty Node:          000001000 and       000000001 

Faulty Link:            none 

 

Now we want to go from  101010100   to  000001001 

 

The path selected is: 

 

    Step  876543210 Dimension Used 

101010100    

è 100010100  6   

è 000010100  8   

è 000010101  0   

è 000000101  4   

è 000000100  0   

è 000000000  2 meet 000001000,  000000001. 

è 100000000  8   

è 100000001  0  

è 100001001  3  

è 000001001  8    

 

(1) 

(2) 

(3)  

(4) 

(5)  

(6) 

(7)  

(8) 

(9) 

(10) 
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At step (1), a preferred dimension 6 is used.  There are 4 1->0 preferred dimensions 

available then, namely 2, 4, 6, 8.  The metric ⋅n  (No. of prefer) + (No. of spare)  is 

4*9+1, 3*9+2, 3*9+2, 4*9+0, 4*9+0, respectively.  After updated for dimensional 

availability at destination, the final score is 37, 29, 39, 39, respectively.  Thus dimension 

6 or 8 can be chosen.  Here we choose the smaller one.  Before step 7, we can always find 

a 1->0 preferred dimension.  At 000000000, neither of the two preferred dimensions (3 

and 0) is available because each will lead to a faulty node.   So spare dimension has to be 

used then.   The input dimension is 2 and using dimension 4 will lead to deadlock.  

Therefore, there are only 5 possible dimensions, namely 1, 5, 6, 7, 8.  The score they get 

are (including the possible addition of node availability) are: 14, 25, 25, 25, 27, 

respectively.  So dimension 8 is chosen.  Note, now dimension 8 is used as spare 

dimension and its corresponding bit in DT will be masked.  It will never be used as spare 

dimension again.  Afterwards, three preferred dimensions are used successively. 

 

Note here, each faulty component is not encountered twice.  The final route is short.  

Actually, in the 9-dimension Fibonacci Cube with 2 faulty nodes, the longest possible 

route found by FTFR is 10.  
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Chapter 5:    Exchanged Hypercube 

 

5.1 Introduction 
 

One important means of improving computation speed is by breaking the problem into 

subcomputation and execute concurrently with multi-processors.  In this setting, the 

communication between processors is crucial.   A number of interconnection networks 

have been designed to deal with the problem.  One of the most researched as 

interconnection network is the binary hypercube [8][9].  

 

The binary hypercube, however, scales too rapidly as its dimension n increases.  The 

more serious problem is the number of edges: 12 −nn , which grows more drastically than 

the number of nodes: n2 .  Some variants have been proposed to remove as large a 

fraction of edges as possible, while, at the same time, preserve the desirable topological 

properties of the binary hypercube.  Examples are Gaussian Hypercube [1] and Reduced 

Hypercube [10].  Nevertheless, when edges are diluted, some usefulness of a richer 

connectivity disappears.  Routing between nodes becomes a serious problem, particularly 

when faulty components exist in the network.    

 

The Exchanged Hypercube proposed in this chapter is based on link removal from binary 

hypercube, possessing only 
n
1  of the number of links in the latter topology with the same 

number of nodes, where n is the dimension of the network.  It is defined with two 

parameters, which provide more flexibility of network structure.  What is more, it 

maintains virtually all of the desirable properties of the binary hypercube, such as 
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Hamiltonian property (which ensures the optimal embedment of ring), uniform node 

degree, low diameter, and various possibilities of decomposition.   

 

An interesting point is that an Exchanged Hypercube is isomorphic to a Gaussian Cube.  

It near-optimally emulates binary hypercube.  Besides, it can embed meshes with 

reasonable efficiency (dilation 2, expansion 2, loading 1 and congestion 2).  Being 

Hamiltonian, the Exchanged Hypercube can optimally embed linear arrays and rings. 

 

The Extended Binomial Tree, which is proved to be the spanning tree of the Exchanged 

Hypercube, preserves many desirable properties of the original Binomial Tree, with only 

some minor variations in the initial conditions.  This provides a necessary framework for 

solving many applications such as broadcasting, prefix sum computing and load 

balancing in Exchanged Hypercube.  

 

Finally, a fault-tolerant routing strategy is proposed.  For link-diluted hypercubic variants, 

the common nightmare is the low node availability (the maximum number of faulty 

neighbours of a node that can be tolerated without disconnecting the node from the 

network [18]).   With refined analysis of the location of faulty components, our algorithm 

can tolerate more faults than the trivial bound of node availability.  Besides, it is livelock 

free and generates deadlock free routes.  It also ensures that a message path length never 

exceeds 2F longer than the optimal path found in a fault-free setting, provided the 

distribution of faulty components in the network satisfies the precondition of Theorem 

5.1. 

 

The rest of the chapter is organized as follows.  In Section 5.2, we define the Exchanged 

Hypercube, discuss its structural properties including Hamiltonian property and present 

results of its diameter, node degree, node and link complexities.  In Section 5.3, the 
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embeddings of Gaussian Cube, ring, mesh, binary hypercube are studied.  In Section 5.4, 

we define the Extended Binomial Tree, together with its labeled form: Exchanged Tree.  

The good properties of these trees and their relationship with Exchanged Hypercube are 

discussed.  In Section 5.5, we describe a fault-tolerant routing strategy. 
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5.2 The Exchanged Hypercube 
 

5.2.1    Definition and Construction 

(Definition 5.1)  Exchanged Hypercube 

The Exchanged Hypercube is defined as ),( tsEH  = ),( EV  ( 1,1 ≥≥ ts ), where 

)},0[),,0[}1,0{,,|{ 0101 tjsiforcbacbbaaV jits ∈∈∈⋅⋅⋅⋅⋅⋅= −−  

|),{( 21 VVvvE ×∈= where    121 =⊕ vv  

      or     1]0[]0[,1])1:[],1:[(],1:[]1:[ 212121 ===++=++ vvtvtvHttsvttsv  

      or     0]0[]0[,1])1:[],1:[(],1:[]1:[ 212121 ===++++= vvttsvttsvHtvtv  } 

Here, ]:[ yxv  represents the bit pattern of v between dimension y and x inclusive (we borrow 

the syntax of Handel-C [11]).  Let ),( yxH  represent the Hamming distance between x and y, 

where VVyx ×∈),( . 

)2,1(EH is shown in Fig. 5.1: 

 0001 0011 

0101 0111 

1001 1011 

1101 1111 

1000 

0000 

1100 

0100 

1110 

0110 

1010 

0010 

Figure 5.1            )2,1(EH  
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The dashed links correspond to 121 =⊕ vv .  The solid links correspond to 

1]0[]0[,1])1:[],1:[(],1:[]1:[ 212121 ===++=++ vvtvtvHttsvttsv  and the bold links to 

0]0[]0[,1])1:[],1:[(],1:[]1:[ 212121 ===++++= vvttsvttsvHtvtv . 

 

5.2.2     Structural Properties 
 
(Property 5.1) 

),( tsEH  is isomorphic to ),( stEH .  This means Exchanged Cube is symmetric.    

),( tsEH  can be decomposed into two copies of ),1( tsEH −  or )1,( −tsEH .   

 

Let ∂T represent the smallest change in the number of network components (nodes or  

links) needed to increase the existing number of components T in a network while 

retaining its topological characteristics. 
T
TIE ∂

=  measures the incremental expandability 

of the network. We use IEnode and IElink to differentiate between node and link 

incremental expandabilities. 

 

(Property 5.2) 

),( tsEH  has tsts ts +−− ++ 222 11  links and 12 ++ ts nodes.  Node incremental 

expandability is 1 and link incremental expandability is also approaching 1.   

Proof.                   1
2

22
1

111
=

−
=

∂
= ++

+++++

ts

tsts

node

node
node T

TIE ,  

tsts

tss

tsts

tstststs

link

link
link ts

s
ts

tsts
T
TIE +−−

+−

+−−

+−−++−+−

++
++

=
++

++−+++
=

∂
=

222
22)2(

222
)222(222)1(

11

1

11

111111
 

          = ,1
122

12)2(
11

1
→

++
++

−−−−

−−

st

t

ts
s  as +∞→s  and/or +∞→t . 
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number of links for ),( tsEH  

number of links for 1++ tsB  

(Property 5.3) 

The number of links in ),( tsEH  is 
1

1
+n

 to 
2
1  of that of (s+t+1)-dimension n-cube 1++ tsB . 

1++ tsB  has tsts +++ 2)1(  links.  The ratio of the number of links between ),( tsEH  and 

1++ tsB can be evaluated in the following way: 

 
Without loss of generality, suppose ts ≥ , let tsn += , tsm −= .  Define  

 

 

 

 =   ts

tsts

ts
ts

+

+−−
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++
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222 11
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+
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−
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n
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To calculate the range of r, we have 
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As 12 ≥m  for 0≥m  and mn > , 0>
∂
∂
m
r  for 0>m  and 00 =

∂
∂

=mm
r .   

 

It is easy to see that with a fixed n, r increases as m increases.  So 0min | == mrr =
1

12 2

+
+

−

n
n

n

,  

r      =  
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which approaches 
1

1
+n

 when n is large enough.   On the other hand, 2max | −== nmrr  

=
1

2
12 1

+

−
++−

n

nn

, which approaches 
2
1

1
1

2
1

→
+
−

⋅
n
n  as n approaches infinity.  In conclusion, 

)
2
1,

1
1(
+

∈
n

r .  A useful rule is that the smaller the difference between s and t is, the better 

is the proportion of links reduced. 

 

(Property 5.4) 

For 0-ending nodes, the node degree is 1+s while the node degree of 1-ending nodes is 

1+t .      

Proof:  This is obvious from the definition of Exchanged Hypercube. 
 
(Property 5.5) 

Routing in ),( tsEH  is straightforward.  If source and destination differ in the leftmost s 

bits, then it must reach a 0-ending node from which the difference can be offset by routing 

in the subgraph of 0-ending nodes.  If source and destination differ in the middle t bits, then 

it must reach a 1-ending node from which the difference can be offset by routing in the 

subgraph of 1-ending nodes.  Which one is done first depends on the rightmost bit of 

source and destination.  For example, in )2,2(EH , if we want to go from 00000 to 10100, 

then we must use spare dimension 0 twice: 00000→ 10000 → 10001 → 10101 → 10100.  If 

we want to go from 00001 to 10101, then go: 00001 → 00101 → 00100 → 10100 → 10101. 
 
(Property 5.6) 

The distance between each node pair is in [H, H+2], where H is their Hamming distance.   

According to Property 5.5, the detailed conclusion is listed in table 5.1.  Suppose source is 

cbbaas ts 0101 ⋅⋅⋅⋅⋅⋅= −−  and destination is ''''' 0101 cbbaad ts ⋅⋅⋅⋅⋅⋅= −− . 
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  No.  0101 '' aaaa ss ⋅⋅⋅=⋅⋅⋅ −−   0101 '' bbbb ss ⋅⋅⋅=⋅⋅⋅ −−       c       'c                 distance 

     1                  Yes                  Yes    any     any           H 

     2                 Yes                  No       0       0        H + 2 

     3                 Yes                  No       0       1 H          

     4                 Yes                  No       1       0           H 

     5                 Yes                  No       1       1           H 

     6                  No                 Yes       0       0           H 

     7                  No                 Yes       0       1 H         

     8                  No                 Yes       1       0           H 

     9                 No                Yes       1       1         H+2 

    10                 No                 No       0       0         H+2 

    11                 No                 No       0       1           H 

    12                  No                 No       1       0           H 

    13                  No                 No       1       1         H+2 

 

For example, the 9th case means if 0101 '' aaaa ss ⋅⋅⋅≠⋅⋅⋅ −− , 0101 '' bbbb ss ⋅⋅⋅=⋅⋅⋅ −− , 1=c  and 

1'=c , then the distance between s and d is H+2, where H is the Hamming distance between 

s and d.  The +2 is because it has to use dimension 0 (originally spare) twice: 1->0 and 0-> 

1, for changing the first s bits.  From Table 5.1, since for all rows in which distance equals 

H+2, c equals c’ so tsH +≤ , the distance is no more than 2++ ts .  For other rows, 

distance is 1++≤ tsH .  Thus, the diameter of ),( tsEH  is 2++ ts . 

 
(Property 5.7) 

),( tsEH  is Hamiltonian, with a closed cycle encompassing all nodes only once.     

Table 5.1   Node distance in Exchanged Cube 
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We prove the property of Hamiltonian by induction on s and t.  As ),( tsEH  is 

isomorphic to ),( stEH , we only need to take induction on s.  As a basis, we show that 

)2,1(EH  and )2,2(EH  are Hamiltonian in Fig. 5.2 and 5.3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.3    Hamiltonian cycle in )2,2(EH  
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Assume that for )1( ≥≤ kks , ),( tsEH  is Hamiltonian.  Then when 1+= ks , we 

decompose ),1( tkEH +  into two subgraphs: ),(1 tkG  and ),(2 tkG . 

 

>=< ),(),,(),( 111 tkEtkVtkG  where  

}1,0{,,|0{),( 0210211 ∈⋅⋅⋅⋅⋅⋅= −−−− cbacbbbaaatkV jittkk  for ]1,0[],1,0[ −∈−∈ tjki } 

)},(,|),1(),{(),( 121211 tkVvvtkEHvvtkE ∈+∈=  

 

>=< ),(),,(),( 222 tkEtkVtkG   where  

}1,0{,,|1{),( 0210212 ∈⋅⋅⋅⋅⋅⋅= −−−− cbacbbbaaatkV jittkk  for ]1,0[],1,0[ −∈−∈ tjki } 

)},(,|),1(),{(),( 221212 tkVvvtkEHvvtkE ∈+∈=  

Obviously, ),(1 tkG  and ),(2 tkG  are both isomorphic to ),( tkEH .  Based on the induction 

assumption, there must be a Hamiltonian route 1R  in ),(1 tkG  from tku += 0101  to 

2
1 0 ++= tkv , where 0l represents a sequence of 0s with length )0( ≥ll .  Similarly, there must 

also be a Hamiltonian route 2R  in ),(2 tkG  from 1
2 10 ++= tku  to tkv += 1102 . 

 

As ),( 211 uve =  and ),( 122 uve =  are both edges in ),1( tkEH + , we now find a Hamiltonian 

cycle: 1R || 1e || 2R || 2e , where || denotes a concatenation operation.               g 

 

Actually, in previous Figure 5.3, the Hamiltonian cycle found in )2,2(EH  is constructed by 

the method in the proof.  The path from 01000 to 00000 connected by             is effectively 

1R  and the path from 10000 to 11000 connected by             is 2R .  The two links represented 

by            correspond to 1e  and 2e .  1R  and 2R  are mapped from the Hamiltonian cycle in 

)2,1(EH  demonstrated above.  
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5.3 Embedding other networks 
 

(Property 5.8) 

),(, tsEHBB ts ⊂ 1++⊂ tsB  .  ),( tsEH  can also be decomposed into s2 tB  and t2 sB  

simultaneously.  The 0-ending nodes (denoted as )),(( tsEHVs ) together with the links 

connecting in between (denoted as )),(( tsEHEs ) comprise t2  s-dimension binary 

hypercubes (denoted as )),(( tsEHBs  collectively), while 1-ending nodes ( )),(( tsEHVt ) 

together with the links connecting in between ( )),(( tsEHEt ) comprise s2  t-dimension 

binary hypercubes ( )),(( tsEHBt ).  And links in )),((0 tsEHE = }1|),{( 2121 =⊕ vvvv  span 

between these two classes of binary hypercubes. 

 

(Property 5.9) 

),( ssEH  is isomorphic to )2,12( +sGC .  )1,( −ssEH  is isomorphic to )2,2( sGC .  Here 

),( MnGC  stands for a Gaussian Cube.   For )2,( αnGC , it can embed simultaneously 

{ ),( kk tsEH | )2,0[ α∈k }, where  

),(1
2

1
αδα kknsk −+



 −−

= , kk snt −−= α , 0:1?),( ααδ <= kk .   

This property will be proved in the following Chapter 6, which is about Gaussian Cube. 

 

Applications emulation performance is a measure of how efficiently an application 

expressed as a guest network may be represented or mapped onto a host network. The 

embedding results demonstrate two important factors: the computational equivalence (or 

non-equivalence) between networks of different topology and the efficiency of the 

simulation of algorithms designed for the guest network on the host network [56]. 
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(Definition 5.2) 

Let the guest and host networks be denoted as Gg = (Vg, Eg) and Gh = (Vh, Eh), 

respectively. An injective embedding of Gg onto Gh is a one-to-one mapping that assigns 

every node and edge of Gg to a node and path, respectively, of Gh. Given an embedding, 

the dilation is the maximum distance in Gh between two adjacent nodes in Gg. The 

expansion is the smallest number of nodes in Gh that is required to map all the nodes in 

Gg. Loading is the maximum number of nodes in Gg mapped to the same node in Gh 

while congestion is the maximum number of edges in Gg mapped to the same edge in Gh. 

 

For optimal embedding, dilation = expansion = loading = congestion = 1. 

 

(Property 5.10) 

),( tsEH  can optimally embed a ring network of the same size.    

Proof:     This property is ensured by Property 5.7 that ),( tsEH  is Hamiltonian.    

 

(Property 5.11) 

),( tsEH  can embed a mesh of size 11 22 +− × ts  or 11 22 −+ × ts  with dilation 3, expansion 2, 

loading and congestion 1, or with dilation 2, expansion 2, loading 1 and congestion 2.   

Before presenting the strategy for embedment, we first define a subgraph )2,2( 12 −+ tsGM  of 

),( tsEH  by removing part of its links.  )2,2( 12 −+ tsGM  is like a mesh, though two 

intermediate nodes may be inserted between two neighboring nodes in the same column of 

the mesh.  The Figure 5.4 below demonstrates )2,16(GM  and how a 31 22 ×  mesh is 
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embedded into it.  The nodes with double cycle are images of the guest network: mesh of 

82× . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The procedure of constructing )2,2( 12 −+ tsGM  is as follows.  Since n-dimension binary 

hypercube nB  is Hamiltonian, there is a sequence of node address in 1−sB  and tB  such that 

the Hamming distance between neighboring addresses is 1.  Denote the sequence as 

{ 1210 1,,, −−⋅⋅⋅ saaa } and { 1210 ,,, −⋅⋅⋅ tbbb }.  Then the first row of )2,2( 12 −+ tsGM  is: 

00,,00,00 0120100 1 bababa s −−⋅⋅⋅ , where 00 0bai  means concatenating 0, ia , 0b  and 0.  They 

are all connected to 10 0bac ii =  respectively.  But ic  and 1+ic  ( ]22,0[ 1 −∈ −si ) are not 

neighbors, though they are all neighbored by 10 1bad ii = , which is in turn neighbored by 
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Figure 5.4 )2,16(GM  and how 31 22 ×  mesh is embedded into )2,2(EH  
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00 1bae ii = .  Now, ie  and 1+ie  are connected for ]22,0[ 1 −∈ −si .  They form the second 

horizontally connected row of )2,2( 12 −+ tsGM .  Moreover, ie  has a link to 01 1baf ii = , 

which are also sequentially connected and form the third row of the mesh.   This process 

continues on until the 12 +t
th row is formed.   

 

It is obvious that a ts 22 ×  mesh can be embedded into )2,2( 1 tsGM +  and )2,2( 1+tsGM .  

For example, the embeddings of 84×  mesh into )8,8(GM  with dilation 2, expansion 2, 

loading 1 and congestion 2, and with dilation 3, expansion 2, loading 1 and congestion 1 

are shown in Fig. 5.5 and Fig. 5.6 respectively.  The nodes represented by      serve as 

images of the guest mesh, while the      stands for those nodes in the host network that are 

not images of any node in the guest mesh. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.5   Embedment with dilation 2,  
expansion 2, loading 1 and congestion 2 

Figure 5.6   Embedment with dilation 3,  
expansion 2, loading 1 and congestion 1 
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1−nEBT  
1−nEBT  

nEBT  

5.4 Extended Binomial Tree 
 
In binary hypercubes, many applications such as broadcasting, prefix sum computing and 

load balancing can be solved with the aid of Binomial Trees (special spanning trees of 

hypercube).  For the Exchanged Cube, we introduce the Extended Binomial Tree.  It is very 

similar to the Binomial Tree, with only a small change in the initial condition.   It is proved 

later that the labeled form of Extended Binomial Tree, Exchanged Tree, preserves many 

desirable properties of Binomial Tree. 

 

(Definition 5.3)  Extended Binomial Tree  

Extended Binomial Tree is defined by induction.  For 3≥n , an Extended Binomial Tree of 

dimension n ( nEBT ) is formed by two copies of 1−nEBT , where the root of one 1−nEBT  

(randomly chosen) becomes the root of nEBT  and root of the other 1−nEBT  becomes the 

child of the root of the former 1−nEBT .   2EBT  and 3EBT  are defined in Figure 5.7:   

 

 

 

 

 

 

 

 

Extended Binomial Tree maintains several good properties of Binomial Tree as follows: 
 

(Property 5.12)  

There are 2n nodes in nEBT  for 2≥n .  This can be simply proved by induction on n. 

  Figure 5.7  2EBT  and 3EBT  EBTn 



Page 76 of 215 

(Property 5.13) 

The height of nEBT  is 1+n  for 2≥n . 

 

(Property 5.14)  

For 2≥n , the root of nEBT  has degree 1−n , which is the largest among all nodes. 

 
(Property 5.15)  

In nEBT  ( 2≥n ), there are exactly 2
11

−
−− += i

n
i
n

i
n CCa  nodes at depth i for i = 0, 1, 2, ….,  

1+n .  Here, 
)!(!

!
mnm

nC m
n −

= , where 1)1(! ⋅⋅⋅−= nnn , for ],1[ nm∈ , Nnm ∈, .  10 =nC  

for all }0{Nn∈ .  For all other cases, 0=m
nC .  The depth of root is 0. 

 
Proof:  (By induction on n) 

For 3,2=n , this proposition is true based on the Figure 5.7 above.  It is easy to see that 

due to the construction of nEBT , for all 2≥n , 1,1 10 == +n
nn aa , i

n
i
n

i
n aaa 1

1
1 −

−
− +=  for 

],1[ ni ∈ .  Suppose the proposition is true for )2( ≥≤ kkn .  Then when 1+= kn , for  

]1,1[ +∈ ki : 
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The last step used the conclusion that: 
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 =    …… 

 =  n
kn

n
kn CC +

+
+ +1  

 =  1
1

+
++

n
knC   ( 0,1 ≥≥ kn )        g  

 

This property shows that the name Extended Binomial Tree is justified for the tree 

constructed here. 
 
(Property 5.16) 

For 3≥n , nEBT  embeds the Binomial Tree of order 1−n , with dilation 1, congestion 1, 

load 1 and expansion 2. 
 

In the following, we introduce Exchanged Tree ),( tsET , which is actually a labeled 

Extended Binomial Tree. 
 
(Definition 5.4):  Exchanged Tree 

Exchanged Tree ),( tsET  is constructed by the 

following sequence: 

⋅⋅⋅→→→ )3,1()2,1()1,1( ETETET  

),(),2(),1( tsETtETtET ⋅⋅⋅→→→ .   

)1,1(ET  is demonstrated in Figure 5.8: 
Figure 5.8  )1,1(ET  
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Figure 5.8  )1,1(ET  
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Figure 5.9   )2,1(ET  

Given ),1( tET , )1,1( +tET  is defined as: 

Let 1G  and 2G  be two ),1( tET s.   We re-label 1G  by inserting one 0 between the left first 

and second bits of original node labels.  Formally, it is a mapping 1
1f :  

cbbbacbbba tttt 02100210 0 ⋅⋅⋅→⋅⋅⋅ −−−− .  

 

Then re-label 2G  by inserting one 1 between the left first and second bit.  Formally, it is a 

mapping 2
1f : cbbbacbbba tttt 02100210 1 ⋅⋅⋅→⋅⋅⋅ −−−− .  

Finally, make the root of 2G  the rightmost son of 1G ’s root.  )2,1(ET  is illustrated in  

Figure 5.9. 

  

 

 

 

 

 

 

 

 

Given ),( tsET , ),1( tsET +  is defined by: 

Let 1G  and 2G  are two ),( tsET s.   We re-label 1G  by adding one 0 to the leftmost bit.  

Formally, it is a mapping 1
2f : cbbbaaacbbbaaa ttssttss 021021021021 0 ⋅⋅⋅⋅⋅⋅→⋅⋅⋅⋅⋅⋅ −−−−−−−− .  
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Then re-label 2G  by adding one 1 to the leftmost bit.  Formally, it is a mapping 2
2f : 

cbbbaaacbbbaaa ttssttss 021021021021 1 ⋅⋅⋅⋅⋅⋅→⋅⋅⋅⋅⋅⋅ −−−−−−−− .  

Finally, make the root of 2G  the rightmost child of 1G ’s root.  )2,2(ET  is demonstrated 

in Fig. 5.10. 

Based on the procedure of constructing Extended Binomial Tree ),( tsET , it is obvious 

that ),( tsET  is an Extended Binomial Tree 1++ tsEBT .   So it inherits all good properties of 

1++ tsEBT .  However, it also has some additional properties related to ),( tsEH .   

 
(Property 5.17)  

For all 1, ≥ts , the root of ),( tsET  is 0s+t+1.  This is guaranteed by the procedure of 

construction.  
 
(Property 5.18)  

),( tsET  is a spanning tree of ),( stEH .  
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Proof:          

This property can be proved by induction.  Firstly, it is obvious that all nodes in ),( stEH  

are covered by ),( tsET . Then due to Property 5.17 and the fact that 0s+t+1 and 10s+t  are 

neighbors, it is guaranteed that each edge in ),( tsET  is also in ),( stEH . 

 
(Property 5.19) 

Suppose the pre-order of ),( tsET  is { 1210 1,,, −++⋅⋅⋅ tsaaa }.   

Define ii ab =  AND 00011 11 −− ts .  Then, { 1210 1,,, −++⋅⋅⋅ tsbbb } is non-decreasing.   

 

Proof:          

Recall the sequence of construction: 

),(),2(),1()3,1()2,1()1,1( tsETtETtETETETET ⋅⋅⋅→→→⋅⋅⋅→→→ .  When 

constructing )1,1( +tET  from ),1( tET , we place the new graph built by adding 1 the 

rightmost son of the root of its counterpart, which is built by adding 0.  When constructing 

),1( tsET +  from ),( tsET , the rule is followed too.  These facts ensure this property of 

order.  Masking three bits is due to the initial condition. 

 

Property 5.19 provides a good way of routing in ),( tsET .  Suppose the source is s and 

the destination is d.  We first find a path to 00011 11 −−= tsANDsx .  This is simple 

because it is equivalent to routing in small-scaled )1,1(ET , which can be accomplished 

by rote.  Then from x, it is easy to find a path to dy =  AND 00011 11 −− ts .  Thanks to the 

ordering property, this is equivalent to routing in a Binomial Tree.  Finally, a path is 

found from y to d. 
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5.5   Fault-tolerant routing in Exchanged Hypercube 
 

We now present a fault-tolerant routing algorithm in ),( tsEH .  It categorizes faulty 

components so as to produce a better result than tolerating merely as many faults as node 

availability.  This approach is also applicable to the class of hypercube variants formed by 

link dilution.    

 

As stated above, there are t2  s-dimension binary hypercubes embedded in ),( tsEH .  They 

are denoted as )),(( tsEHBs  collectively.  More specifically, for any )2,0[ tk ∈ ,  

denote as )),,(( ktsEHBs  the binary hypercube whose nodes comprise the following set:  

)},0[),,0[}1,0{,,|0{)),,(( 010101 tjsibakbbbbaaktsEHV jittss ∈∈∈=⋅⋅⋅⋅⋅⋅⋅⋅⋅= −−− .    

If )),,(( ktsEHVx s∈  and pttsx =++ ]1:[ , we denote such nodes as ),),,(( pktsEHVs .   

 

Likewise, there are s2  t-dimension binary hypercubes embedded in ),( tsEH .  They are 

denoted as )),(( tsEHBt  collectively. )),,(( ltsEHBt  is defined as the hypercube whose 

nodes are composed of: }1,0{,,|1{)),,(( 010101 ∈=⋅⋅⋅⋅⋅⋅⋅⋅⋅= −−− jistst balaabbaaltsEHV  

)},0[),,0[ tjsi ∈∈   ( )2,0[ sl ∈ ).  If )),,(( ltsEHVx t∈  and qtx =]1:[ , we denote such node 

as ),),,(( qltsEHVt .  Obviously, ]1:)[,),,(( tspktsEHVs +  = ]1:)[,),,(( tskptsEHVt + .   

 

Suppose there are sF  faulty components in )),(( tsEHBs , and tF  faulty components in 

)),(( tsEHBt .   Let )),((0 tsEHE  = 1|),(),{( 2121 =∈ vXORvtsEHvv }.  Suppose there are 

0F  faulty links in )),((0 tsEHE \ |),(),{( 21 tsEHvv ∈ 1v  or 2v  is faulty}.  We have: 



Page 82 of 215 

 In the other case, if by looking up its local table, r finds that the 0-dimension link of 

),),,(( 00 lktsEHBs  is faulty, then there must be a nonfaulty neighbor of r whose 0-

dimension link is also nonfaulty.  This is guaranteed by sFFs <+ 0 .  Denote it as  

(Theorem 5.1) 

If sFFs <+ 0  and tFFt <+ 0 , there is a deadlock-free and livelock-free routing algorithm 

that can deliver messages from a nonfaulty source r to a nonfaulty destination d in no more 

than 2)(2),( +++ ts FFdrH  hops.  

 
This theorem is evident from the following algorithm: 

(Algorithm 5.1) Fault-tolerant Routing in ),( tsEH  (FREH) 

(Case I) 

Suppose ),),,(( 10 lktsEHBr s=  and ),),,(( 10 kltsEHBd t= .  Since sFFs <+ 0 , it is 

affordable to communicate within each )),,(( ktsEHBs  in the initialization phase, so that 

each node in it knows and records the set of nodes in )),,(( ktsEHBs  whose link in 

)),((0 tsEHE  (i.e. in dimension 0) is faulty.   

 

In one case, if r finds that ),),,(( 00 lktsEHBs ’s link in dimension 0 is non-faulty, it sends 

the packet within )),,(( 0ktsEHBs  to ),),,(( 00 lktsEHBs .  This is guaranteed to succeed 

because )( 0kFs  < s and there are a lot of existing deadlock-free and livelock-free routing 

algorithms (including my FTFR) that work well in s-dimension hypercube in the face of no 

more than 1−s  faulty components.  After that, ),),,(( 00 lktsEHBs  sends the packet to 

),),,(( 00 kltsEHBt  via the link in dimension 0.  Finally, the packet is sent in 

)),,(( 0ltsEHBt  to ),),,(( 10 kltsEHBt , which is guaranteed by tFFt <+ 0 .   
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),),,(( 20 lktsEHBs .  So the packet is sent to ),),,(( 20 lktsEHBs , which in turn, sends the 

packet to ),),,(( 02 kltsEHBt .  Now there must be a nonfaulty neighbor of 

),),,(( 02 kltsEHBt  in )),,(( 2ltsEHBt  whose 0-dimension link is also nonfaulty.  If there is 

such a neighbor in preferred dimension, then use it.  Otherwise, use the spare dimension 

and mask it so that it will not be used again.  After going back to )),(( tsEHBs , the process 

above repeats and finally the packet reaches d.     

 

Obviously, deadlock-freeness is still guaranteed.  Since faulty components might cause the 

use of a spare dimension, which brings about for and pro between )),(( tsEHBt  and 

)),(( tsEHBs , the number of hops is bounded by )(2),( ts FFdrH ++ . 

 
(Case II) 

If  ),),,(( 10 kltsEHBr t=  and ),),,(( 10 lktsEHBd s= , due to the symmetricalness of 

Exchanged Hypercube, the algorithm is the same as case I. 

 

(Case III) 

Suppose  ),),,(( 00 lktsEHBr s=  and ),),,(( 11 lktsEHBd s= .   If 01 kk = , then it is routing 

in s-dimension binary hypercube.  Otherwise, the packet is sent to )),,(( 0ktsEHBt  via the 

0-dimension link of r or one of its neighbors in )),,(( 0ktsEHBs .   Then the problem is the 

same as in case I.  But now, the number of hops is bounded by 2)(2),( +++ ts FFdrH . 

 
(Case IV) 

Suppose  ),),,(( 00 kltsEHBs t=  and ),),,(( 11 kltsEHBd t= .    

This case is handled in the same way as in case III.     g 
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Apart from the initialization cost )()),(max( nOtsO < , the algorithm is run at time cost 

)1(O  and message overhead )(nO .   The most important thing is that both node faults 

and link faults (including those spanning in dimension 0) can be tolerated. 
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Chapter 6 A Fault-Tolerant Routing Strategy for 

Gaussian Cube Using Gaussian Tree  
 

6.1 Introduction 
 
Gaussian Cubes (GCs) is a family of interconnection networks parameterized by a 

modulus M and a dimension n [1][2].  Their desirable scalability makes possible 

generalized analysis of interconnection cost, routing performance, and reliability.   

Besides, such communication primitives as unicasting, multicasting, broadcasting/ 

gathering [7] can also be done rather efficiently in all GCs [1].  However, although 

research achievements abound in routing in binary hypercubes, there are no existing 

fault-tolerant routing strategies for GCs or for node/link dilution cubes.  One of the 

difficulties lies in the low network node availability (maximum number of faulty 

neighbors of a node that can be tolerated without disconnecting the node from the 

network).  Thus, if the topology is fixed, new methods have to be employed to tackle this 

intrinsic problem. 

 

In this chapter, we present a new routing algorithm based on a new topology called 

Gaussian Tree (GT).  In )2,( αnGC , GT is dependent only on α  and divides all the 

nodes in )2,( αnGC  into α2  classes according to their least significant α  bits.  So the 

original problem is converted into first routing in GT (i.e. between different classes) and 

then routing in one such class.  The former is facilitated by the definite and predictable 

routing in trees while the latter is actually routing in ordinary binary hypercube.  Faults 

encountered in different stages of this divide-and-conquer strategy lead to a new 

categorization of faulty components, which enables to analyze the routing strategy in the 

presence of far more faults than the network node availability.  The encouraging result is 
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demonstrated in the chapter.  Methodologically speaking, this approach also opens 

window to a brand-new way of analyzing network reliability, which is especially 

valuable for incomplete networks. 

The characteristics of our routing strategy for )2,( αnGC  encompasses: 

1) Incurs message overhead of only O(n). 

2) The computation complexity for intermediate nodes is at most )log)(( ααα −nO . 

3) Guarantees a message path length not exceeding 2F longer than the optimal path 

found in a fault-free setting, provided the distribution of faulty components in the 

network satisfies the precondition of Theorem 6.3 and Theorem 6.4. 

4) Each node requires at most 1
2

1
+



 −

α

n  rounds of fault status exchange with its 

neighbors. 

5) Each node maintains and updates at most F n-bit node addresses, where F is the 

number of faults related to nodes whose least significant α  bits are same as the 

current node. 

6) Generates deadlock-free and livelock-free routes. 

7) The number of faulty components tolerable is presented in Fig. 6.6 and Theorem 

6.4. 

 

The chapter is organized as follows.  Preliminaries are given in Section 6.2 to 

provide an equivalent definition of GC that facilitates the following discussion.  Section 

6.3 defines GT.  The routing algorithm for the fault-free GC is described in Section 6.4 

separately to make the subsequent section clearer.  In Section 6.5, the fault-tolerant 

routing strategy that deals with all categories of faults is studied.   
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6.2        Preliminaries 
 

6.2.1     Original Definition 

(Definition 6.1) The binary Gaussian Cube is denoted by ),( MnGC [1][2], where n 

(network dimension) ≥ 0 and M (modulus) ≥ 1.  It has 2n nodes that are identified with 

unique n-bit labels.  A link connects two nodes p and q if the following conditions are 

both true: 

1) The labels of p and q differ in the thc  bit for some c, 0 ≤ c ≤ (n – 1). 

2) p and q  are in the congruence class [c]M ’ , where M’ = min {2c, M}. 

The congruence class of c modulo M, [c]M, is the set }{ ZkckM ∈+ , where Z represents 

the set of integer. 

 

6.2.2   Transformation: 

According to Definition 6.1, if node p = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  ( }1,0{∈ia  for ]1,0[ −∈ ni ) 

has a link to q = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− , then there must exist 1k  and 2k , such that 

0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  = k1 M’ + c  (1) 

0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  = k2 M’ + c  (2) 

(1) – (2) and take absolute value on both sides, we get:   

         2c = '21 Mkk −    (3) 

 

Therefore, M’ must be the power of 2.  Since M ’ = min {2c, M}, M must also be the 

power of 2 if M < 2c.   We examine two cases. 
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α
αα 2%021 caaa =⋅⋅⋅−−       if  ),( nc α∈  

 

caaa cc =⋅⋅⋅−− 021                   if  ],1[ α∈c  

1. M is not power of 2.  If M ≥ 12 −n , since 1−≤ nc  and M’ = min {2c, M} = 2c, it 

makes no difference to the original network if we set M = 12 −n .  So we assume M < 2n-1 .   

In this case, there will be no link spanning in dimension c, where c is larger than  Mlog .  

Effectively, the network is separated into  Mn log12 −−  disconnected subnetworks, with each 

combination of the first  Mn log1−−  bits representing one such subnetwork.  Formally, 

GC (n, M) = 
 

 12
0

log1 −

=

−− Mn

i iG . Each subnetwork Gi is composed of  <Vi , Ei>, where    

 Vi =         },log0},1,0{{ 02log0log02log iaaaMjbbbbaaa iMnjjMiMn =⋅⋅⋅⋅⋅⋅≤≤∈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ −−−−   

 Ei = },|),{( 2121 ii VvVvEvv ∈∈∈ , where E is the set of edges in the original network.   

Obviously, for  )2,0[, log1 Mnji −−∈∀  and ji ≠ , =ji VV  Ф, Φ=ji EE  .  So routing 

can be done within the subnetwork Gi if the source and destination both belong to Gi, or 

fails otherwise.  Furthermore, as Gi is isomorphic to GC (  Mlog +1,  Mlog2 ), this 

situation is covered in the following case, where M is power of 2.    
 

2.  M is power of 2.  Denote α = M2log , and α∈Z.   We have the following theorem, 

which can be viewed an equivalent definition of Gaussian Cube. 
 
(Theorem 6.1)  

In )2,( αnGC , node p = 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  ( }1,0{∈ia  for ]1,0[ −∈ ni ) has a link in 

dimension c ( ]1,1[ −∈ nc )  if and only if: 

 

 

 

 

 

where x%y represents the modulus of x divided by y, like in C/C++.  And each node has  

a link in dimension 0. 
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Proof:    We prove Theorem 6.1 by considering three cases. 

(Case I)   ),( nc α∈ . 

(Necessary)  

According to Equation (1),    0121 aaaaa nn ⋅⋅⋅⋅⋅⋅−− α  = k1 M + c.    

Thus,                    ckaaaaaaa nn +⋅=⋅⋅⋅+⋅⋅⋅⋅ −−+−−
α

αα
α

αα 22 1021121 .    

Take the modulus of α2 on both sides and due to the fact that α
αα 2021 <⋅⋅⋅−− aaa , we 

obtain α
αα 2%021 caaa =⋅⋅⋅−− . 

 

(Sufficient)  

If α
αα 2%021 caaa =⋅⋅⋅−− , then  caaaaaa nn −⋅⋅⋅⋅⋅⋅ −−− 01121 αα  can be wholly divided by  

α2 .  Define Zcaaaaak cnn ∈
−⋅⋅⋅⋅⋅⋅

= −−
α2

0121
1  and  

 

 

 

Then,           cMkckckaaaaa c
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 1110121

αα  

and               cMkckckaaaaa c
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 2220121

αα  

In other words, according to the original definition, 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  has a link in 

dimension c. 
 

(Case II)   ],1[ α∈c . 

(Necessary)  

According to Equation (1),    0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  = ck c +⋅ 21 .    

Thus,                    ckaaaaaaa c
cc

c
ccnn +⋅=⋅⋅⋅+⋅⋅⋅⋅ −−+−− 22 1021121 .    

2k = 

α−+ ck 21  if 0=ca  

α−− ck 21  if 1=ca  
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In other words, according to the original definition, 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−−  has a 

link in dimension c. 

By taking the modulus of c2 on both sides and due to the fact that c
cc aaa 2021 <⋅⋅⋅−−  and 

cc 2<  for 1≥c , we obtain caaa cc =⋅⋅⋅−− 021 . 

 

(Sufficient) 

If caaa cc =⋅⋅⋅−− 021 , then  caaaaa cnn −⋅⋅⋅⋅⋅⋅−− 0121  can be wholly divided by c2 .  

Define Zcaaaaak c
cnn ∈

−⋅⋅⋅⋅⋅⋅
= −−

2
0121

1  and  

 

 

 
 

Then,   cMkckckaaaaa cc
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 1110121

α  

and    cMkckckaaaaa cc
cnn +⋅=+⋅=+⋅=⋅⋅⋅⋅⋅⋅−− ')2,2min(2 2220121

α  

 

 

 

(Case III)   0=c . 

For any M ≥ 1, M’ = min {2c, M } = 1.  For any integer p and q, they must be in the 

congruence class [c]M ’ = [0]1 .  So each node has a link in dimension 0. 

 

Since the case of M not being the power of 2 can be solved once we have a routing 

strategy for M being power of 2, in this paper, we only discuss the latter situation, i.e. 

assuming α = M2log ∈Z. 

2k = 
11 +k   if 0=ca

11 −k   if 1=ca  
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6.3  Gaussian Tree 
According to Theorem 6.1, we can see that whether a packet can be forwarded through 

dimension c at node p, is entirely irrelevant to αaaa nn ⋅⋅⋅−− 21 , regardless of whether c > α 

or not.  So the last α bits in nodes’ address is of more importance.  We define a Gaussian 

Graph based on these α bits. 

 

(Definition 6.2):  Gaussian Graph  

We call the undirected graph nG  ( 2≥n ) Gaussian Graph if it is composed of  

<Vn, En>, where:        Vn = { 0121 aaaa nn ⋅⋅⋅−− | ]1,0[},1,0{ −∈∈ niforai } 

En = {( 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− , 0121 aaaaa cnn ⋅⋅⋅⋅⋅⋅−− ) |  

               c=0 or c∈[1, n-1] and 0121 aaaa cc ⋅⋅⋅−− = c}.  

 

The Figure 6.1 below demonstrates the topology of 2G , 3G , and 4G .  They can be 

generated easily by adding edges, according to the definition of nE , to the original graph 

which is composed only of nodes.  

 

2G  : 

 

 

  

3G  : 

 

 

 

00 00 01 11 10 

000 001 011 010 

100 101 111 110 

       (a) 

       (b) 
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0000 

0001 

1011 

1010 

1110 

1001 

1000 

1111 

1101 

1100 

0010 

0110 

0111 

0101 

0100 

0011 

      4G   : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 1: (Equivalent definition of Tree) 

Suppose graph G has n vertices ( nvvv ,,, 21 ⋅⋅⋅ ) and e edges.  G is a tree if and only if G is 

connected and 1−= ne .  

 

Proof:    A tree is defined as a connected graph which contains no cycle.  

(Sufficient) We prove the proposition by induction on n.  Clearly, this proposition 

holds for 2,1=n .  Assume that it is true for all kn ≤ ( 2≥k ).  When 1+= kn , since G 

is connected, so there is no isolated vertex (vertices whose degree is 0).  If there is no 

Figure 6.1  (a) 2G , (b) 3G , and (c) 4G   

       (c) 
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end-vertex (vertices whose degree is 1) in G, then ∑
+

=

=
1

1
)deg(

2
1 k

i
ive 12

2
1 1

1
+=≥ ∑

+

=

k
k

i
, 

which contradicts with the fact that kne =−= 1 .  So there must be an end-vertex v.  

Remove v and its only edge from G, we get a subgraph G’, which has k vertices and 1−k  

edges.  Since v is an end-vertex, G’ is still connected.  Based on the induction assumption, 

G’ is a tree.  Obviously, constructed by adding an end-vertex to G’ together with its only 

edge, the graph G is still a tree. 

(Necessary) 

This is an apparent property of tree.  So the proof is omitted here.             g 

 

(Theorem 6.2)  nG  is a tree. 

Proof.  We prove Theorem 6.2 in three steps.  

1. nG  is connected.   

We prove this proposition by induction on n.  Clearly, this proposition holds for 4≤n  

based on the figures above.  Assume that it is true for all kn ≤ .  Suppose when 1+= kn , 

1+kG  is not connected.  Then there must be two vertices 01 uuuu kk ⋅⋅⋅= −  and 

01 vvvv kk ⋅⋅⋅= −  ( }1,0{, ∈ii vu  for ],0[ ki ∈ ) between which there is no path.  Let c be the 

dimension of the leftmost 1 in vu ⊕  ( ],0[ kc ∈ ) and 021 aaac cc ⋅⋅⋅= −−  ( }1,0{∈ia  for 

]1,0[ −∈ ci ).  Clearly, edge 

102110211 ),()','( +−−−−−− ∈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅== kccckkccckk Gaaauuuaaauuuvul .  We define a 

subgraph of nG  as >=< ','' EVG , where 

}1,0{|{' 0211 ∈⋅⋅⋅⋅⋅⋅= −−− iccckk xxxxuuuV  for ]1,0[ −∈ ci }   

',|),{(' 2121 VvvvvE ∈=  and ),( 21 vv  is an edge in nG }.   
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Since the connectivity in dimensions less than c is not influenced by the bit value of 

dimensions no less than c, G’ is isomorphic to cG .  As kc ≤ , based on the induction 

assumption, there is a path in 1+kG  which connects u  and 'u .  Likewise, there is also a 

path in 1+kG  which connects v  and 'v .  As )','( vu  is an edge in 1+kG , by concatenation, 

a path is found in 1+kG  that connects u and v, which contradicts the assumption that there 

is no path between them.  Therefore, 1+kG  is a connected graph. 

 

2. There are n2  nodes in nG . (Obvious) 

 

3. There are exactly 12 −n edges in nG .   

We denote the number of links spanning in dimension i as En (i) ( ]1,0[ −∈ ni ). 

According to Theorem 6.1, each node has a link in dimension 0, so En (0) = 12 −n .   
 
A node has a link on dimension 1 if and only if its rightmost bit is 1.  Such links only 

connect nodes in the form of ( 121 xaa nn ⋅⋅⋅−− , 121 xaa nn ⋅⋅⋅−− ).  So En (1) = 22 −n .   

  
A link spanning in dimension 2 can only connect node pairs in the form of: 

( 1021 xaa nn ⋅⋅⋅−− , 1021 xaa nn ⋅⋅⋅−− ) 

 

So En (2) = 32 −n .   
 

Likewise, it is easy to prove that En (i) = 12 −−in .   

Thus  | En | = ∑
−

=

1

0
)(

n

i
n iE = ∑

−

=

−−
1

0

12
n

i

in = 12 −n .  

 

Combining 1-3 and applying Lemma 1, we can conclude that nG  is a tree.             g 



Page 95 of 215 

From now on, we denote nG  as nT  to emphasize this property.  We denote the node k in 

nT  as )(kTn .  The existence of such a tree is crucial for our algorithm because, for each 

source and destination pair in a tree, there is a set of nodes, which the packet must come 

across in its journey, and which can be calculated at the source.  This makes routing 

much more definite and predictable.   
 
 
 
 
 
 
 
 
 

6.4   Routing Strategy for Fault-free Gaussian Cube  

 

6.4.1    Introduction 
 
We first develop an algorithm which ensures optimal routing in a fault-free Gaussian 

Cube )2,( αnGC .  The algorithm has the following properties: 

 

1) It generates the shortest path for any (source, destination) pair. 

2) The computation complexity is )log)(( ααα −nO  at only several nodes on the  

path, the exact number of which is bounded by 



 −

α2
1n

.   

3) The message overhead is )( αnO .  We have good methods to compress the overhead. 
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Prior to the discussion of our routing algorithm in fault-free Gaussian Cube, two  

fundamental algorithms are introduced.  To begin with, the following one aims at finding  

a route from )(sTα  to )(dTα  in αT , whenα , s, and d are given. 

6.4.2 Routing in Gaussian Tree 
 
(Definition 6.3) k-Ending Class 

In Gaussian Cube )2,( αnGC , for ]12,0[ −∈∀ αk , we call the following set ),,( knEC α    

k-ending class:  

}),,0[},1,0{|{),,( 0101121 kaaniaaaaaaaknEC inn =⋅⋅⋅∈∈⋅⋅⋅⋅⋅⋅= −−−− αααα  

 

For simplicity, we abbreviate it as )(kEC when the Gaussian Cube is given.  One 

obvious conclusion, according to Theorem 6.1, is: if a link ( 21 ,vv ) spans in dimension 

α≥c , then 21 ,vv )2%( αcEC∈ .   )(kEC  corresponds to )(kTα  in Gaussian Tree αT .  

Note these concepts are all independent of n.  Let the dimensions no less than α in which 

each node of )(kEC  has a link comprise set Dim(n, α, k), then Dim(n, α, k) = 

αα 2][]1,[ kn − .   

 
To begin with, we briefly introduce the basic ideas underneath this algorithm.  Suppose 

the source is s and the destination is d.  Denote R = s ⊕ d.  If there is a 1 in R and its 

dimension c is no less than α, then the path from s to d must cover at least one node x, 

such that x )2%( αcEC∈ .  Viewed in αT , that means the path must begin from )2%( α
α sT , 

end at )2%( α
α dT  and must pass all nodes in S = { )2%( α

α kT | 02&, ≠≥ kRk α }.   

Since the problem has now been mapped to a tree, with the starting and ending nodes as 

well as the intermediate nodes given, it is simpler to find an optimal route.  
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(Algorithm 6.1)  Path Construction Algorithm (PC) 

Let 0121 sssss ⋅⋅⋅= −− αα  and 0121 ddddd ⋅⋅⋅= −− αα .  We first find the leftmost ‘1’ in R = s ⊕ 

d.  Suppose it corresponds to dimension c.  If c = 0, then s and d are neighbors and (s, d) 

can be appended to the path.  If 0≠c , as it must reach a node in αT  whose last c bits 

caaa cc =⋅⋅⋅−− 021 , we first go to the node 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α .  We can add link l = 

( 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α , 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α ) to the final path.  Then the algorithm runs 

recursively on PC ( 0121 ssss ⋅⋅⋅−− αα , 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α ) and PC ( 011 aass cc ⋅⋅⋅⋅⋅⋅ −−α , 

0121 dddd ⋅⋅⋅−− αα ).  The recursion must be able to terminate because the leftmost ‘1’ 

moves at least one bit rightward after one recursion, until it reaches dimension 0 when the 

source and destination will be neighbors.  Finally, l concatenates the two paths found.  

Since it is obvious that the path will not go to one node more than once and we are 

routing in a tree, the resultant route must be optimal.  Besides, such a recursion will go no 

deeper than α.  The implementation of this algorithm has been put in Appendix II.        g  
          
In our real implementation, we do not use recursive function.  Instead, We use an array 

and a pointer to simulate a stack.  Given the nature of double side recursive function, we 

cannot generate a route sequentially from source to destination.  Therefore additional 

attention should be paid to the labeling of each link, so that we can find the correct order 

of links on that path by a simple sort on the labels with time complexity )log( ααO .  

 

As the algorithm finds the path link by link, the complexity (both spatial and computational) 

is dependent on the diameter of αT  (maximum distance between node pairs).  A program is 

written to calculate diameter of the tree, denoted as )( αTD .  The principle idea of the 

program is that ),( vud , the distance between node u and v in αT , equals ),(),( vpdpud + , 
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where p is the deepest common ancestor of u and v.  Please refer to Appendix III for the 

source code.  The result shows that )( αTD  is )(αO .   See Figure 6.2 below.  

 
 

 

Granted, in real practice, we will almost never use α larger than 10 for reasonable node 

availability.  Here we calculated α up to 25 only with an eye to showing that )( αTD  is 

)(αO .  So the time complexity for running the Path Construction Algorithm is 

))(log)()(( ααα TDTDTDO + = )log( ααO .  

 

Secondly, we introduce an algorithm for arranging multi-destination routing from a tree 

root.  Several nodes belonging to the tree need to be visited and then the packet must go 

back to the root.  It is easy to find that as long as the following principle is met, the path 

generated must be optimal:  if the packet is currently at node p, it can never backtrack to 

the parent unless no destination still exists in the subtree of p.  

(Algorithm 6.2) Closed-Traverse Algorithm in tree   (CT) 

 

 7α 

Figure 6.2 Diameter of αT  versus α  

α 
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Suppose we are at the root 0121 rrrrr ⋅⋅⋅= −− αα  where }1,0{∈ir  for all ]1,0[ −∈ αi .  We are 

to visit D = { nddd ,,, 21 ⋅⋅⋅ } whose members are all nodes in the tree and finally go back to 

r.  The prototype of the algorithm is 

),( DrCT .  We first pick up randomly one 

Dd ∈  and use Algorithm 6.1 to find a 

route L from r to d.  Then for each Ddi ∈ , if 

id  is covered by L, we only need to 

record that fact.  But if it is not covered, 

we will use the technique in Algorithm 6.1 

(PC) to find a node in L at which the 

packet must branch away from  

L.  For example, in the tree shown in Fig. 

6.3, the bold line represents L, and to 

reach id , the route must branch at ib .   

However, to calculate ib , we do not need to find the complete path from r to id .  Similar 

to Algorithm 1, we first find the leftmost ‘1’ in R = r ⊕ id .  Suppose it corresponds to 

dimension c.  If c = 0, then r and id  are neighbors and ib  = r.  If 0≠c , as it must reach a 

node in αT  whose rightmost c bits caaa cc =⋅⋅⋅−− 011 , we now check link ( 21,vv )  = 

( 011 aarr cc ⋅⋅⋅⋅⋅⋅ −−α , 011 aarr cc ⋅⋅⋅⋅⋅⋅ −−α ).  If 1v  belongs to L while 2v  does not, then ib  = 1v .  

If both 1v  and 2v  belong to L, the algorithm only needs to search the branch point 

between 2v  and id .  If neither 1v  nor 2v  belongs to L, then the branch point must lie 

between r and 1v .  So the process can proceed in a recursive way and terminates within α 

r 

d 

id  

Branch point 

for id  

bi 

jd  

Figure 6.3  Example for CT algorithm 
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steps after finding the branch point.  Since a node in L might serve as branch point for 

more than one destination in D, we use a table to record it.  We denote the mapping as 

)(⋅B .  For example, in the Figure 6.3, ib  is the branch point for id  and jd , so )( ibB = 

{ id , jd }.  

 

After all members in D are processed and table )(⋅B  is obtained, we can begin to go from 

r to d by following L.  Once we arrive at a node p where Φ≠)( pB , we only need to run 

this algorithm again by calling ))(,( pBpCT .  After this call returns, we proceed along L, 

until d is reached.  Then we only need to go back to r in a reverse direction of L.  Since 

this is a distributed algorithm, CT is not recursive as it appears here.     g      

 

It can be easily confirmed that the rule stated above is obeyed in CT, so the route is optimal.  

The conclusion about the complexity of this algorithm is: suppose we are routing in αT  and 

|D| = m<n  for the original D, the space cost is at most )( 2nO  to run CT at each necessary 

node and time complexity is )( αnO .  The overhead of packet is )( αnO . 

 

The message overhead ( )( αnO ) is a little bit large. We have effective ways to compress 

it by increasing computation.  The major overhead cost lies in recording each branch 

points p and )( pB .   But if we calculate )( pB again at each node p at the computation 

cost of ))(( αα −nO , the size of overhead can be reduced to )(nO .   Therefore, the 

resultant overall gain depends on which part is bottleneck, processor’s speed or 

transmission rate.  
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We have also noticed that the degree of each node in αT  is tightly bounded.  This provides 

a compact way to record L in CT, thus reducing the overhead size.   It is unnecessary to 

record the sequence of node address.  Instead, we only need to know through which port to 

go ahead.  Moreover, if the degree of current node is 1, then it must backtrack.  If the 

degree is 2, then it must go with the dimension not used in entering the node.  So for both 

cases we don’t need to record where to go next.  It is calculated that the degree of about 

81% nodes in αT  is less than 3.  See Figure 6.4.   

 

 

Even if a node’s degree is larger than 2, we still need only to record which link to use.  

For α < 11, the maximum degree is 3, and for α in a practical range, 2 bits is enough for 

indicating which link to use. 
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6.4.3           Routing in Fault-free Gaussian Cube 
 
Finally, we present the complete routing algorithm for fault-free Gaussian Cube, by 

combining Algorithm 6.1 (PC) and Algorithm 6.2 (CT). 

 

(Algorithm 6.3)  Fault Free Gaussian Cube Routing (FFGCR) 

The input of FFGCR is: n and α for )2,( αnGC , source 0121 sssss nn ⋅⋅⋅= −−  and destination 

0121 ddddd nn ⋅⋅⋅= −− .    

 

Firstly, we map the problem from )2,( αnGC  to αT .  Let p = s ⊕ d.  We denote: 

    P = { 02&|]1,[ ≠−∈ ipni α }   D = { PxxT ∈|)2%( α
α } 

By viewing in αT , we are routing from s’ = )2%( α
α sT  to d’ = )2%( α

α dT  and we 

must cover all nodes in the set D.   

 

At s’, we use Algorithm 6.1 to find a path αTL ⊂  to d’.   Then we use the technique in 

Algorithm 6.2 to find the branch point for all members in D.  Go along L.  This means 

traversing by using the least significant α dimensions in the original )2,( αnGC .  Once 

we reach a branch point b, use Algorithm 6.2 to traverse all nodes whose branch point to 

L is b.  Whenever the packet reaches a node x whose corresponding node in αT  is a 

member of D, it will go through all preferred dimensions αα 2][]1,[ xnc −∈ .           g

       

Obviously, FFGCR finds the shortest route from s to d.  Denote )( αTDH = .  The time 

complexity is )log)(log( HnHHHO αα−++ , where each item stands for: 
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Table 6.1 Components of computation complexity 

H: 
Picking up links that comprise the path L from s’ to d’ (not necessarily    

in the order of from source to destination) 

HH log  Sorting the links to reorganize the path from s’ to d’ 

Hn log)( αα− : Time for finding branch point.  There are at most α−n  preferred 

dimensions in ]1,[ −nα .  Search in Algorithm 6.2 takes at most α rounds 

of recursion.  Each round involves a look-up in H sorted nodes in L. 

 

 

Since )(αOH = , the total complexity is )log)(( ααα −nO .  Such an amount of 

computation is carried out at the source and all branch points. 

 

The space required for each node to run the algorithm is )())(( nOHnO =+−α .   

The message overhead is: )( αnO .  It can be reduced if the method proposed in section 

6.4.2 (after the introduction of Algorithm 6.2) is adopted. 

 

Up to now, the routing problem in fault-free Gaussian Cube has been completely solved.   

It will be shown later that Algorithm 6.3 serves as a basis for our fault-tolerant routing 

strategy in Gaussian Cube and it contributes to the theoretical completeness of routing in 

Gaussian Cube. 
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6.5     Fault-tolerant Routing in Gaussian Cube  
 

6.5.1          Introduction 

 

When we go ahead to fault-tolerant routing strategy design, we have to take some 

practical considerations.  The most important one is that node degree in )2,( αnGC  is 

mostly about 2
2

+
−

α

αn .  The minimum node degree is 1
2

+





α

n , occurring at nodes 

whose address is multiple of 2α.  So a natural bound is that )2,( αnGC cannot tolerate over 







α2
n  faulty components.  It is clear that once α reaches 3 or more, the network is very 

likely to be disconnected and suffer from intrinsically poor fault tolerance ability.  There 

are two approaches to tackle this problem.  A natural idea is to restrict α to be small.  

When α = 0, )2,( αnGC  is effectively a binary hypercube.     If we restrict α to within [0, 

2], the problem will be very uninteresting and αT  will degrade to a linear array.  

Therefore, some novel notions and metrics must be used in this new setting.  In this 

chapter, a new approach to classify errors is introduced and the influence of errors is 

analyzed.  We first discuss the basic form of the fault-tolerant routing strategy, which 

disposes of faulty links only.  The extended form, which completely solves the fault 

tolerant routing problem, will be presented in the last section with close relationship to 

Exchanged Cube. 
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6.5.2        Basic Fault-tolerant Routing Strategy 
  
Firstly, a categorization of faulty components will be useful. 

 

(Definition 6.4)   A-category (link) fault 

If a link error occurs at a dimension α≥c , it is called A-category (link) fault.   

 

(Definition 6.5) B-category fault 

If all link failure(s) incurred by an error are in dimension(s) less than α, then the error is 

called B-category fault.   

Note: unlike A-category fault which can occur only in the form of link error, B-category 

faults can be both link error and node error, as long as that node has no link spanning in a 

dimension α≥c .  A link error is either A-category or B-category.  

 

(Definition 6.6)   C-category (node) fault 

If a node error implies break down of links in dimensions both smaller and no smaller 

than α, it is called C-category (node) fault.   

 

A node error is either B-category or C-category because each node has one link spanning 

in dimension 0.   In short, all faulty components must belong to one and only one of the 

three categories. 

 

In Gaussian Cube )2,( αnGC , for ]12,0[ −∈∀ αk , we have defined k-ending class:  

=)(kEC }},1,0{|{),,( 0101121 kaaaaaaaaaknEC inn =⋅⋅⋅∈⋅⋅⋅⋅⋅⋅= −−−− αααα  

The following definition decomposes k-Ending class into further refined classes. 
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(Definition 6.7) k-Ending-t-Equivalent Class 

In k-ending class ),,( knEC α , for ]12,0[ |)(| −∈∀ −− kDimnt α , we call the following set 

),,,( tknEEC α  k-Ending-t-Equivalent Class 

),,,( tknEEC α  ={ |),,(011 kanECaaaan ∈⋅⋅⋅⋅⋅⋅ −− αα  bits other than  

]−1 [0,α Dim (k) comprise value t} 

We define k-Ending-t-Equivalent Graph ),,,( tkanGEEC  as >< ),,,(),,,,( tkanEtkanV , 

where   

),,,( tkanV  = ),,,( tknEEC α  

),,,( tkanE = {( ), 21 vv | ∈21,vv ),,,( tknEEC α , Evv ∈),( 21 }     

        (E is the edge set of )2,( αnGC ) 

 
The following theorem is obvious, but it gives an insight into the advantage of 

categorizing faulty components. 

 

 (Theorem 6.3) 

If only A-category faults exist in )2,( αnGC , and in each ),,,( tknGEEC α  

( ]12,0[ −∈ αk , ]12,0[ |)(| −∈ −− kDimnt α ), the number of faulty component is less than  

|Dim (k)| = ),(1
2
1

αδα kkn
−+



 −−  ( 0:1?),( ααδ <= kk ), there is a fault-tolerant and 

cycle-free routing strategy for any source and destination pair.  

 

Proof.   

Obviously, ),,,( tkanGEEC  is a binary hypercube embedded in )2,( αnGC .  There are 

many existing routing algorithms, including FTFR I proposed, that ensure a packet to be 
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sent from any non-faulty source to any non-faulty destination in a deadlock-free fashion, 

as long as the number of faulty links is less than the dimension of the hypercube and no 

node fault exists. 

 

In FFGCR for )2,( αnGC , let source be s and destination be d.  Let p = s ⊕ d.  We denote: 

P = { 02&|]1,[ ≠−∈ ipni α } D’ = { Pxx ∈|2% α } I = { '|)( DxxEC ∈ } 

 
As there are only A-category faults, traversing through links spanning in the least 

significant α dimensions is always successful.  So it is guaranteed that for any member 

)(kEC  in I, a packet can reach at least one node in )(kEC .  Suppose a packet reaches 

IkEC ∈)(  by arriving at node x and ∈x ),,,( tknEEC α .  The ,2),( αα +≥ kkifk  

α
α

αα 2)
2

1,0max(,,23,22 ⋅



 −−

+⋅⋅⋅⋅+⋅+
knkkk  bits of x and d are 1|)(|10 −⋅⋅⋅ kDimxxx  

and 1|)(|10 −⋅⋅⋅ kDimddd  respectively.  Then we can focus on routing in binary hypercube 

),,,( tknGEEC α  from 1|)(|10 −⋅⋅⋅ kDimxxx  to 1|)(|10 −⋅⋅⋅ kDimddd , which is guaranteed by 

existing algorithms and the precondition of the theorem.  All the bits in α2][k  are set to be 

same as d, we can use links spanning in the last α dimensions to go to another member in 

I, and finally we get to the destination d.                      g   

 

Suppose |D’| = m, and in the k-Ending-t-Equivalent class which is encountered at the ith 

time, there are iF  A-category faults.  Then the resultant route is at most ∑
=

⋅
m

i
iF

1
2  longer 

than the optimal route found in a fault free setting. 
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Eq. (4) 

The following figures demonstrate the trend of ))2,(( αnGCT with respect to n, when α = 1, 

2, 3, and 4. 

Now we can conclude that in )2,( αnGC , if there are only A-category faults, then the 

maximum number of fault tolerable is:  

∑
−

=

−− −=
12

0
)0,1max(2))2,((

α

αα

k
k

tn tnGCT k          

 where ),(1
2

1
αδα kkntk −+



 −−

=  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

To make the figure clearer, we use ))2,(((log2
αnGCT  for comparison.  

 

Figure 6.5 ))2,(( αnGCT  ~ n 
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An interesting observation is that when α increases, ))2,(( αnGCT  decreases for small n and 

increases for large n.  We can see that when α = 3, the jump point of the line corresponding 

to 3=α  is after n = 8 = 2α, and when α = 4, the jump point is delayed by 4 from n = 16 = 

2α.  This is because only after the dimension of a network becomes large enough, can it 

tolerate faults.  In Equation (4), ∑
−

=

−− −=
12

0
)0,1max(2))2,((

α

αα

k
k

tn tnGCT k  and 

),(1
2

1
αδα kkntk −+



 −−

= , only when α2≥n can some 0≠kt and thus 

0))2,(( ≠αnGCT .   The delay is caused by ),( αδ k , because the dimension of embedded k-

Ending-t-Equivalent Graph must go larger than 1.  As for large n, when α increases, kt  

decreases, so that ktn −−α2  grows exponentially which makes ))2,(( αnGCT  larger.  In other 

Figure 6.6 )))2,(((log2
αnGCT   ~  n 
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words, it is the exponentially increasing number of embedded k-Ending-t-Equivalent 

Graphs that makes ))2,(( αnGCT  also grows exponentially. 

 

Another interesting property of this algorithm lies in the influence of each A-category fault.  

If there exists an ),,,( tknGEEC α  in which the number of A-category fault is over 

),(
2
1

αδα kkn
−



 −− , routing will still be guaranteed to be successful if source and 

destination do not differ in any dimension αα 2][]1,[ knc −∈ . 

 

Since A-category fault excludes the possibility of node faults, we need an algorithm to deal 

with B-category and C-category faults as well.  The following section 6.5.3 deals with this 

problem.  The discussion of that algorithm is closely related to Exchanged Cube.   

 
 
 

6.5.3      Extended Fault-tolerant Routing Strategy 

 

Suppose in )2,( αnGC , )( pTα  and )(qTα  are neighbors in αT .  For each 

]12,0[ |)(||)(| −∈ −−− qDimpDimnk α , we define graph =),,,,( kqpnG α  < ),,,,( kqpnV α , 

),,,,( kqpnE α >, where ),,,,( kqpnV α  is the set of nodes in )2,( αnGC whose bits in 

dimensions other than Dim (p) Dim (q) ]1,0[ −α  comprise value k and whose rightmost 

α bits represent  p or q.  ),,,,( kqpnE α  is the subset of links in )2,( αnGC  which connect 

nodes in ),,,,( kqpnV α .  If the last α bits are viewed as one dimension that can take value 

only in {p, q}, then ),,,,( kqpnG α  is effectively isomorphic to Exchanged Cube 
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|))(||,)((| qDimpDimEH . (Note: we do not use |))(||,)((| pDimqDimEH  though both can 

do.)  Denote the number of faulty component in )),,,,(( kqpnGBt α  as ),,,,( kqpnet α , and 

that in )),,,,(( kqpnGBs α  as ),,,,( kqpnes α .  The number of link faults in 

)),,,,((0 kqpnGE α  is denoted as ),,,,(0 kqpne α . 

 

(Theorem 6.4)  

In )2,( αnGC , for all )( pTα  and )(qTα  which are neighbors in αT , as long as 

),,,,( kqpnes α + ),,,,(0 kqpne α < |)(| pDim  and ),,,,( kqpnet α + ),,,,(0 kqpne α < 

|)(| qDim  for all ]12,0[ |)(||)(| −∈ −−− qDimpDimnk α , there is a fault-tolerant and cycle-free 

routing strategy for any nonfaulty source and destination pair. 

 

Proof.  (Outline)  

The algorithm used in Theorem 6.3 fails only when a link in dimension [0, 1−α ] is broken.  

With our discussion about the fault tolerant routing in Exchanged Cube, such a problem is 

solved once the fault number is restricted by the precondition of Theorem 6.4.        g 

               

Unfortunately, different from Theorem 6.3, if there exists a ),,,,( kqpnG α  in which the 

number of faulty component violates the restriction in the precondition of Theorem 6.4, 

routing might fail even if source and destination do not differ in any dimension ∈c  Dim (p) 

 Dim (q).  That is because the B-category and C-category faults influence the routing in 

Gaussian Tree αT , where many dimensions other than the preferred dimensions will be 

used more than once. 
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Up to now, we have completely solved the problem of fault tolerant routing in Gaussian 

Cube.  We used a new method to categorize faulty components so our approach is more 

meaningful than dealing with the trivial bound of network node availability.   For 

hypercubes constructed by link dilution, this approach to analyzing routing algorithms’ 

ability of tolerating faults is novel and useful because it is expected that this kind of 

topology will lose in traditional metric: node availability.  The tree structure is very helpful 

to make the problem more deterministic and controllable.   
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Chapter 7:  Simulator 
 

In this part, a software simulator is constructed to imitate the behavior of the real network, 

and thus test the performance of FTFR.  The current simulator model is mainly based on 

the work of Wong Chuen Vong [20].  In this project, we point out some rectifications and 

improvements to the model, both technical and theoretical.  Special attention was paid as 

to how to efficiently simulate an incomplete network. 
 

7.1  Overview of the Simulator 
 
In this simulator, packets can traverse the network and reach the destination, with routing 

decisions made at each intermediate node.  There are three important components in the 

simulator: j topology of the network; k implementation of the routing strategy; l 

timing methods to measure the useful metrics and statistical analysis of the result. 
 
There are nine basic assumptions in this simulator: 

Ø Fixed packet-sized messages are used. 

Ø Source and destination nodes must be nonfaulty. 

Ø Destination node must not be source node. 

Ø Packet reaching destination is absorbed 

Ø Eager readership is employed where packet service rate is faster than packet 

arrival rate. 

Ø A node is faulty when all of its incident links are faulty. 

Ø A node knows status of its links to its neighboring nodes and faulty nodes in the 

network 

Ø No packet is generated for faulty nodes. 

Ø All faults are fail-stop. 
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Figure 7.1  Simulation  
Design Flow Chart 

The simulation model is composed of several functional modules, with their relationship 

shown Fig. 7.1: 

  Simulation Counter ++ 
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7.2  Analysis of simulator components 
 

This part describes in detail the components in Fig. 7.1.  Some rectifications and 

improvements are mentioned in this section that are made to the previous design.  Two of 

them are of great significance to the final result.  There are also some original proposals 

for implementing incomplete networks.  For simplicity, we take the regular Fibonacci 

Cube of order 2+n , for instance ( 1≥n ). 

 

7.2.1 Setup Network 
 
In addition to initializing network parameters such as node availability and total number 

of nodes and links, the major task in this stage is initializing the node array, which is the 

physical representation of the whole network.  The number of nodes can be calculated by 

the sequence presented in [12][13][14][15].  The number of links can also be easily 

obtained by induction introduced in [12][13][14][15].  The data structure of a node is as 

follows: 
 
class  CNode 

{ 

public:  

      unsigned avaiVector;     // availability vector 

      CQueue *NodeQueue;     // point to first packet in node queue (injection queue) 

      CQueue *TransitQueue;     // point to first packet in transit queue (input queue) 

      CQueue *OutputQueue;     // point to packet in Output Queue  

      CPacket *CentralBuffer;     // point to packet in Central Buffer 

} 
 



Page 116 of 215 

Various numbers of buffers are allocated to each queue at each node.  There is only one 

injection queue assigned to each node and with unlimited size (which is acceptable for 

simulation).  Depending on the topologies employed and the dimensions of the network, 

each node will have node degree number of transit queues and output queues, 10 packet 

buffers per transit queue and 1 packet buffer per output queue.  (Refer to Figure 7.2) 

 

 

 

In our simulation model, there is no data structure for links or edges.  Instead, each output 

queue and transit queue at the neighbor correspond to one link connection in between.  A 

network can obtain message from either its injection queue or transit queue.  New packets 

are injected into the injection queue and packets received from neighboring nodes are 

queued in the transit buffer.  To make routing decision, packets must be transferred to 

central buffer one by one.  Then it is routed to the next node’s transit queue via a certain 

Figure 7.2 Node model 
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dimension if destination is not reached, or the output queue if next node’s transit queue 

for that dimension is full, or injection queue if even the local output queue is full. 
 
An intricate problem for incomplete cube is that not all dimensions are available at each 

node, even in a fault-free setting.  In nFC , the node degree varies from 



 −

3
2n  to 2−n  

[12].  In nEFC , the node degree varies from 




4
n  to 2−n  [14].  In )(nXFCk , the node 

degree varies from 1
3

)1(
−+



 −− kkn  to 2−n  [15].  Thus, we have to calculate the 

availability vector beforehand.  Unlike the former model, we don’t construct the queues 

until the faulty components are selected.  The benefit is we need not allocate memory 

space for these faulty links, though we still allocate memory for faulty nodes.  As a result, 

the availability vector at a node contains all the information about the available 

dimensions.   

 

7.2.2   Setup faulty components 
 
Faulty components consist of either faulty nodes or faulty links or both.  The 

determination of number of faulty nodes and links is: 

FC = FN + FL 

FC is the number of faulty components, FN is the number of faulty nodes and FL is the 

number of faulty links.  A faulty node will render all its incident links faulty. 

We can specify both FN and FL.  We can also specify FC only, with FN and FL 

determined by random selection as long as FC = FN + FL.  The selection of the location 

of faulty components is same as the previous model, with careful avoidance of duplicate 

selection and picking non-existent components. 
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Ø Normal distribution 

Ø Log normal distribution 

Ø Poisson distribution 

Ø Weibull distribution 

Ø Erlang distribution 

7.2.3  Gather global network status 
 
In FTFR, each node needs to know the availability vector of all its neighbors.  However, 

this process of exchanging information is omitted here for two reasons.   

Firstly, this is a simple duplication costing one hop time with no calculation.   
 
Secondly, there is no point in allocating space locally at each node since the information 

is available in global data structure.  Consequently, a large amount of space is saved. 
 

7.2.4 Generate Packets 
 
New packets are generated at every node if the total allowable number of packets is not 

exceeded.  The total allowable packet number is defined as: 

(Total Links – Faulty Link – Number of links incident to Faulty Nodes)×Buffer Size 

Buffer size is the size of transit queue of a node at each dimension.  In our test, it is set to 

10.  

 

The generation of packets follows the trend in the selected probability distribution 

function.  Ten choices of distribution functions are provided in the program: 

 

Ø Uniform distribution 

Ø Bernoulli distribution 

Ø Beta distribution 

Ø Binomial distribution 

Ø Exponential distribution 

 

As global information is easily accessible in the simulation tool, it is easy to ensure the 

assumption that destination is not a faulty node. 
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7.2.5 Process output buffer queues 
 
Packets waiting in the output buffer queues are sent to their respective neighbors via the 

corresponding links.  The transmission is considered as one hop.  If the transit buffer 

queue of the neighbor is full, the packet will remain in the current node’s output buffer 

queue.  All output buffer queues are processed in round robin fashion.   

However, unlike binary hypercube, in incomplete cubes, the packet stored in the output 

queue OutputQueue[i] (which means it will use the ith
 available dimension at current 

node), might not be expected to be sent to the neighbor’s TransitQueue[i], because that 

dimension will possibly no longer stand as the ith
 available dimension there.  For example, 

for node 100 in a 3-dimension regular Fibonacci Cube, dimension 2 is the second 

available dimension since 110 is not a valid Fibonacci address.  But at the corresponding 

neighbor, 000, dimension 2 will be the third available dimension.  So we need a 

translation table at each node, the ith item of which records such a change in the ith 

available dimension.  The value can be calculated by utilizing the availability vector of 

the current node and its neighbors.  In real implementation, we save that huge space by 

re-calculating it at each iteration.  The result shows that this O(n) computation costs only 

a very small fraction of total simulation time.  The main advantage is the saving of a 

significantly large amount of memory space, which enables us to test networks of higher 

dimension. 

 

7.2.6 Process transit buffer queues 
 
If packets are available in transit buffer queues, it is transferred to the central buffer 

where routing algorithm is applied and determined whether this packet has reached its 

destination or needs to be routed.  If the packet is destined for the current node, it is 

absorbed (deleted or de-allocated).  Otherwise, it is sent to the next node’s transit buffer 
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queue (if there is available buffer space) or transferred to current node’s output buffer 

queue (again, if space is available) or appended to the injection buffer queue.  All transit 

buffer queues are processed in round robin fashion. 

 

7.2.7 Process injection buffer queue 
 
Similar to the processing of transit buffer queues, packets generated that are waiting in 

the input buffer queue are transferred to the central buffer and routing algorithm is 

applied there.  Then the packet is sent to the next nodes’ transit buffer queue (if there is 

available buffer space) or transferred to current node’s output buffer queue (again, if 

space is available) or appended to the injection buffer queue.   

 

7.3   Special problems and solutions 
 
In this section, we focus on some special problems for simulating incomplete hypercubes.  

These include an efficient way of storing the incomplete network, and the intrinsic timing 

problem of using a single processor to simulate the parallel architecture.  The precision 

problem is also recapitulated.   

 

7.3.1      Efficient Storage 
 
Fibonacci-class cubes are incomplete cubes, so if we use the binary value of a node’s 

address as index of the node array, a lot of space will be wasted.  Therefore, we need a 

function that efficiently maps between the order of a node and the node’s address. 

An interesting property of Fibonacci code is that each integer ]1,0[ 2 −∈ −nfN  has a 

unique order-n Fibonacci code.  This can be attributed to the greedy approach used in 

conversion.  First, find the greatest Fibonacci number kf  ≤ N, and assign a  “1” to the bit 
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that corresponds to kf .  Then, proceed recursively for kfN − .  The unassigned bits are 

0’s.  In a Fibonacci code, the least significant bit is 2f  rather than 1f .   

 

The set of Fibonacci number ⋅⋅⋅⋅⋅⋅ ,,,, 32 nfff  is not linearly independent on {0,1}, that is, 

any if  ( 4≥i ) can be expressed by the linear combination of other Fibonacci numbers 

with coefficients taken in {0,1}, given ]1,0[ −∈ nfi .  Thus, there are more than one 

Fn bbb ),,( 23,1 ⋅⋅⋅−  such that jb  is either 0 or 1 for )1(2 −≤≤ nj  and ∑
−

=

⋅=
1

2

n

j
jj fbi .  In 

Fibonacci Cube, it is the greedy approach that guarantees this inner-product-like mapping 

to be a bijection between [0, ]12 −−nf  and the node address in Fibonacci Cube nFC .    

 

This property makes it possible to use an array in the size of nf  to simulate the Fibonacci 

Cube of order n.  In the simulator, function Fib2Dec() can convert a )2( −n -bit binary 

address Fn bbb ),,( 23,1 ⋅⋅⋅−   into a decimal number i by applying ∑
−

=

⋅=
1

2

n

j
jj fbi .  The 

inverse function is implemented by Dec2Fib(). 

 

Unfortunately, as the variants of Fibonacci Cube don’t employ greedy approach, different 

nodes might represent the same integer.  E.g. in 8EFC , 100000 and 010110 are both 

valid addresses.  But (1,0,0,0,0,0) Tfff ),,,( 267 ⋅⋅⋅⋅ = 13 = (0,1,0,1,1,0) Tfff ),,,( 267 ⋅⋅⋅⋅ .   

 

Hence, to simulate these cubes of order n without the loss of their foremost advantage: 

low expandability, we have to find a one-one bijection which can efficiently map 

between a valid node address and [0, F-1] where F is the total number of nodes in the 
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network.  Otherwise, it is inevitable to use an array of length 22 −n .  Before presenting 

this interesting method, it is better to see an algorithm that maps an n-bit Fibonacci code 

‘original’ to an integer ]1,0[ 2 −∈ +nfx .  The result is the same as what the greedy 

approach produces.  To use it, call Fib2Dex (x, 2−n ). 

 
// x is a (digit)-bit Fibonacci Code 
unsigned Fib2Dec(unsigned x, unsigned digit) 
{  
 unsigned mask, top; 
 
 if(digit > 1) 
 { 
  mask = (1 << (digit - 1)); 
  if(x & mask)  // test whether the highest two bits are ‘10’ 
   return FibNum[digit + 1] + Fib2Dec( x, digit - 2);   

  // FibNum[digit+1] stores Fibonacci number Fdigit+1 
  else   
   return Fib2Dec( x, digit - 1);   
 } 
 else   
  return x & 1; 
} 
 

Denote the mapping as )(⋅G .  The principle underneath it is:   

If }1,0{∈ia  for ]1,0[ −∈ ni , 

        

 

     

It can be easily proved that this algorithm is equivalent to the greedy approach.  However, 

it opens a window to finding a one-one bijection for other Fibonacci-class cubes.  The 

following demonstrates an algorithm that works for Enhanced Fibonacci Cube of order n.  

To use the algorithm, call Fib2Dec (x, n–2). 

)( 0121 aaaaG nn ⋅⋅⋅−− = 

)( 012 aaaG n ⋅⋅⋅−             if 01 =−na  

)( 0131 aaaGf nn ⋅⋅⋅+ −+     if  1021 =−− nn aa  
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unsigned Fib2Dec(unsigned x, unsigned digit) 
{  
 unsigned mask, top; 
  
 if(digit > 4) 
 { 
  top = x >> (digit - 2);   // test the leftmost 2 bits 
  if(top == 0)    // if they are 00 
  { 
   mask = (1 << (digit - 2)) - 1; 
   return Fib2Dec(mask & x, digit - 2); 

// extract the last digit – 2 bits for recursion 
 
  } 
  else if(top == 2)   // if they are 10 
  { 
   mask = (1 << (digit - 2)) - 1; 
   return 2 * FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & x,  

digit - 2);          // extract the last digit – 2 bits for recursion 
  } 
  top = x >> (digit - 4);   // test the leftmost 4 bits 
  if(top == 5)    // if they are 0101 
  { 
   mask = (1 << (digit - 4)) - 1; 
   return FibNum[digit-2] + FibNum[digit] +Fib2Dec(mask & x,  

digit - 4); 
  } 
  else     // if they are 0100 
  { 
   mask = (1 << (digit - 4)) - 1; 
   return FibNum[digit] + Fib2Dec(mask & x, digit - 4); 
  } 
 } 
 
 // the following disposes of the initial conditions 
 else if (digit == 4) 
 { 
  if(x<3) 
   return x; 
  else if(x>7) 
   return x-3; 
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  else  
   return x-1; 
 } 
 else if(digit==3) 
 { 
  if(x<3) 
   return x; 
  else  
   return x-1; 
 } 
 else  
  return x; 
} 
 

A weak point of the algorithm above is that it is recursive, which is not suitable for 

hardware implementation.  Thanks to the left-induction nature of Fibonacci Cube’s 

definition, we can simply convert it into a non-recursive function. Please refer to 

Appendix IV for these algorithms.  

 

It is easy to extend this method to Extended Fibonacci Cubes.  It is also straightforward 

to design an algorithm that maps an integer back to a Fibonacci code.  For details, please 

refer to Appendix IV. 

 

Now, we have found an efficient bijection which will help us save a lot of memory space 

in simulation.  As is shown later, we can safely simulate Fibonacci-Class cubes to 

dimensions over 20.  This is worthwhile because the scale of n-dimensional Fibonacci-

Class Cube is about the same as a binary hypercube with dimension n/1.46.  Here, 

2
)31(

246.1
+

≈ . 
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The discussion above also gives a valuable hint that if we want to study Fibonacci-Class 

Cubes in a unified way, it is better to focus on node labels’ bit pattern, instead of their 

corresponding decimal numbers. 
 
 
 

7.3.2    Timing strategy 

 

In actual communication network, routing is performed in a distributed fashion by all 

processors in parallel.  As only one processor is available for simulation, special 

approaches must be adopted for conversion.  Actually, two metrics are related to timing: 

packet latency and throughput time.  The latter will be discussed in 7.3.3.  As for the 

former, the elapsed time for a node to service a packet is recorded.  For the serviced 

packet and other packets in the current node’s queues except the injection buffer queue, 

the recorded elapsed time is added to their accumulated time.  This recorded elapsed time 

is not added to the accumulated time for other packet in other nodes’ queues.  The time to 

generate a packet will not be included in the elapsed time of that packet.  Hence, the total 

accumulated time for each packet is dependent on the time it is being serviced and the 

time it is waiting in queue of a node while that node is servicing another packet.  By 

using accumulation of elapsed time for packets, it seems like all packets are processed in 

nodes concurrently. 

 

To control the total simulation time, a timer is used to record the time passed since the 

beginning of simulation.  Each node is processed in a round robin fashion and it 

processes output queue, transit queue and injection queue successively.  At the end of the 

node’s process, the timer is checked to see whether the total elapsed time has exceeded 

the specified simulation duration. 
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7.3.3 Timing precision issue 

 

The library function provided by system can measure time by milliseconds.  However, if 

we use that ‘large’ unit, the result will be all zero.  To achieve the accuracy at 

microsecond level, a set of assembly directives were written, which can make timing 

accuracy up to the level of processor clock cycle number.  The contribution of the project 

is to encapsulate the original approach into a separate class, providing P( ) and V( ) 

methods for measuring time.  Its usage is like a stop watch, with P( ) starting it and V( ) 

stopping it.  For example, after executing the sequence: Reset, P1, V1, P2, V2, . . . , Pn, Vn, 

the value returned by calling getDuration( ) is ∑
=

n

i
ii PVd

1
),( , where ),( ii PVd  represents the 

time passed between Vi and Pi .  Besides, the implementation is more efficient, with the 

use of ULONGLONG data type, which is far faster than computing by ‘double’ type.  

Please refer to Appendix V for the details of implementation. 

 

7.3.4 Two Improvements 
 
Firstly, the original throughput time is calculated in a very inaccurate way.  There, the 

start and end time of processing each node are recorded.  After all nodes have been 

iterated, the latest end time among all nodes is subtracted from the earliest start time 

among all nodes.  This produces the processing time of all nodes processing packets in 

parallel which is then accumulated.   

 

However, it uses a random number generator to produce the start time for each node: 

StartNode_Time = (double) rand()/(double)(RAND_MAX * SCALE_FACTOR); 
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Here, SCALE_FACTOR is set to 1000.0.  The scale of StartNode_Time is about 
1000

1  of 

the unit of throughput time.  So after the accumulation of hundreds of thousands of 

rounds, it was detected to be the major contribution to the throughput time.  In other 

words, in the expression 
PT
DPTP = , where TP, DP, and PT are the throughput of network, 

number of packets that have reached destination, and the total processing time taken by 

all nodes, respectively, the result is mainly composed of the accumulation of difference 

of randomly generated numbers.  Some statistical variables were added to measure the 

time contributed by random number generator, and the result confirms this conclusion. 

 

To patch up the problem, a new method is used in this project.  It records the total time of 

processing all nodes.  Let it be T.  Then the throughput time is calculated as 
N
T , where N 

is the total number of nodes.  Here, T is effectively the simulation time specified in the 

input file.  Maybe in the final iteration, some nodes have been processed while some have 

not.  However, as the total number of iteration is very large, such a minor difference can 

be neglected.  The experimental result shows that as long as the simulation time is long 

enough and thus 
N
T  is large enough, the throughput fluctuates in a very small range, such 

that no result is discarded by the 95% confidence interval technique (see Section 7.4).  

The assumption underlying this model is that all nodes always run in parallel. 

The second problem is that nearly 10 percent of the packets are lost halfway.  Actually, 

when the neighbor’s transit queue and local output queue are both full, the packet is not 

added to the injection queue due to a mistake in programming.  The prototype of the 

function is:  void Requeue(CPacket *Target,CPacket **Packet) and it is called by: 

Requeue (Node[CurrentNode].NodeQueue->Packet, &(Node[CurrentNode].  

CentralBuffer));  
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Obviously, the pointer to central buffer is copied to the formal parameter of Requeue, 

instead of the real parameter Node[CurrentNode].NodeQueue->Packet. This causes the 

loss of packet and leakage of memory.  A simple way to fix the problem is to call by 

reference the first parameter of Requeue, i.e. the prototype is changed into: 

void Requeue(CPacket *&Target, CPacket **Packet). 

Now, the debugger of Visual C++ reports no memory leakage and the batch mode 

proposed by Yan Yan [22] can be run safely. 

 

 

 

 

7.4 Filter of simulation results 
The confidence interval check is used in processing the simulation results.  This 

technique is more necessary in incomplete cubes than in binary hypercube, Folded Cubes 

or Josephus Cube.  The reason is that the incomplete cubes are not stable networks.  Here 

stable network is defined as follows: 

 

(Definition 7.1) Stable Network 

For any node address p in network N, if all nodes Nx ∈  are re-labeled as pXORx , the 

new network pN  is isomorphic to the original one, then we call network N as Stable 

Network. 

 

Obviously, binary hypercube, Folded Cubes or Josephus Cube are all stable networks.  

As most routing algorithms are based on XOR operation, it can be easily proved that in 

stable networks, for any node address p, a faulty node located at x is equivalent to being 

located at pXORx , while any faulty link (x, y) is equivalent to (x XOR p, y XOR p).  
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Thus, the location of faulty components is less important for stable networks than for 

Fibonacci-class Cubes.  In other words, in the latter class of networks, simulation result 

might change noticeably due to the location of faulty components.  Therefore, the 

confidence interval check is more useful to ensure the result is representative of the given 

situation setting. 

An example in point is node 0n in an n-dimensional Fibonacci Cube.  The main idea of 

routing in FC is basically as follows: invert all 1’s in preferred dimensions to 0 and then 

invert all 0’s in preferred dimension to 1 [13].  As such, if node 0n is faulty, the influence 

will be far more significant than if node 2)10(
n

 is faulty. 

 

Each time simulations runs, five sets of results are generated with each simulation run 

and each set of result takes about 60 seconds.  Each set of result is generated by different 

simulated network that has random distribution of faulty nodes and/or faulty links if the 

total number of faulty components is specified.  

 

A 95% confidence interval is based on the n results.  Denote the n results as nxxx ,,, 21 ⋅⋅⋅ .  

Then define the mean of them as ∑
=

=
n

i
ix

n 1

1
µ , and standard deviation ∑

=

−=
n

i
ix

1

2)( µσ .  

The simple z-test is by defining 
n

xxz
/

)(
σ

µ−
= .   

As for 95 % confidence interval, define a real number 95.0z  such that 

dxe
z

z

x

∫−

−95.0

95.0

2

2  = 0.95 

Then, the 95% confidence interval is defined as }|)(||{ 95.0zxzRx <∈ , or equivalently, 

(
n

z
n

z σ
µ

σ
µ 95.095.0 , +− ).  Here 96.195.0 =z .  The consequence is:  
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for ),( 95.095.0 n
z

n
zx σ

µ
σ

µ +−∈∀ , the probability )96.1
/

96.1( <
−

<−
n

xP
σ

µ >0.95.  

 

To analyze the result, we discard all results that are located outside the 95% confidence 

interval. 

 

 

 

 

7.5     Comments from the perspective of Software  

Engineering 
 

The new simulator is organized in a very different way from the original version.  In one 

word, it is object oriented.  That brings a lot of convenience for programming because the 

routing strategy is unified for all Fibonacci-Class Cubes.  To demonstrate the benefit, it is 

good to see the definition of class: CExtFibCube, which is a class for Extended Fibonacci 

Cube. 

 
class CExtFibCube : public EnhFibCube   // inherit from Enhanced Fibonacci Cube 
{ 
public: 

 
CExtFibCube(int dim, int sub, int nodeFault, int linkFault, int distribution,  

CString *Doc); 
 
 virtual ~CExtFibCube(); 
 
protected: 
 virtual bool CheckValid(unsigned x, int digits = Num_Bits); 
 virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits); 
 virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits); 
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 unsigned k;  // subscript of XFCk(n) 
}; 
 
Only four functions need to be overridden for this new class inherited from Enhanced 

Fibonacci Cube.  They are CheckValid, Fib2Dec, Dec2Fib, and the construction function.  

All other functions that are not ‘virtual’ can be inherited and used with no change.  See 

the definition of EnhFibCube below. 
 
class EnhFibCube   
{ 
public: 
 
 EnhFibCube (int dim, int nodeFault, int linkFault, int distribution, CString *Doc); 
 virtual ~EnhFibCube(); 
 void Run(CWnd *win,CDC *pDC);  
 
protected: 
 
 //  Shared functions 
 void Clear(); 
 unsigned OneBest(unsigned source, unsigned destination, unsigned x2, unsigned  

DT, int *m); 
 unsigned GetNext(unsigned int source, unsigned int destination, unsigned int  

available, unsigned int *DT); 
 void BuildPacket(void); 
 unsigned char CalDimOrder(unsigned current, unsigned char *orderDim,  

unsigned char *inverseDim); 
 void Initialise_Dimmap(unsigned current, unsigned char *mapDim, unsigned  

char total, unsigned char *map); 
 void Simulate(CDC *pDC); 
 unsigned countPos(unsigned current); 
 void Initialise_Node(void); 
 void Initialise_StatParams(void); 
 void BuildFault(void); 
 unsigned GetNeighbor(unsigned available, int dimension); 
 void Initialise_Network(void); 
 
 //  Only three virtual functions that need to be overriden by sub-classes 
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 virtual bool CheckValid(unsigned x, int digits = Num_Bits); 
 virtual unsigned Fib2Dec(unsigned x, unsigned digit=Num_Bits); 
 virtual unsigned Dec2Fib(unsigned x, unsigned digit=Num_Bits); 
  
protected: 
 
 //  attritbutes 
 CString *report; 
 unsigned *Link1; 
 unsigned *Link2; 
 unsigned *Fault; 
 unsigned * FibNum; 
 unsigned Node_Availability; 
};  
 
The structure of the whole program is therefore more streamlined and modular.  Actually, 

it can serve as a base class for many incomplete hypercubes.  Besides, the code is now 

scattered in several files and classes thus it is more convenient to manage. 

 

Another improvement of organization is extracting all globally accessed variables and 

functions such as random distribution functions into one file (Common.h).  Then it can be 

included into the implementation file (.cpp files) of other classes if necessary.   
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Chapter 8:   Analysis of Simulation Results 

 

8.1  Introduction 
 
Using the completed simulation tool, the performance of FTFR in term of network 

efficiency, can be measured by network efficiency.  This chapter summarizes the 

simulation procedure, analyses and compares performance in terms of average network 

latency, mean throughput with respect to network dimension, network topology and 

faulty component number.  The raw data collected are placed in Appendix VI.  

Comparison diagrams illustrated in this chapter comply with the raw data. 
 
To make a fair comparison, several factors are fixed concerning the simulation procedure, 

environment and result selection: 
 
Ø All simulations must be run on a same computer.  In this experiment, the Intelligent 

System Laboratory PC 8, DELL CPU 2.0GHz and Physical Memory 512MB is used. 

Ø During the simulation process, all other non-system applications must be shut down.  

The network line is also disconnected to ensure no hidden CPU uses of Internet 

applications. 

Ø Each set of input parameters must ensure that the CPU is running at 100% usage.  

This is to ensure that no swap in and out for virtual memory occurs.  Otherwise, the 

timing will be very inaccurate because communicating with hard disk is of several 

orders slower than accessing physical memory.  The upper bound of dimension is 

determined by this requirement. 

Ø Each set of input parameters is simulated for 5 times, with each time lasting 60 

seconds for network communication.  Note, the 60 second is not how long the 



Page 134 of 215 

simulation program runs, because of the overhead for simulation tool in addition to 

the useful communication simulated for the network. 

Ø Uniform probability distribution is adopted for packet injection probability function 

and applies to all cases. 

Ø The average network latency and mean throughput for the 5 simulations are 

calculated at the end of the program, together with their respective standard 

derivation. 

Ø Simulation starts from network with dimension n = 5, since we are not interested in 

small size networks. 

Ø The 95% confidence interval or 5% significance level is used for filtering undesired 

or deviating results. 

 

 

 

 

8.2  Technical considerations for accurate simulation 
 

8.2.1  Traits of expected result  

Since we are simulating a very large number of packets within one round, it is naturally 

expected that the result of 5 rounds for a given set of input parameter should not fluctuate 

too much, i.e. the standard deviation should not be too large.  Secondly, with dimension 

increasing, the network latency is to increase due to the longer path while the network 

throughput is also supposed to increase thanks to the increasing parallelism available.  

Thirdly, with the number of faulty components increasing, the latency is to increase and 

throughput to decrease.  These are expected results and we will verify them in the 

following sections. 
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8.2.2   Buffer size 

The current buffer size is set to 10, i.e. the maximum length of the transit queue for each 

dimension at every node is 10.  This number is closely related to the likelihood of 

deadlock occurrence.  If it is set to be small, it is more likely to bring about deadlock 

while setting it too big will cost more memory space because more packets will be 

generated.  The influence of buffer size will be further discussed later. 

 

8.2.3    Hop time 

The hop time can be specified in the input file.  However, in all our simulations, it is set 

to 500ns for a fair comparison.  This value is determined empirically based on C104.  

Similar trends are also observed by varying hop times.  In the network routing problem, 

there is a trade off between the path length and time for making routing decisions.  The 

more intricate the decision making process is, the more time it takes, but possibly the 

shorter the final path will be.  Conversely, a decision made quickly tends to result in 

longer path.  If we set the hop time longer, the final result will more reflect the difference 

in path length while setting it smaller will make the time for running the routing 

algorithm more dominant. In FTFR, the routing algorithm is fixed, so the choice of hop 

time will not influence the final result much.  If we set hop time longer, the difference 

between the decision making time for using spare dimensions and using preferred 

dimensions will be less significant. 
 

8.2.4    Simulation duration time 

How long the simulation should run is an important problem.  In our simulation, the 

maximum possible number of allowable packets is: 

(Total Links – Faulty Links – Number of links incident to Faulty Nodes)×Buffer Size. 

 
For small and medium sized networks, they get saturated with packets shortly after the  
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beginning of simulation.  Before saturation, the latency must be shorter than the stable 

value and the throughput lower.  However for large sized networks, the network gets 

saturated very slowly.  It was observed that after 60 seconds, the metrics do not converge.  

Setting the simulation duration longer will alleviate the problem.  However, since one 

simulation duration is applied to all cases, it is not worthwhile to double or even triple the 

simulation time just for a few extremely large dimensions.  Thus, for such irregular cases, 

they are deleted from the final valid data set.  This point will be discussed later.  
 

8.3 Comparison of FTFR’s performance on various network 

sizes 

In this section, FTFR is applied to fault-free regular Fibonacci Cube (FC), Enhanced 

Fibonacci Cube (EFC) and Extended Fibonacci Cube (XFCk) and binary hypercube.  The 

throughput and latency of them are shown in Figure 8.1 and 8.2 respectively. 

  

 

 

 

 

 

 
 

 

 

 
Figure 8.1 Throughput (logarithm) of Fault-free Fibonacci-class Cubes 
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In Figure 8.1, it is demonstrated that the throughput of all networks is increasing as the 

dimension is increased from 12 to over 20.  This is due to the parallelism of the networks 

and the increase in the number of nodes (where n is the dimension) that can generate and 

route packets in the network, is faster as compared to the time complexity of O( nn log ).  

By increasing the network size, the number of links is also increasing at a higher rate than 

the node number.  This in turn increases the total allowable packets in the network.  With 

parallelism, more packets will reach destination in a given duration.  For the same reason 

mentioned in the previous discussion of latency, Enhanced Fibonacci Cube has the 

largest throughput among the three types of Fibonacci-class Cube.  An interesting 

observation is that for dimensions between 11- 13, the throughput decreases for a two 

dimensions and increases again afterwards.  One possible explanation is: the complexity 

of FTFR is O(nlogn).  For large n, the variation in nlog  is small compared to the case of 

small n.  Thus the difference brought by nlog  will be small and the trend of throughput 

is the same as what an )(nO  routing algorithm produces.  For small n, however, the 

contribution of logn is comparable with the increase rate of networks size, which leads to 

the seemingly irregularity.  On the other hand, when dimension is small, the network 

scale is too small to display that characteristic.  For Fibonacci Class Cube, the irregular 

range is 11-13, while for binary hypercube, such a range is 8-9.  This again accords with 

2
31:25.8:12 +

≈ .  Note the simulation for binary hypercubes with dimension over 15 is 

not carried out because there is no enough physical memory on the computer. 

 

It is guaranteed that FTFR is cycle-free.  But in the face of concurrency, does it guarantee 

deadlock-freeness?  It is clear that if we decrease the parameter BUFFER_SIZE, the 

deadlock problem will become more evident if the routing algorithm is not deadlock free.  

When BUFFER_SIZE is set to 10, the irregular range is 11-13.  When BUFFER_SIZE is 
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reduced, the range will move leftward (decrease).  When BUFFER_SIZE is 1, such an 

irregular phenomenon will disappear.   These reflect that FTFR is possibly NOT 

deadlock-free.  As the BUFFER_SIZE is reduced, networks of even smaller dimensions 

will suffer from deadlock.  Once deadlock occur, it will make a significant contribution to 

the packet latency.  This in turn will make the irregular range caused by )log( nnO  

complexity less apparent. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 8.2, it can be observed that the average latency of regular/ Enhanced/ Extended 

Fibonacci Cubes increases as the networks dimension increases below 19.  As the 

network size increases, the diameter of the hypercube also increases.  A packet to be 

transmitted has to take a longer path to reach its destination, resulting in a higher average 

latency.  The Enhanced Fibonacci Cube has the highest latency among three because 

when dimension is large enough, the number of nodes in Enhanced Fibonacci Cube is the 

largest among regular/Enhanced/Extended Fibonacci Cubes of the same dimension.  
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Figure 8.2   Latency of Fault-free Fibonacci-Class Cubes 
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After the dimension reaches 19 or 20, the latency decreases.  This is because the scale of 

the network becomes so large that the simulation time is insufficient to saturate the 

network saturated with packets.  This is evident from the fact that for those dimensions, 

the number of packets reaching destination is lower than the total allowable packet 

number.  So the packets in these networks spend less time waiting in output queue or 

injection queue, while that portion of time (incurred by concurrency) comprises a large 

part of latency for low dimensional networks that get saturated with packets in the 

simulation duration.  A straightforward solution is to increase the simulation time.  

However, to make comparisons fair, the simulation time for other cases should also be 

increased proportionally.  This will double or even triple the total time for simulation.  As 

19-20 dimension is already adequate for demonstrating the performance of FTFR, this 

effort is spared.  Binary Hypercube, a special type of Extended Fibonacci Cube, 

demonstrates a similar trend, with latency beginning to decrease since 15.  This also goes 

well with the fact that the number of nodes in Fibonacci-class Cube is ))
2

31(( nO +  and 

the node number of binary hypercube is )2( nO .  20:152:
2

31
≈

+ .  Note here that due 

to the insufficiency of physical memory, no simulation is carried out for binary 

hypercubes with dimension over 15. 
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8.4 Comparison of FTFR’s performance on various 

numbers of faults 

 
In this section, the performance of FTFR is measured by the varying the number of faulty 

components in network.   
 

The result for )14(13XFC  is as follows:  

14-Dim Extended Fibonacci Cube XFC13(14)
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It is clear that when the number of faults increases, the trend of average latency is to 

increase while the throughput is to decrease.  This is because when more faults appear, 

the packet is more likely to use spare dimensions which makes the final route longer.  In 

consequence, the latency increases and throughput decreases.  However, there are some 

exceptional cases when the existence of faults reduces the number of alternative output 

Figure 8.3  Latency and Throughput (logarithm) of 14-dim Extended Fibonacci Cube 
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port available, and thus expediate the routing decision.  The influence of different faults 

number is more evident when the network size is small.  With fixed number of faults, 

there are fewer paths available for routing in smaller networks than in larger ones.  Thus 

making some of the paths unavailable will bring about more significant influence on the 

former.  While in large networks, with the total number of nodes in n-dimension network 

being ))
2

31(( nO +  and maximum faulty component number tolerable being O(n), the 

influence of faulty components will bring about less and less significant influence on the 

overall statistical performance on the network.  That explains why the throughput and 

latency fluctuate in Fig. 8.3.  Nevertheless, the overall trend is still correct despite the 

glitches.  

 

However, as the number of faults tolerable in Fibonacci-class Cubes of order n is 

approximately 




3
n  or 




4
n  [12][14][15], we have to use networks of large dimension to 

provide a large enough number of faults for comparison.  That makes the underlying 

trend less likely to be evident in the experimental results.  The following figures present 

the result for 20-dimension regular Fibonacci Cube, 19-Dim Enhanced Fibonacci Cube, 

18-Dim Extended Fibonacci Cube.  
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Figure 8.4  Latency and Throughput (logarithm)   
of faulty 20-Dim regular Fibonacci Cube 

Figure 8.5  Latency and Throughput (logarithm)  
of faulty 19-Dim Enhanced Fibonacci Cube 
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The fluctuation of the result is actually needs to be examined carefully.  For example, the 

latency in Figure 8.6 varies only in the range of below 1%.  We know that with different 

simulation reading, the fault location is randomly distributed.  Similarly, messages 

generated have different destinations based on the uniformly distributed packet 

destination.  If we examine the standard deviation of the result, it is shown that such a 

small variation in Figure 8.6 is not too much outside the 95% confidence interval for any 

situation.  Thus, it is more reasonable to focus on the trend of the statistical results, 

instead of the exact number.  

 

 

 

 

 

Figure 8.6  Latency and Throughput (logarithm) for 
faulty 18-Dim Extended Fibonacci Cube 
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Figure 8.7 Average Latency and log2(Throughput) versus dimension for GC(n,1) 

8.5 Results of Gaussian Cube 
 
The simulation results of Gaussian Cubes display very similar trend and properties as in 

Fibonacci-class Cubes.  Thus in this section, we only present the Figures that are drawn 

based on the simulation result.  The only thing that deserves attention is that the location 

of faults in the Gaussian Cube is very important.  So different from the simulation 

scheme in FTFR in which we only specify the number of faults and randomly distribute 

the faults, now we specify the location of the faults.  In this simulation test, we see how 

the faulty node located at 0n influence the system performance.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Since the algorithm’s complexity includes a term logα and does not include log n, it is 

satisfying to see that the temporary decrease interval for average latency does not appear 
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in Figure 8.7.  However, such an interval does appear again in Figure 8.8, where the x-

axis is α. 
 

 

The following two figures (Figure 8.9 and 8.10) illustrate the influence of faulty node 0n 

on the network average latency and throughput, respectively.  The discussions (including 

the effect of glitch) in FTFR also apply to Gaussian Cube. 
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Figure 8.9 Influence of faulty node 0n on network average latency 

Figure 8.10 Influence of faulty node 0n on network throughput 
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        Figure 9.1  DK1 Design Flow 

Chapter 9:   FPGA Implementation of FTFR 
 

9.1     Background 

From the experience of software simulation, it is evident that the strength of software 

applications is the ability to be easily changed to suit customer demands.  However, 

inevitably, hardware applications of the same are always much faster, but the tradeoff is 

its lack of programmability and reconfigurability.  With the advent of high-density, high-

performance and low-cost Field Programmable Gate Array (FPGA) that can be easily 

reconfigured, the situation had since changed.  It promises to give vendors an added edge 

in supplying custom-made applications to suit the customers’ varied requirements in 

shorter product development cycles and lower costs substantially, by using the latest 

software technology and design flows such as Celoxica DK1 [71].  The commercial 

potential is indeed enormous.  Figure 9.1 demonstrates the design flow of DK1 software-

compiled system design [65]. 
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• PS/2 connectors (Mouse and Keyboard)  

• CPLD 

• LEDs 

• Two 7 segment displays 

• Two SSRAM banks 

• Flash RAM (8M Bytes) 

• Video DAC 

• Video Input Decoder 

Celexica DK1 Design Suite, which is used in this project, enables direct migrating 

designs to hardware without requiring the generation, simulation, or synthesis of 

hardware description language.  It uses the unique language Handel-C and the design 

suite focuses on the design, validation, iterative refinement and implementation of 

complex algorithms in hardware.  Handel-C, an ISO/ANSI-C based programming 

language can be used to express algorithm without worrying about how the underlying 

computation engine works [66].  This philosophy makes Handel-C a programming 

language rather than a hardware description language.  In some senses, Handel-C is to 

hardware what a conventional high-level language is to microprocessor assembly 

language.  The output of the compiler is an architecture optimized EDIF netlist 

appropriate for FPGA or PLD devices, or RTL VHDL for existing tool suites.  Thus, due 

to its high level nature, Handel-C has made it possible for the same person to do both 

software and hardware implementation, which greatly reduces the manpower and 

development costs. 
 
Besides, a readily available development board, the RC100, also made by Celoxica, can 

be used to physically implement and test the designed router for this project.  It features a 

high-performance Xilinx Spartan-II FPGA, with 200,000 system gates, 5,292 logic cells 

and 1,176 CLBs.  It has a maximum of 284 user I/O and 56K block Ram Bits.  System 

performance is supported up to 200MHz.  As the centerpiece of the board and main 

reconfigurable logic that users can target, the FPGA is directly connected to [67]. 

The Xilinx CoolRunner CR3128XL CPLD, which is used to configure the FPGA from 

various data sources and implement other glue logic, can configure the FPGA  
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with data received from host PC via File Transfer Utility or with a configuration file 

retrieved from the Flash RAM.  The structure of RC100 board is showed in Figure 9.2-

9.3 below. 

 
 
 

 

Figure 9.2    RC100 Board Components 

Figure 9.3    RC100 Development Board 
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Via parallel port cable, the File Transfer Utility can be used to [69]: 

Ø Transfer Xilinx BIT files to the FPGA 

Ø Transfer files or raw data from PC to a specified location in the Flash RAM 

Ø Transfer files or raw data from the Flash RAM to PC 

 

 

9.2 Overview of Experimental Methodology 
 

Our objective is to obtain a circuit that implements FTFR correctly and efficiently.  

Obviously, two aspects are of our major interest: 

Ø Correctness.  The router must produce the correct decision that FTFR generates. 

Ø High performance.  This involves DK1 gate count, number of logical components 

(Luts and FFs), number of Slices/Routes, PAR timing and maximum clock 

frequency. 

 

Therefore, we divide the experiment into two stages, namely software simulation stage 

and hardware implementation stage. 

 

In the software simulation stage, we focus on programming the design in DK1, using 

Handel-C.  It is easy to check the result because chanin and chanout can now be 

extensively utilized to show the value of critical variables directly, making debugging 

and verification of code correctness very simple.  This stage is just like software 

development, with focus on the correctness of our program.  Besides, DK1 Waveform 

Analyzer [72] can now be used to roughly estimate and analyze the performance of our 

router.  Also the result of DK1 compilation can give the raw image of the relationship 

between total gate number and port number. 
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In the hardware implementation stage, the Celoxica DK1 Design Suite had to be set to 

compile the output file in EDIF format.  When compiling in EDIF mode, DK1 would 

optimize away all unused code, i.e. those code that do not affect the final output.  

Similarly, if no meaningful output were specified, i.e. no I/O bus or Flash Ram specified, 

the design would not generate any EDIF files.  Statements that could not be implemented 

in hardware such as chanin and chanout are required to be removed as well for error-free 

compilation.  With optimized number of gates and LUTs (Look Up Tables), the 

generated EDIF file can be used by Xilinx Design Manager to generate BIT files, which 

is in turn downloaded onto the RC100 Development Board using Celoxica RC100 File 

Transfer Utility.   

 

The performance indexes are easily available from the report of Xilinx Design Manager’s 

implementation.  However, without the availability of chanin and chanout, two problems 

arise: 1) how to initialize the data variable, 2) how to verify that the FPGA router was 

working correctly. 
 
On the first issue there are three foreseeable solutions.  Comparison is outlined in Table 

9.1 [67][69].  
 

S/No. Input 
Method 

Implementation 
Difficult 

Additional Gate 
Counts Multiple Test Data 

1 Hardcoding Easy Negligible Limited and Inflexible 

2 Keyboard Medium Very Significant Unlimited 

3 Flash Ram Hard Acceptable Nearly Unlimited 

  
 

Since we are only testing the implementation, the number of additional gate count is of 

less importance because it will be finally removed after verification.  If hardcoding is 

Table 9.1 Comparison of Input Methods 
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used, then each time we want to test for a new set of data, the EDIF and BIT file will 

have to be regenerated, which costs a lot of time and thus inflexible.  For keyboard, it 

needs the manpower of input each time.   Flash memory can provide 8M byte space, 

which is enough for testing.  If more testing cases are required, it is easy to transfer the 

testing data to RC100 again via FTU, which is far simpler and quicker than regenerating 

EDIF and BIT file.  The strength of testing with Flash memory is that the process is 

automatic.  A large amount of test can be carried out with no human interference.  As for 

difficulty, both keyboard and Flash memory need additional conversion functions to 

change the data into binary or integer format for the router to execute, because these 

forms of input were in ASCII format, i.e. 0x30 represents 0b00, which is zero in integer 

terms.  Furthermore, for numbers above 9, e.g. 10 that is 2 ASCII numbers of 1 and 0 in 

consecutive locations, a function would be needed to concatenate to their true value of 10. 

 

In view of all, it was decided that Flash Memory is used for inputting the testing data.  

However, after the correctness is ensured, we have to remove the part for Flash Memory 

and adopt the real form of input.  It is only at that stage can we take a fair comparison 

between the performance and scale of the router with respect to the port number.  

Moreover, it should be noted that due to the nature of DK1, designs of varying sizes 

would be generated for differing sets of data because of the optimization process.  Thus, a 

fixed test case (extensible over various port sizes) would be hardcoded into routers of 

different port sizes so as to compare them in terms of gate counts, delay and maximum 

operating speed. 

 

Going on to the issue of verification of the workings of the FPGA router, we need to be 

able to collect the output data generated by it.  Five methods are proposed and the 

comparisons between them had been tabulated in Table 9.2.   

S/No. Output Method Implementation 

Difficulty 

Additional Gate 

Counts 

Multiple Results 
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1 Direct File Output Very Hard Indeterminate Indeterminate 

2 VDU Display Hard Very Significant Unlimited 

3 Flash Ram Medium Acceptable Limited by RAM size 

4 Pin Outputs Easy Negligible Unlimited 

5 7 Segment Display Easy Negligible Limited by display 

 

 

Similar to the analysis before, taking account of the advantages and disadvantages of 

each method, it is decided that the Flash Ram Output option would be most suitable for 

use in saving multiple test results for routers of differing sizes.  However, one would 

expect that the additional gate counts would limit the router that can be implemented on 

the FPGA. 

 

Again, after the verification of the design, the Flash Ram functionality would be removed 

and replaced with the Pin Output options.  This was because this option adds the least 

gates to the design and would be suitable when making comparisons for routings of 

differing port sizes in terms of gate counts, display and maximum operating speed. 

 

 

9.3     Testing scheme 
 
First, routers of different dimension will be compiled into different BIT files before the 

demo.  It can be transferred to the RC100 by File Transfer Utility during the test.   

 

For a fixed dimension, several testing cases can be designed in the input file.  Then, they 

are transferred to RC100’s Flash Memory.  After the router makes decision, the result 

will also be recorded in the RC100’s Flash Memory.  Then, we use File Transfer Utility 

Table 9.2 Comparison of Output Methods 
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again to transfer the result to PC and check the correctness.  The format of input file that 

stores testing cases is as follows:  (take a 3-dimension  router as an example) 

 

000     110       101  

(Current node address)            (the availability vector for current node)   (input mask) 

 

010  101  (the availability vector of the neighbors of the current node) 

(the total number equals the number of 1’s in the availability vectorof current node) 

 

111    000 

(destination)   (DT of the packet) 

 

1 0  1 # (the history, meaning that the packet used dimension 1, 0 and 1  

successively, the ‘#’  signifies termination) 

@  termination of the whole file 

In real practice, the numbers above are in hexadecimal, so it is written as: 

0 6 5 

2 5 

7 0 

1 0 1 # 

@ 
 
If several testing cases are to be used, the character ‘$’ is used for separating cases: 
 
0 6 5 

2 5 

7 0 

1 0 1 # 
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$  // there is another testing case in the following 

1 3 5 

1 4 

6 2 

2 1 0 # 

$  // there is another testing case in the following 

0 5 5 

3 4 

3 1 

0 2 1 # 

@  // no more testing cases.  File ends 

 

The output will be arranged in the following format: 

 

000 dimension = 2  DT = 0 

001 Abort 

002 Destination Reached 

 

The first column is the testing case number.  If the destination is reached, it will write 

“Destination Reached”.  If aborted, it writes ‘Abort’.  Otherwise, it outputs the dimension 

that is chosen to use, and the updated DT after the routing process. 

 

Different testing cases can be posed and transferred to RC100 dynamically.  This makes 

testing more flexible. 

 

 

9.4   Result of implementation 
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 With Flash 
Memory for I/O 

Without Flash 
Memory, use pin 

NAND Gates after compilation 42558 11250 
NAND Gates after optimization 32761 9627 
NAND Gates after expansion 68997 36476 
NAND Gates after optimization 15157 4039 

 
 
 
 
 
 

 With Flash 
Memory for I/O 

Without Flash 
Memory, use pin 

NAND Gates after compilation 251952 226213 
NAND Gates after optimization 117044 97743 
NAND Gates after expansion 138142 109376 
NAND Gates after optimization 48232 39285 

 
 
 
 
 

 

9.5   Useful Tips for development 
 
Although DK1 Development Suite provides a lot of freedom to FPGA design, its 

compiler is far from perfect.  Some procedural tips are drawn from experience and are 

summarized in this section for future reference. 

 

9.5.1     Error report problem 

The errors reported by the compiler are very inaccurate, especially concerning the 

location.  Some times, the real location of error and the place reported by the compiler 

may be a few hundred lines apart.  To overcome this problem, the incremental debugging 

Table 9.3   Comparison of NAND Gate Number between with/without Flash  

          Memory for 4-dimension regular Fibonacci Cube using classical approach 

Table 9.4   Comparison of NAND Gate Number between with/without 

                  Flash Memory for 4-dimension binary hypercube using FNN 



Page 157 of 215 

approach is used.  First, comment out most of the suspected parts of the program, leaving 

a small portion that is controllable.  Now, it is easy to locate the problem and fix it in the 

small range.  After that, release the commented parts little by little, with each round 

ensuring that no error occurs.  The advantage is we can now focus the problems in the 

newly released parts, no matter where the compiler reports that the error exists.  This 

method is proved very useful. 

 

9.5.2     Runtime Error 

This wired kind of error occurs during debugging.  For example, if three sentences a, b, c 

are to be executed successively.  If we debug it step by step, then maybe when executing 

b, a runtime error is reported.  But if we place a breakpoint at c, then after executing a, 

we use ‘go’ or press ‘F5’ to run to the nearest breakpoint, c, the runtime error doesn’t 

occur.  This problems shows that Handel-C must have not encapsulated the lower 

hardware particulars completely, and problems in that level are looming in an 

unpredictable way.  As this problem does not influence the final result we only need to 

pay attention to it and refrain from being stuck by this irregularity. 

 

9.5.3    Compiling strategy 

The time for compiling EDIF file is long for DK1.  The time for Xilinx implementation is 

even longer.  Therefore, we should use the debug mode as much as possible.  It is only 

after ensuring that no logic error exists can we proceed to hardware implementation, 

during which, the only possible problem left is concerning hardware interface, or I/O 

utilities.  This will be very helpful because debugging the program logic on RC100 is 

impossible.  To save some time, we can set the option in Xilinx Design Manager to 

fastest, and then set it to optimal after ensuring no problem exists. 

 

9.5.4    Programming methodology 
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It is not wise to write Handel-C in an object-oriented thinking.  So it is free to use global 

variables.  Besides, its unique macro expression is helpful in making the routine generic.  

Another important method to minimize the changes necessary for different port size is 

using macros like Num_Bits, Log_Num_Bits…. They can calculated the proper width of 

variables with respect to the port size.  It is found that Handel-C is not excellent in 

processing stacks, so macro expressions is preferred to functions and recursion had better 

to be avoided.  
 
As for loops, the traditional ‘for(;;)’ format is not welcomed in Handel-C.  We had better 

use ‘while’.  As we often deal with an array in a loop, the following problem looms.  The 

index for an array with the length of L is restricted to be log2(L).  However, to control the 

loop, we often need to use : 

while( i  < L) 

{   

do something on array[i]. 

i++; 

} 

This is improper when L is power of 2.  For example, when L=4, then the bit width of i is 

2, so when i =3, after i ++, i is 0.  So i <L is always satisfied and a dead loop is formed.  

If we set the bit width of i to 3, then it can’t be used as array’s index.  One compromising 

method is to set the width of the control variable i to log2(L+1).  Then in the ‘while’ loop 

body, use another variable of width log2(L), say ii, to index the array.  At the beginning 

of the loop body, let ii = i [log2(L) – 1: 0].  In this way, the problem is solved in a unified 

fashion.  If the first sentence of the body does not quote i, then the assignment can be 

executed parallelly, incurring no extra time.  To be economic, such a technique can be 

used only for those arrays whose length is power of 2.  For other cases, the control 

variable with width log2(L) can be used as index without any problem. 
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9.5.5      Design of common interface 

To drive hardware on RC100 board, it is advisable to develop some higher-level interface 

libraries.  The primitives provided by the RC100 are not powerful and are unwieldy to 

realize a useful function.  It is helpful if some library functions or MFC-like encapsulated 

hardware calls be designed so that the following developers can program on a higher 

level and focus on problem-specific logics. 

 

9.5.6     Floating point library  

When implementing the router using fuzzy neural network, real numbers are used in 

addition to integer.  Thus, floating point library is incorporated [73].  However, the library 

is not perfect and possibly contains bugs.  One most significant problem is that when 

using floating-point numbers, the resource consumption for compiling is very huge, both 

in memory and in time, making it difficult to debug.   

 

Thus, the strategy actually used in this implementation is scaling up.  For example, if we 

calculate 1.5/0.3, then the result is same as (1.5*10)/(0.3*10) = 15/3.  Of course, there 

exist some loss of precision if it is not wholly divided.  This disadvantage is overcome by 

delaying division operation to the last step, because addition, subtraction and 

multiplication all result in no loss of precision.  So avoiding division as intermediate 

steps can eliminate the accumulation of error.  Besides, we used a scaling factor of 1000, 

as a result, the precision is very satisfactory. 
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Chapter 10  Conclusion 
 

This chapter concludes the report by discussing the accomplishment, project limitations, 

and future work. 

 

10.1 Conclusion 
 
Fuzzy neural network has been successfully applied in many areas, such as clustering, 

prediction of time series, traffic and stock market, as well as automated control of large, 

complex systems.  However, just as no model in artificial intelligence can apply to all 

applications, so does FNN.  The problem in nature is that the application of routing in 

interconnection network is a based on binary discrete numbers.  The FNN is heavily 

dependent on the clustering of each input (horizontal reduction).  So it works efficiently 

in situations where the range of each input is large but the number of input is not too high.  

However, our binary application makes each input attached with two linguistic labels and 

the number of input is linear to network dimension.  In consequence, the time and space 

complexity is exponential to the dimension.  If we combine several independent binary 

inputs into one corresponding decimal value as input, then the number of linguistic labels 

required for each input will grow exponentially with network dimension.  So it does not 

help. 

 

On the other hand, an encouraging result is that efficient fault-tolerant routing strategies 

have been designed for such link/node diluted hypercubic networks as Gaussian Cube 

and Fibonacci-class Cube.  They can tolerate more faults than the trivial bound of node 

availability.  The simulation result demonstrated the desirable properties of these 

algorithms and the implementation on FPGA also shows the feasibility of physical 

manufacture. 
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Finally, it is proved theoretically that the Exchanged Hypercube can efficiently reduce 

the number of links from binary hypercubes, preserving nearly all topological and 

communication merits.  The author believes that it is a promising type of network as a 

substitute for binary hypercubes in many applications. 

 

10.2     Accomplishments 
In reviewing the purpose of this project as defined in section 1.2, the author has 

illustrated that the fuzzy neural network is not suitable for the problem of routing in 

interconnection network, at least at present.  An encouraging result is that despite the 

intrinsic low node availability in node/link diluted hypercubic networks, still a fairly high 

number of faulty components can be tolerated by our fault-tolerant routing strategy.  The 

simulation result also shows that the performance of our algorithm is reasonable..  

Besides, it is demonstrated that the implementation of it on hardware such as FPGA is 

feasible.  

 

The Exchanged Hypercube provides one more possible topology when constructing 

multi-computer systems.   

 

10.3     Project Limitations 
Although extensive experiment on the Fault-tolerant Fibonacci Routing (FTFR) 

algorithm finds on exception in which routing aborts when the number of faulty 

components is less than the minimum node availability, it is extremely difficult to prove 

it theoretically.   

 

Furthermore, the simulation tool still has some deficiencies.  The most important one is 

how to simulate a parallel architecture with only on CPU.  Some problem can and has 
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been satisfactorily solved while some other problems, such as how to calculate the time 

for the computation of throughput in the presence of unevenly distributed workload, still 

leave much to be desired. 
 
Last but not least, as the new approach of fault categorization is adopted in the discussion 

of our routing algorithms, it is hard to compare our strategy with ordinary ones.  Besides, 

the comparison of reliability between different network topologies will also be difficult.   

 

 

10.4     Future Work 
The following are a number of areas where future work and research can be conducted 

for this project. 

 

Firstly, further investigation into the feasibility of applying FNN to fault-tolerant routing 

can be conducted.  There are two possible directions.  If FNN is intrinsically inapplicable 

to this application, then rigorous theoretical proof, may be based on Vapnik-

Chervonenkis dimension, need to be given.  Otherwise, a new architecture of FNN or 

pure artificial neural network should be designed for this kind of high-dimension binary 

application.  After that, the performance of fuzzy routing and traditional routing strategy 

can be compared on various network topologies.  Whether fuzzy routing can apply to a 

wide variety of networks in a unified way is also worth research. 

 

Then, it will contribute to desirable theoretical soundness if FTFR is proved to always 

work properly given the restriction on the number of faulty components is met.  Theorem 

4.2 and the discussion after that have presented an initial and useful result that paves way 

for a complete proof.   
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Thirdly, the architecture of the simulator needs to be improved to achieve results of 

higher accuracy.  Multi-threaded or multi-process algorithms can be used to simulate the 

concurrency in the real network.  Although the simulator will still depend on time slicing, 

the result can be possibly more accurate than the current model. 
 
Lastly, new metrics for comparison of fault- tolerant routing strategies need to be 

designed and introduced, especially for GC, Fibonacci-class Cubes and other node/link 

dilution cubes.  The author deems it advisable that three aspects about a faulty component 

should be taken into consideration: 
 
1) Number of faulty components; 

2) Type:  faulty node or faulty link.  

3) Location:  Similar to the discussion in GC.  We should also discriminate   

different types of fault distribution: evenly distributed or clustered. 
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     Appendix  I     Proof of Case III for Theorem 4.2  
 

The case III for Theorem 4.2 is:  

In a fault-free Enhanced Fibonacci Cube, there is always a preferred dimension available 

at packet’s present node before the destination is reached. 

 

Proof: 

For convenience, the definition of Enhanced Fibonacci Cube is copied here. 

Let ><= nnn EVEFC ,  denote the Enhanced Fibonacci Cube of order n, then 

4422 ||0101||||0100||10||00 −−−−= nnnnn VVVVV  .  Two nodes in nEFC  are connected 

by an edge in nE  if and only if their labels differ in exactly one bit position.  As initial 

conditions for recursion, }0,1{3 =V ,  }10,00,01{4 =V ,  

}010,000,100,101,001{5 =V  and 

}1001,1000,1010,0010,0000,0100,0101,0001{6 =V . 

 

For Enhanced Fibonacci Cubes of low dimension, it is easy to prove the theorem by 

enumeration.  So now, we assume that dimension n is larger than 6.  According to the 

definition above, the leftmost four bits of any valid Enhanced Fibonacci Cube with 

dimension over 6 can only be: 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010.  Suppose 

the address of current node is 0121 aaaa nn ⋅⋅⋅−−  while the address of the destination node is 

0121 bbbb nn ⋅⋅⋅−− .  We prove the theorem by induction.  Assume that the theorem hold for 

dimensions less than n. 
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1) If 4321 −−−− nnnn aaaa = 0000, then: 

If 4321 −−−− nnnn bbbb = 0000, then either destination is reached or apply the induction 

assumption for dimension n - 4. 

If 4321 −−−− nnnn bbbb = 0001, then as 0143 aaaa nn ⋅⋅⋅−−  and 0143 bbbb nn ⋅⋅⋅−−  are valid  

(n-2)-dimension EFC addresses and they are different, we can apply the induction 

assumption for dimension n-2. 

If 4321 −−−− nnnn bbbb = 0010, then dimension n-3 is an available preferred dimension. 

If 4321 −−−− nnnn bbbb = 0100 or 0101, then dimension n-2 is an available preferred 

dimension. 

If 4321 −−−− nnnn bbbb = 1000, 1001 or 1010, then dimension n-1 is an available 

preferred dimension. 

 

2) If 4321 −−−− nnnn aaaa = 0001, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0010 or 0100, then as 0143 aaaa nn ⋅⋅⋅−−  and 

0143 bbbb nn ⋅⋅⋅−−  are valid (n-2)-dimension EFC addresses and they are different, we can 

apply the induction assumption for dimension n-2. 

If 4321 −−−− nnnn bbbb  = 0001, then either destination is reached or apply the induction 

assumption for dimension n - 4.  

If 4321 −−−− nnnn bbbb  = 1000, 1001 or 1010, then dimension n-1 is an available 

preferred dimension. 

If 4321 −−−− nnnn bbbb  = 0101, then the analysis goes the following way: 

As 4321 −−−− nnnn aaaa = 0001, thus 54321 −−−−− nnnnn aaaaa = 00010.  If 6−na = 0, then 

inverting 2−na  to 1 will produce a new valid address and n-2 will be an available preferred 
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 0      0       0      1      0      1      0      1       0      1      0      1      0 

  

            0      1       0      1      0      1      0     0/1     0      1      0     0/1 
 

…… 

Figure AI.2 Deduction flow for step 2 

dimension.  Otherwise, 6−na = 1, 654321 −−−−−− nnnnnn aaaaaa  = 000101.  So 6−nb  must be 1, 

otherwise dimension n-6 will be an available preferred dimension.  Then, 5−nb  must in turn 

be 0 and 7−nb  must be 0, according to the definition of EFC.  654321 −−−−−− nnnnnn bbbbbb  = 

010101.  The deduction flow is illustrated in the following Figure AI.1.  The   1   represents 

that it is deduced by avoiding making dimension n-2 an available preferred dimension. 

 

Then,  7−na  must be 0, otherwise n-7 will be an available preferred dimension.  If 8−na = 0, 

then n-2 will be an available preferred dimension.  So assume 8−na =1, 9−na  = 0.  If 10−na = 

0, then n-2 will be an available preferred dimension.  So assume 10−na = 1.  If 10−nb = 0, then 

n-10 will be an available preferred dimension.  So assume 10−nb = 1.  Thus, 9−nb = 0.  The 

deduction flow is illustrated in Fig. AI.2. 

 

 

 

 

  

 

 

 

 0      0       0      1      0      1         

  

            0      1       0      1      0      1     0 
 

…… 

Figure AI.1 Deduction flow for step 1 
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So for a, 0 and 1 appear alternately until the least significant four digits are met.  

With careful analysis of the initial condition, it is easy to see that in such a worst case 

studied above, n-2 will finally turn out to be an available preferred dimension. 

3) If 4321 −−−− nnnn aaaa = 0010, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0100, 0101, 1000 or 1001, then dimension n-3 is an 

available preferred dimension. 

If 4321 −−−− nnnn bbbb  = 0001, then as 0143 aaaa nn ⋅⋅⋅−−  and 0143 bbbb nn ⋅⋅⋅−−  are valid 

(n-2)-dimension EFC addresses and they are different, we can apply the induction 

assumption for dimension n-2. 

If 4321 −−−− nnnn bbbb  = 0010, then either destination is reached or apply the induction 

assumption for dimension n - 4. 

If 4321 −−−− nnnn bbbb  = 1010, then dimension n-1 is an available preferred dimension. 

 

4)  If 4321 −−−− nnnn aaaa  = 0100, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0001, 0010, 1000, 1001 or 1010 then dimension n-2 is 

an available preferred dimension. 

If 4321 −−−− nnnn bbbb  = 0100, either destination is reached or apply the induction 

assumption for dimension n - 4. 

If 4321 −−−− nnnn bbbb  = 0101, then dimension n-4 is an available preferred dimension. 

 

5)  If 4321 −−−− nnnn aaaa  = 0101, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0010, 0100, 1000 or 1010, then dimension n-4 is an 

available preferred dimension. 
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         1/0      0       0      1      0      0/1     0      1       0      0/1     0     1       0 
 

…… 

Figure AI.3 Deduction flow for case 5 

If 4321 −−−− nnnn bbbb  = 0101, then either destination is reached or apply the induction 

assumption for dimension n - 4. 

If 4321 −−−− nnnn bbbb  = 1001 or 0001, then the proof is similar to the proof for 

4321 −−−− nnnn aaaa = 0001 and 4321 −−−− nnnn bbbb  = 0101.  Here, we only show the deduction 

flow in Figure AI.3. 

 

 

 

 

 

 

 

 

6)  If 4321 −−−− nnnn aaaa  = 1000, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an 

available preferred dimension. 

If 4321 −−−− nnnn bbbb  = 1000, then either destination is reached or apply the induction 

assumption for dimension n - 4. 

If 4321 −−−− nnnn bbbb  = 1001, then as 0143 aaaa nn ⋅⋅⋅−−  and 0143 bbbb nn ⋅⋅⋅−−  are valid 

(n-2)-dimension EFC addresses and they are different, we can apply the induction 

assumption for dimension n-2. 

If 4321 −−−− nnnn bbbb  = 1010, then dimension n-3 is an available preferred dimension. 
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7)  If 4321 −−−− nnnn aaaa  = 1001, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an 

available preferred dimension. 

If 4321 −−−− nnnn bbbb  = 1000 or 1010, then as 0143 aaaa nn ⋅⋅⋅−−  and 0143 bbbb nn ⋅⋅⋅−−  are 

valid (n-2)-dimension EFC addresses and they are different, we can apply the induction 

assumption for dimension n-2. 

If 4321 −−−− nnnn bbbb  = 1001, then either destination is reached or apply the induction 

assumption for dimension n - 4. 

 

8)  If 4321 −−−− nnnn aaaa  = 1010, then:  

If 4321 −−−− nnnn bbbb  = 0000, 0001, 0010, 0100 or 0101, then dimension n-1 is an 

available preferred dimension. 

If 4321 −−−− nnnn bbbb  = 1000 or 1001, then dimension n-3 is an available preferred 

dimension. 

If 4321 −−−− nnnn bbbb  = 1010, then either destination is reached or apply the induction 

assumption for dimension n - 4.        

 

With all the situations considered carefully, we have completely proved the case III of 

Theorem 4.2, and thus Theorem 4.2. 
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Appendix II    

Implementation Code for algorithm 6.1: 

 
int getPath(unsigned from, unsigned to)   // Assume from != to  
{ 
 int top, bottom, current; // current stack is from 0 to top-1, current available  

//  record index is last; 
 unsigned x1, x2, mask, diff, mid1, mid2; 
 
 result[0].from=from; 
 result[0].to = to; 
 result[0].top1 = n;  // dimension is from 1 to n 
 result[0].index = 0; 
 
 top = 0; 
 bottom = last; 
 
 while (top >= 0) 
 { 
  x1 = result[top].from; 
  x2 = result[top].to; 
  current = result[top].top1; 
  mask = 1 << (result[top].top1 - 1); 
  diff = x1 ^ x2; 
   
  while(1)  // it is guaranteed that no item in result array 

// has same from and to 
  { 
   if ( mask & diff ) 
    break; 
   mask >>= 1; 
   current --; 
  } 
 
  // x1 and x2 are different in dimension 'current' (1 to n) 
  if (current == 1) 
  {   
   result[bottom].from = x1; 
   result[bottom].to = x2; 
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   result[bottom].index= result[top].index + 1; 
   bottom --; 
   top --; 
   continue; 
  } 
  else 
  { 
   top--; 
   mask = (1<<(current - 1)) - 1; 
   mid1 = x1 & (~mask); 
   mid1 |= (current - 1); 
   mid2 = x2 & (~mask); 
   mid2 |= (current - 1); 
    
 
   result[bottom].from = mid1; 
   result[bottom].to = mid2; 
   result[bottom].index= result[top+1].index + (1<<current); 
   bottom --; 
 
   if(mid1 != x1)     
   { 
    top ++; 
    result[top].to = mid1; 
    result[top].top1 = current - 1; 
   } 
     
   if(mid2 != x2) 
   { 
    top ++; 
    result[top].from = mid2; 
    result[top].to = x2; 
    result[top].top1 = current - 1; 
    result[top].index = result[bottom+1].index; 
   } 
  } 
 } 
 

Sort(bottom + 1, last) 
 return bottom + 1; 
} 
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Appendix III    Program that calculates the diameter of αT   
 

class entry 
{ 
public: 
 unsigned content; 
 entry *previous; 
}; 
 
class Stack 
{ 
public: 
 entry *current; 
 Stack() 
 { 
  current=NULL; 
 } 
 
 void Push(unsigned i) 
 { 
  if(!current) 
  { 
   current = new entry; 
   current->previous=NULL; 
   current->content=i; 
  } 
  else 
  { 
   entry *temp; 
   temp = new entry; 
   temp->previous=current; 
   temp->content=i; 
   current=temp; 
  } 
 } 
 
 unsigned Pop() 
 { 
  if(!current) 
   return INFINITY; 
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  unsigned result; 
  entry *pre=current->previous; 
  result=current->content; 
  delete current; 
  current = pre; 
  return result; 
 } 
 
 bool Empty() 
 { 
  if(current) 
   return false; 
  else  
   return true; 
 } 
}; 
 
 
class node 
{ 
public: 
 bool visited; 
 int all; 
 int current; 
 unsigned  *neighbors; 
 
 node() 
 { 
  all=2; 
  current=0; 
  neighbors = NULL; 
 } 
 
 ~node() 
 { 
  delete []neighbors; 
 } 
 
 void Construct(unsigned p, int n) // there are n bits 
 { 
  unsigned record[30]; 
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  unsigned mask; 
   
  all = 1; 
  record[0]=0; 
  mask = 1 << (n-1); 
  mask --; 
  for (unsigned i = n-1; i>0; i--) 
  { 
   if( (p & mask) == i) 
    record[all++] = i; 
   mask >>= 1; 
  } 
 
  // now we get all the dimensions at which a link exists 
  neighbors = new unsigned [all]; 
  current = 0; 
  while (current < all) 
  { 
   mask = record [current]; 
   mask = 1 << mask; 
   neighbors[current++] = (p ^ mask); 
  } 
  current = -1; 
  visited = false; 
  if(all==2) 
   d2++; 
  if(all==1) 
   d1++; 
 } 
  
 unsigned getNext()  // get the next unvisited neighbor 
 { 
  current++; 
  while (current<all) 
  { 
   if( nodes[neighbors[current]].visited ) 
   { 
    neighbors[current]=0; // will not be chosen 
    current++; 
    continue; 
   } 
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   return neighbors[current]; 
  } 
  return -1; 
  } 
 

 unsigned longestPath() // return the longest path down.  By the way,  

//  compare the max route with record 
 { 
  unsigned temp1, temp2; 
  int dimension1=0, dimension2=0, i; 
 
  if(all==1)  // leaf, only one link (to father) 
   return 0; 
 
  temp1 = temp2 = 0; 
  for (i=0; i<all; i++) 
  { 
   if(neighbors[i]>temp1) 
   { 
    temp1 = neighbors[i]; 
    dimension1 = i; 
   } 
  } 
  if(all==2) 
  { 
   if(temp1 > max) 
    max =temp1; 
   return temp1; 
  } 
 
  for( i=0; i<all; i++) 
  { 
   if(i==dimension1) 
    continue; 
   if(neighbors[i]>temp2) 
   { 
    temp2 = neighbors[i]; 
    dimension2 = i; 
   } 
  } 



Page 182 of 215 

   
  if( temp1 + temp2 > max ) 
   max = temp1 + temp2; 
   
  return temp1; 
 } 
  
 void sonDepth() // calculate the max of current son's longest path down 
 { 
  unsigned result = 0, son; 
  if(all==1) 
   return; 
  son = neighbors[current]; 
  result = nodes[son].longestPath(); 
  neighbors[current] = result + 1; 
 }  
}; 
 
void main(void) 
{ 
 nodes = NULL; 
 
  
 for (n = 4; n < 27 ; n++) 
 { 
  N = 1 << n; 
  d2=0; 

d1=0; 
  if(!nodes) 
   delete []nodes; 
  nodes = new node[N]; 
  max = 0; 
    
  for(unsigned i = 0; i < (unsigned) N; i++) 
   nodes[i].Construct(i,n); 
 
  // now we calculate the distance 
  Stack stack; 
  unsigned p = 0, q; 
 
  while( !stack.Empty() || p != INFINITY)   
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  { 
   if( p != INFINITY) 
   { 
    nodes[p].visited=true; 
    stack.Push(p); 
    p=nodes[p].getNext(); 
   } 
   else  // backtrack 
   { 
    p = stack.Pop(); 
    nodes[p].sonDepth(); 
    q = nodes[p].getNext(); 
    if( q != INFINITY) 
    { 
     stack.Push(p); 
     p = q; 
    } 
    else 
     p = INFINITY; 
   } 
  }  
  cout<<"\n The longest distance in the graph with n="<<n<<" N="<<N 

<<"  is: "<<max<<endl; 
  cout<<"The percentage of 2 degree nodes is: "<<d2*100.0/N<<"%"<<endl; 
  cout<<"The percentage of 1 degree nodes is: "<<d1*100.0/N<<"%"<<endl; 
 } 
} 
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Appendix IV Conversion functions for Extended  

 Fibonacci Cube 

 
 

unsigned CExtFibCube :: Dec2Fib   
(unsigned x, unsigned digit) 

{ 
unsigned result; 
result = 0; 

      digit = Num_Bits; 
 
      while(digit > k+1) 
      { 
 if( x >= FibNum[digit+1]) 
 { 
        result |= (1 << (digit - 1)); 
        x -= FibNum[digit + 1]; 
        digit -= 2; 
 } 
 else 
        digit --; 
      } 
      result |= x; 
 
      return result; 
} 
 
 
unsigned CExtFibCube::Fib2Dec(unsigned  

x, unsigned digit) 
{  
        unsigned result, mask; 

digit = Num_Bits; // how many  
// digits are left 
 

     resultlt = 0; 
     mask = (1 << (Num_Bits - 1)); 
     while(digit > k+1) 

     { 
    
 
 
if( mask & x ) // test the most  

// significant bit 
  {       

// it is 1 
         result += FibNum[digit+1]; 
         digit -= 2; 
          mask >>= 2; 
   } 
   else   //it is 0 
   { 
            digit --; 
            mask >>= 1; 
    } 
       } 
 
       if(digit == k+1) 
   result += (x & ((1<<(k+1))-1)); 
       else  
       { 
    ASSERT(digit == k); 
    result += (x & ((1<<k)-1)); 
        } 
 
         return result; 
} 
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Appendix V    CTimer Implementation 
 
 
 
#define PENTIUMSPEED 2457.6 
#define MHZ                     1000000.0 
 
class CTimer 
{ 
public: 
 
       // ULONGLONG is 64-bit unsigned 
       ULONGLONG start; 
       ULONGLONG duration; 
 
        CTimer() 

{ 
 duration = (ULONGLONG) 0; 

} 
 

        void Reset() 
{ 

 duration = (ULONGLONG) 0; 
} 
 
void  P() 
{ 
  unsigned temptime, temptime2; 
 
  asm{   
       _emit 0x0f; 
         emit 0x31;  //rdtsc 
              mov temptime, eax; 
         mov temptime2, edx 
   } 

 
   start = temptime2; 
   start <<= 32; 
   start += temptime; 
}  
 
void V() 
{ 
 unsigned temptime, temptime2; 
 ULONGLONG temp; 
 
 __asm{ 
           _emit 0x0f; 
             emit 0x31; //rdtsc 
  mov temptime, eax; 
  mov temptime2, edx 
     } 

 
     temp = temptime2; 
     temp <<= 32; 

    temp += temptime; 
 
 
 
     duration += (temp - start); 

} 
  
    double getDuration()  // the unit  

  is micro-second 
    { 

    double temp, result; 
 
    // there is no direct conversion  
    from ULONGLONG to double  
    available, so we have to convert  
    ULONGLONG to unsigned first 
  

            temp = (double) ((unsigned)  
(duration >> 32)); 

 temp *= 4294967296; 
  
 result = temp + (double)((unsigned) 
(duration & 0x00000000ffffffff)); 
 
 result = result * 1000000.0 / 
((PENTIUMSPEED) * (MHZ));  
 return result;  

       } 
}; 
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Note: 

 
RDTSC (ReaD Time Stamp Counter) is a set of assembly directives.  The _emit 

directives are inline assembly code for directly insert/declare a byte into the current  

text location.  

The assembly directive RDTSC returns the number of clock cycles since the CPU was 

powered up or reset.  The number of clock cycles is measured by a 64-bit counter and is 

stored in processor register EDX:EAX, where EDX contains the higher 32-bit value and 

EAX the lower 32-bit.   

 

The experiment is carried out on a 2.4GHz CPU, so PENTIUMSPEED is set to 1024 × 

2.4 = 2457.6.  Since the 64-bit counter can represent more than 82850 days, it is free 

from overflow. When running on other computers, this parameter may need to be 

modified correspondingly. 
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APPENDIX VI  Raw Data of Simulation Result 
 
MALatency:   Mean Average Latency       

AL SD:    Average Latency Standard Derivation 

Mthroughput:   Mean Throughput        

Throughput SD:  Mean Throughput Standard Derivation 

EN:   Erroneous nodes, faulty nodes 

EL:   Erroneous links, faulty links 

 
For regular Fibonacci Cube, with no fault.  Simulation duration is 60 seconds. 

Dimension MALatency AL SD MThroughput Throughput SD
5 5.731 0.212 2083902.953 39478.423
6 7.807 0.279 2509919.394 54907.034
7 9.992 0.305 3230724.711 40587.542
8 13.08 0.296 4200724.86 52155.955
9 16.095 0.521 5590315.3 50274.17

10 16.455 0.35 6649473.716 104408.736
11 20.155 0.406 5658421.504 139069.747
12 32.974 0.449 3191762.076 135310.57
13 54.566 0.979 2938218.173 100489.502
14 87.058 1.752 3701941.373 47461.994
15 114.863 2.767 7103450.59 74553.727
16 151.413 3.259 13099109.48 107931.935
17 190.072 3.628 23680371.47 404451.255
18 232.201 3.315 43698701.97 180854.325
19 275.059 4.76 75878409.95 711924.2
20 303.067 5.738 112260412.5 816434.957
21 289.345 1.61 162391187.7 2288984.601
22 242.265 2.305 243288065.4 10032688
23 189.133 1.747 350782433.1 18131088.72

 
For binary hypercube, with no fault.  Simulation duration is 60 seconds 

Dimension MALatency AL SD MThroughput Throughput SD
5 6.996 0.208 3046390.319 127271.508
6 10.093 0.383 4667176.013 95245.157
7 13.31 0.416 6313704.597 131947.345
8 15.935 1.056 6279516.186 166424.374
9 27.196 0.252 7334754.301 74366.35

10 44.961 0.776 13764698.95 190518.435
11 70.103 0.567 28554984.68 345918.469
12 106.431 1.369 58404606.18 527898.822
13 148.386 1.39 111371365.7 455649.988
14 170.444 2.784 193501166.9 1435244.624
15 157.378 0.81 346341553.8 9767170.654
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For Enhanced Fibonacci Cube, with no fault.  Simulation duration is 60 seconds. 

Dimension MALatency AL SD Mthroughput Throughput SD
5 6.118 0.334 1867121.121 32300.797
6 7.754 0.153 2282489.291 104697.344
7 10.56 0.249 3092194.369 45348.138
8 14.422 0.634 3649553.66 46371.699
9 19.084 0.423 4574387.498 40678.36

10 19.623 0.302 4071091.475 58355.813
11 26.128 0.493 4620221.082 132135.598
12 44.148 1.543 3512369.454 80139.695
13 78.206 1.528 4530388.221 188164.791
14 113.292 1.345 6578548.289 109678.648
15 155.442 3.533 14938441.68 208868.714
16 202.393 4.199 23031271.55 276336.661
17 274.073 2.346 48805511.77 270534.491
18 347.074 7.622 74274771.66 172534.607
19 390.71 7.771 118787792.3 1045183.748
20 383.481 5.161 156077315.7 1477467.015
21 312.276 2.172 251850034.3 12029546.57
22 246.282 2.134 344473927.4 20065672.56

 
 

For Extended Fibonacci Cube XFC1, with no fault.  Simulation duration is 60 seconds. 

Dimension MALatency AL SD Mthroughput Throughput SD
5 6.111 0.548 1997666.045 129741.239
6 8.398 0.441 2544305.343 68773.57
7 10.506 0.525 3022916.698 40881.233
8 13.589 0.435 3763136.654 61615.341
9 16.449 0.483 4091118.929 102616.141

10 19.643 0.232 4164382.708 25607.429
11 25.031 0.312 3275873.753 43656.724
12 41.716 0.815 2714505.551 73940.93
13 70.684 1.9 3192470.325 87453.553
14 102.635 2.163 4735510.016 68645.701
15 132.692 1.857 8988125.719 187721.677
16 165.983 3.745 16699058.48 123745.832
17 213.803 3.865 31539444.04 127224.894
18 261.356 5.957 57534241.64 425847.624
19 293.774 2.818 93071257.8 338624.828
20 299.232 1.542 133804007.5 822463.41
21 263.198 2.144 200622752.2 7332553.462
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For binary hypercubes with faulty nodes only.  Simulation duration is 60 seconds. 
 

Dimension EN MALatency AL SD Mthroughput Throughput SD
14 0 170.444 2.784 193501166.9 1435244.624
14 1 170.908 2.317 193452666.5 1099476.623
14 2 170.767 2.733 192553922.8 1775080.445
14 3 171.05 1.752 193229950.5 1196041.28
14 4 171.331 2.636 193922825.4 1274647.738
14 5 171.15 2.523 192788940.4 1433044.25
14 6 171.64 3.356 192156973.4 2101961.334
14 7 171.309 2.507 192740750.9 718702.298
14 8 171.457 2.965 192409636.3 2235970.311
14 9 170.89 3.169 193015906.2 2094651.531
14 10 171.153 2.205 192640297.3 903856.609
14 11 171.021 3.55 192151673.6 1964048.968
14 12 171.908 2.281 192509583.2 1060578.947
14 13 172.762 2.749 192678761.5 1179273.101

 
 
For regular Fibonacci Cube with faulty nodes only.  Simulation duration is 60 seconds. 
 

Dimension EN MALatency AL SD Mthroughput Throughput SD
20 0 303.067 5.738 112260412.5 816434.957
20 1 302.155 3.766 111999010.1 541699.452
20 2 303.922 2.429 112390575.2 392661.017
20 3 300.991 4.642 112372574.4 1336658.26
20 4 301.532 5.531 112122284 530947.712
20 5 302.823 4.883 112363961.4 581985.825
20 6 303.247 5.94 111776616.1 1101095.928

 
 
For Enhanced Fibonacci Cube with faulty nodes only.  Simulation duration is 60 seconds. 
 

Dimension EN Average Latency MALatency Mthroughput Throughput SD
19 0 389.103 7.771 118787792.3 1045183.748
19 1 389.226 4.438 119188267.7 863318.596
19 2 389.36 6.259 118588758.3 345219.298
19 3 389.487 6.328 119074739.5 819653.202
19 4 389.874 8.033 119112338.6 1245026.195
19 5 390.34 9.299 118558303.6 672637.849
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For Extended Fibonacci Cube XFC1 with faulty nodes only.   
Simulation duration is 60 seconds. 
 

Dimension EN MALatency AL SD Mthroughput Throughput SD
18 0 261.356 5.957 57534241.64 425847.624
18 1 258.198 2.785 57444466.25 333138.835
18 2 259.587 2.886 57502706.45 305976.943
18 3 259.561 2.207 57398983.78 249533.696
18 4 257.964 5.649 57688070.44 1426735.889
18 5 260.374 4.093 57366672.28 220644.97
18 6 257.031 6.869 57740320.65 559855.318

 
 
 
Collective data for regular Fibonacci Cube.  Simulation duration is 60 seconds. 
 
Dimension EN EL MALatency AL SD Mthroughput Throughput SD 

5 0 0 5.731 0.212 2083902.953 39478.423 
6 0 0 7.807 0.279 2509919.394 54907.034 
7 0 0 9.992 0.305 3230724.711 40587.542 
8 0 0 13.08 0.296 4200724.86 52155.955 
9 0 0 16.095 0.521 5590315.3 50274.17 

10 0 0 16.455 0.35 6649473.716 104408.736 
11 0 0 20.155 0.406 5658421.504 139069.747 
12 0 0 32.974 0.449 3191762.076 135310.57 
13 0 0 54.566 0.979 2938218.173 100489.502 
14 0 0 87.058 1.752 3701941.373 47461.994 
15 0 0 114.863 2.767 7103450.59 74553.727 
16 0 0 151.413 3.259 13099109.48 107931.935 
17 0 0 190.072 3.628 23680371.47 404451.255 
18 0 0 232.201 3.315 43698701.97 180854.325 
19 0 0 275.059 4.76 75878409.95 711924.2 
20 0 0 303.067 5.738 112260412.5 816434.957 
21 0 0 289.345 1.61 162391187.7 2288984.601 
22 0 0 242.265 2.305 243288065.4 10032688 
23 0 0 189.133 1.747 350782433.1 18131088.72 
5 1 0 5.841 0.386 1618549.516 72194.816 
6 1 0 7.351 0.39 2126026.976 113579.376 
7 1 0 10.145 0.353 2761105.574 90267.137 
8 1 0 13.292 0.504 3372483.103 64298.75 
9 1 0 16.739 0.993 4304299.715 195288.141 

10 1 0 16.5 1.097 4861723.763 143332.959 
11 1 0 21.529 0.853 4273978.892 86374.399 
12 1 0 33.45 0.728 2970892.611 118091.51 
13 1 0 55.81 2.192 2822988.235 81006.148 
14 1 0 87.192 1.149 3750585.78 92523.637 



Page 191 of 215 

15 1 0 112.604 1.456 7171639.391 89578.961 
16 1 0 146.284 1.068 13068279.02 129118.695 
17 1 0 193.371 5.441 23525662.46 230885.207 
18 1 0 228.362 3.619 43880389.04 236422.429 
19 1 0 276.543 9.206 75734875.52 333895.796 
20 1 0 302.155 3.766 111999010.1 541699.452 
21 1 0 287.889 3.68 161551742.5 2901851.687 
22 1 0 242.436 1.367 241733277.3 9015897.691 
23 1 0 189.254 1.425 352411767.5 19880373.02 
7 2 0 9.834 0.457 2673296.987 121027.335 
8 2 0 12.962 0.365 3281306.28 87370.985 
9 2 0 16.481 0.726 4248450.497 175355.554 

10 2 0 17.117 0.447 4318529.501 112847.492 
11 2 0 22.314 0.807 3802018.538 67406.071 
12 2 0 34.379 1.836 2899333.034 279764.286 
13 2 0 55.788 1.207 2827076.315 137049.032 
14 2 0 86.611 1.384 3661348.803 111057.116 
15 2 0 111.645 1.548 7167980.838 303127.802 
16 2 0 147.621 1.313 12922902.61 227256.572 
17 2 0 189.557 6.229 23715267.72 326830.328 
18 2 0 232.7 4.317 43537637.1 116949.548 
19 2 0 278.776 4.242 76261005.38 549153.146 
20 2 0 303.922 2.429 112390575.2 392661.017 
21 2 0 287.411 2.868 162237785.1 2675653.88 
22 2 0 244.045 1.89 242105643.7 8285151.7 
23 2 0 189.183 1.294 351914363.9 18288048.95 
10 3 0 17.602 1.981 4053731.24 381424.032 
11 3 0 21.675 0.657 3501868.693 432017.043 
12 3 0 33.061 0.945 3072415.772 54872.898 
13 3 0 55.599 1.47 2847679.812 84563.958 
14 3 0 87.865 1.621 3792607.37 127188.396 
15 3 0 117.009 2.888 7155727.834 115170.834 
16 3 0 151.481 3.376 12895748.08 184784.944 
17 3 0 193.618 4.854 23872469.42 225886.935 
18 3 0 234.779 2.631 43623510.47 628782.563 
19 3 0 276.977 6.405 75651568.99 1182848.891 
20 3 0 300.991 4.642 112372574.4 1336658.26 
21 3 0 289.744 1.73 160943842.6 2597467.327 
22 3 0 243.417 1.349 242547865.8 9674494.215 
23 3 0 188.369 1.149 351941789.4 19237030.7 
13 4 0 55.289 1.597 2807826.854 68066.228 
14 4 0 86.307 2.557 3697107.437 169624.455 
15 4 0 115.346 1.603 7157687.081 275615.391 
16 4 0 148.617 2.178 13037838.15 261051.447 
17 4 0 191.644 3.571 23605535.18 125514.916 
18 4 0 234.495 5.669 43405108.42 208137.297 
19 4 0 277.937 3.948 75911122.39 617764.067 
20 4 0 301.532 5.531 112122284 530947.712 
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21 4 0 287.936 4.619 160748440.7 2047598.54 
22 4 0 242.596 1.688 242899126.6 9647192.063 
23 4 0 188.031 0.893 352360852.8 19045274.37 
16 5 0 151.647 3.61 12895138.08 129809.399 
17 5 0 189.658 3.958 23711335.99 294883.227 
18 5 0 234.082 2.601 43850272.85 441577.508 
19 5 0 278.013 6.432 75747040.73 727315.024 
20 5 0 302.823 4.883 112363961.4 581985.825 
21 5 0 286.8 3.94 161293466.8 2432747.019 
22 5 0 241.441 1.253 239650845.7 9331981.02 
23 5 0 187.879 1.663 351191231.1 17631945.04 
19 6 0 273.405 3.079 75397343.12 964119.355 
20 6 0 303.247 5.94 111776616.1 1101095.928 
21 6 0 288.296 1.199 161496358.9 2356425.875 
22 6 0 242.883 0.266 243473027.6 10952392.96 
23 6 0 188.372 1.216 352543696.4 15539182.15 
22 7 0 243.434 1.387 242832192.6 9331375.855 
23 7 0 188.519 0.904 351617990.2 17437587.55 
5 0 1 6.097 0.462 1726640.593 98924.5 
6 0 1 7.617 0.321 2182032.631 36757.316 
7 0 1 9.876 0.264 2738781.763 42109.965 
8 0 1 13.741 0.52 3377856.11 28762.92 
9 0 1 17.135 0.446 3933021.1 100574.699 

10 0 1 18.982 0.702 4176426.926 54626.762 
11 0 1 22.066 0.55 3494240.258 105971.85 
12 0 1 34.805 0.512 2945132.317 123370.165 
13 0 1 55.586 1.306 2873227.469 122647.05 
14 0 1 87.152 2.031 3697591.115 105786.394 
15 0 1 113.826 2.418 7085188.141 85301.345 
16 0 1 145.261 3.331 12794124.43 167862.113 
17 0 1 186.044 5.554 23519854.81 287804.907 
18 0 1 232.573 2.801 43135061.68 968377.075 
19 0 1 278.354 5.378 76279807.61 646134.003 
20 0 1 304.017 6.072 112479316.7 1401271.608 
21 0 1 287.328 1.625 161746953.7 2281468.207 
22 0 1 244.863 2.146 242518784.7 8230428.261 
23 0 1 188.295 1.254 351867941.6 18445606.29 
7 0 2 9.779 0.33 2802521.589 119372.526 
8 0 2 12.656 0.593 3518964.724 35118.731 
9 0 2 16.127 1.415 4349712.159 137129.389 

10 0 2 17.628 0.756 4176483.821 91787.965 
11 0 2 22.46 0.6 3581334.523 89022.239 
12 0 2 34.24 0.723 2961031.809 97220.94 
13 0 2 55.877 1.135 2864100.956 86629.739 
14 0 2 89.591 1.079 3692789.936 85996.717 
15 0 2 112.918 1.949 7219054.51 159439.033 
16 0 2 150.229 2.882 13095535.83 83780.784 
17 0 2 192.874 3.601 23625762.59 392668.198 
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18 0 2 233.495 4.189 43668385.69 175002.276 
19 0 2 287.79 5.453 76274428.92 593318.292 
20 0 2 304.549 4.808 112627107.9 585352.334 
21 0 2 289.082 2.329 161944709.8 3531325.42 
22 0 2 242.9 2.657 241599965.2 9807168.625 
23 0 2 188.672 0.717 350587767 18556023.75 
10 0 3 17.32 0.504 3711813.572 546014.565 
11 0 3 22.032 0.931 3533562.056 53993.652 
12 0 3 33.536 0.547 3019382.803 135932.695 
13 0 3 55.69 1.729 2844721.862 65727.717 
14 0 3 87.129 0.646 3721347.095 59245.802 
15 0 3 114.518 1.331 7118970.867 144171.111 
16 0 3 150.57 3.98 13052741.42 166682.883 
17 0 3 188.052 2.865 23593775.54 362548.149 
18 0 3 233.928 4.436 43451445.28 738088.005 
19 0 3 278.64 6.693 76155587.76 501383.903 
20 0 3 303.413 3.892 112228353.9 969003.748 
21 0 3 290.387 5.056 162390931.8 3430973.882 
22 0 3 243.535 1.639 242304501.6 8608072.177 
23 0 3 189.263 1.051 352163094.2 18593234.63 
13 0 4 57.292 1.753 2788187.992 59873.767 
14 0 4 89.303 1.44 3654662.547 145141.466 
15 0 4 112.32 0.809 7174184.481 247667.038 
16 0 4 148.099 4.263 12945073.51 75679.358 
17 0 4 190.316 2.809 23817456.21 362849.662 
18 0 4 234.931 5.005 43424581.28 374666.141 
19 0 4 276.827 3.517 75686593.32 211857.105 
20 0 4 306.673 4.105 112476295.8 775496.677 
21 0 4 287.735 5.154 160781004.7 4558053.091 
22 0 4 244.242 1.344 243464016.5 12076438.39 
23 0 4 189.009 1.679 350583164.3 15822572.61 
16 0 5 148.207 3.971 13091493.97 252983.409 
17 0 5 193.847 5.429 23797481.04 310887.189 
18 0 5 232.828 3.864 43764896.03 196767.528 
19 0 5 274.506 4.64 75819387.85 516854.958 
20 0 5 306.385 5.223 112254312 426331.319 
21 0 5 288.236 4.162 161979297.4 1634858.237 
22 0 5 241.491 2.279 243080694.9 9227651.419 
23 0 5 189.089 1.359 350743196.8 14963819.5 
19 0 6 275.523 3.469 76123014.35 946650.689 
20 0 6 301.867 8.611 111961538.8 1357248.707 
21 0 6 288.467 1.411 161668584.8 2459544.243 
22 0 6 242.885 1.266 243385355 9457780.62 
23 0 6 188.927 1.768 352804366.1 18667659.5 
22 0 7 243.267 1.537 242964575.4 10349595.84 
23 0 7 187.924 1.022 351066937.1 19037467.13 

 
 



Page 194 of 215 

 
Collective data for Enhanced Fibonacci Cube.  Simulation duration is 60 seconds. 
 
 
Dimension EN EL MALatency AL SD Mthroughput Throughput SD 

5 0 0 6.118 0.334 1867121.121 32300.797 
6 0 0 7.754 0.153 2282489.291 104697.344 
7 0 0 10.56 0.249 3092194.369 45348.138 
8 0 0 14.422 0.634 3649553.66 46371.699 
9 0 0 19.084 0.423 4574387.498 40678.36 

10 0 0 19.623 0.302 4071091.475 58355.813 
11 0 0 26.128 0.493 4620221.082 132135.598 
12 0 0 44.148 1.543 3512369.454 80139.695 
13 0 0 78.206 1.528 4530388.221 188164.791 
14 0 0 113.292 1.345 6578548.289 109678.648 
15 0 0 155.442 3.533 14938441.68 208868.714 
16 0 0 202.393 4.199 23031271.55 276336.661 
17 0 0 274.073 2.346 48805511.77 270534.491 
18 0 0 347.074 7.622 74274771.66 172534.607 
19 0 0 390.71 7.771 118787792.3 1045183.748 
20 0 0 383.481 5.161 156077315.7 1477467.015 
21 0 0 312.276 2.172 251850034.3 12029546.57 
22 0 0 246.282 2.134 344473927.4 20065672.56 
5 1 0 5.71 0.233 1806157.496 69316.26 
6 1 0 8.204 0.551 2274568.786 68934.367 
7 1 0 10.208 0.404 3076542.438 86355.255 
8 1 0 13.265 0.53 3623835.395 93915.813 
9 1 0 18.327 0.438 4555702.767 85419.56 

10 1 0 20.713 0.905 4152025.833 182298.417 
11 1 0 25.916 0.722 4585471.892 80212.826 
12 1 0 42.068 0.482 3642861.426 115700.707 
13 1 0 78.27 1.757 4393053.915 109338.073 
14 1 0 115.706 1.572 6441498.929 157801.34 
15 1 0 152.267 1.944 15046982.34 203165.737 
16 1 0 209.334 5.279 23003218.71 177685.27 
17 1 0 270.691 2.291 48922694.62 199340.486 
18 1 0 346.876 6.341 73737042.87 354749.655 
19 1 0 389.226 4.438 119188267.7 863318.596 
20 1 0 385.027 3.376 155825532.7 1769757.061 
21 1 0 314.34 0.896 249601221 7778148.909 
22 1 0 247.042 1.762 344035808.4 18404266.83 
7 2 0 11.133 0.398 2771060.221 107246.006 
8 2 0 14.65 0.514 3528522.659 63827.118 
9 2 0 19.084 1.056 4433637.198 227404.401 

10 2 0 20.871 0.834 4062656.006 224152.334 
11 2 0 25.628 0.228 4598448.576 150059.556 
12 2 0 43.028 0.732 3598269.413 92982.134 
13 2 0 76.712 2.691 4262932.036 68213.402 
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14 2 0 111.339 0.988 6559022.755 80519.54 
15 2 0 153.825 1.334 14930533.78 91939.792 
16 2 0 202.543 5.096 22896998.21 276669.631 
17 2 0 277.992 7.182 48969139.38 297260.358 
18 2 0 345.463 10.003 73669825.81 684904.337 
19 2 0 389.36 6.259 118588758.3 345219.298 
20 2 0 383.166 3.139 156490431 1662560.385 
21 2 0 314.969 1.242 249694022.6 9597898.654 
22 2 0 246.796 1.627 343678362.9 17699673.98 
11 3 0 26.426 1.042 4133120.75 755453.876 
12 3 0 42.891 1.204 3574800.007 150248.202 
13 3 0 75.908 3.086 4873139.713 733733.12 
14 3 0 112.416 1.531 6539897.814 214966.603 
15 3 0 152.845 2.237 15017944.48 158367.045 
16 3 0 208.456 6.422 22967991.32 91091.56 
17 3 0 275.9 2.421 48962135.26 289153.107 
18 3 0 346.384 7.898 73936986.34 188041.717 
19 3 0 389.487 6.328 119074739.5 819653.202 
20 3 0 380.408 3.562 155081077.5 1991664.857 
21 3 0 313.956 2.471 250556457.7 8478897.847 
22 3 0 246.449 2.823 342505667.2 20639260.24 
15 4 0 156.31 3.007 14834361.69 174277.391 
16 4 0 206.398 5.587 23057417.98 237013.718 
17 4 0 274.663 5.086 48863649.37 315978.506 
18 4 0 344.365 4.659 73784511.28 486207.859 
19 4 0 389.874 8.033 119112338.6 1245026.195 
20 4 0 382.306 7.16 155713921.5 1206456.477 
21 4 0 314.385 1.608 250967736.2 7878142.644 
22 4 0 246.371 3.922 343893082.2 15642781.34 
19 5 0 390.34 9.299 118558303.6 672637.849 
20 5 0 383.077 2.094 156335015.9 2237025.259 
21 5 0 314.231 2.089 250423555.3 10536274.42 
22 5 0 245.701 3.081 345318373.1 14166987.47 
5 0 1 5.913 0.606 1738072.97 54078.904 
6 0 1 8.454 0.157 2128601.381 57988.136 
7 0 1 10.314 0.329 3030071.585 35245.483 
8 0 1 14.105 0.305 3712643.842 68783.47 
9 0 1 18.817 0.4 4589546.343 145671.878 

10 0 1 20.157 0.325 3920837.921 67124.555 
11 0 1 25.427 0.462 4383760.221 104734.372 
12 0 1 42.895 0.853 3511298.085 94526.91 
13 0 1 78.235 0.601 4421358.734 92258.085 
14 0 1 112.703 1.924 6550176.688 154399.633 
15 0 1 152.969 1.905 14870029.12 149333.778 
16 0 1 211.559 5.71 22865480.7 181100.807 
17 0 1 271.56 4.735 48709198.79 356366.441 
18 0 1 347.174 4.646 74148256.74 467713.211 
19 0 1 391.082 3.139 118899222 373324.041 
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20 0 1 381.917 4.058 156285886.8 1646609.492 
21 0 1 313.457 2.209 250591097.2 9896198.119 
22 0 1 246.09 4.139 343276434.8 18627791.84 
7 0 2 10.861 0.463 2814787.708 134346.328 
8 0 2 15.161 0.417 3613595.657 77756.136 
9 0 2 20.597 0.891 4056322.533 100120.965 

10 0 2 20.915 0.63 3660536.852 101170.579 
11 0 2 26.315 0.588 4637002.448 174019.213 
12 0 2 43.356 0.808 3532656.083 80737.812 
13 0 2 79.142 1.361 4467803.84 140991.044 
14 0 2 113.31 1.789 6512454.05 154709.263 
15 0 2 154.629 0.897 14996845.95 77816.02 
16 0 2 204.266 4.345 22998459.83 364659.954 
17 0 2 275.528 6.063 49273206.53 333990.466 
18 0 2 347.004 6.016 73913898.29 1628582.269 
19 0 2 393.537 3.98 119019819.5 459906.788 
20 0 2 383.687 3.15 155959662 1495539.401 
21 0 2 314.682 1.553 250923979.6 11023890.63 
22 0 2 246.645 1.588 346237730.9 19729948.56 
11 0 3 27.622 0.513 4111040.053 419462.646 
12 0 3 44.571 0.967 3401995.803 106968.962 
13 0 3 77.243 1.586 4410671.022 113806.882 
14 0 3 112.682 2.115 6656273.537 103666.951 
15 0 3 151.975 2.888 14950240.91 180415.723 
16 0 3 206.454 4.427 22983022.88 128445.298 
17 0 3 272.376 4.855 48783163.68 504878.403 
18 0 3 344.358 7.897 73917757.8 413888.247 
19 0 3 394.308 2.715 118612891.1 241032.091 
20 0 3 382.58 1.863 156519151.8 1779986.328 
21 0 3 313.468 2.54 250977576.2 9411008.265 
22 0 3 246.389 4.667 343592958.9 16184394 
15 0 4 156.033 2.155 14610265.86 318944.431 
16 0 4 199.774 6.628 22947311.83 261322.581 
17 0 4 270.988 1.392 48830965.89 307736.668 
18 0 4 343.493 6.995 74185642.88 566054.476 
19 0 4 390.904 8.031 118380790.8 331526.558 
20 0 4 384.115 5.605 156363799.5 1741559.548 
21 0 4 314.838 1.682 250898967.1 8157147.348 
22 0 4 245.821 3.64 344261416.4 21121078.05 
19 0 5 390.806 15.652 118847907.8 1102955.553 
20 0 5 382.057 1.05 156022912.9 1447976.38 
21 0 5 312.647 2.212 250825025.8 7926472.788 
22 0 5 245.92 2.193 344638066.7 19158723.89 
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Collective data for Extended Fibonacci Cube XFC1.  Simulation duration is 60 seconds. 
 
 
Dimension Subscript EN EL MALatency AL SD Mthroughput Throughput SD 

21 1 0 0 263.198 2.144 200622752.2 7332553.462 
20 1 0 0 299.232 1.542 133804007.5 822463.41 
19 1 0 0 293.774 2.818 93071257.8 338624.828 
18 1 0 0 261.356 5.957 57534241.64 425847.624 
17 1 0 0 213.803 3.865 31539444.04 127224.894 
16 1 0 0 165.983 3.745 16699058.48 123745.832 
15 1 0 0 132.692 1.857 8988125.719 187721.677 
14 1 0 0 102.635 2.163 4735510.016 68645.701 
13 1 0 0 70.684 1.9 3192470.325 87453.553 
12 1 0 0 41.716 0.815 2714505.551 73940.93 
11 1 0 0 25.031 0.312 3275873.753 43656.724 
10 1 0 0 19.643 0.232 4164382.708 25607.429 
9 1 0 0 16.449 0.483 4091118.929 102616.141 
8 1 0 0 13.589 0.435 3763136.654 61615.341 
7 1 0 0 10.506 0.525 3022916.698 40881.233 
6 1 0 0 8.398 0.441 2544305.343 68773.57 
5 1 0 0 6.111 0.548 1997666.045 129741.239 

21 1 1 0 265.219 3.161 199088120.6 7303813.555 
20 1 1 0 296.97 2.504 133436741.5 771502.698 
19 1 1 0 293.887 1.872 92905390.07 1351086.941 
18 1 1 0 258.198 2.785 57444466.25 333138.835 
17 1 1 0 215.471 4.197 31525904.34 249118.385 
16 1 1 0 167.814 3.105 16841782.87 237712.569 
15 1 1 0 134.265 1.759 9088189.582 157547.852 
14 1 1 0 100.534 0.458 4783634.634 277797.116 
13 1 1 0 70.75 1.362 3236308.469 117527.675 
12 1 1 0 40.924 1.132 2706430.195 45522.29 
11 1 1 0 24.75 1.21 3481050.429 737040.567 
10 1 1 0 19.234 0.312 4155260.1 83642.79 
9 1 1 0 16.534 0.351 4350247.757 72987.535 
8 1 1 0 13.743 0.588 3704667.997 118894.186 
7 1 1 0 10.714 0.189 3059107.766 59656.619 
6 1 1 0 7.885 0.217 2495627.764 29566.618 
5 1 1 0 6.091 0.224 2052280.149 66398.359 

21 1 2 0 265.971 1.285 200331426.7 6732831.867 
20 1 2 0 299.762 2.077 133444323.9 878399.877 
19 1 2 0 292.358 2.463 93298069.21 533850.245 
18 1 2 0 259.587 2.886 57502706.45 305976.943 
17 1 2 0 210.825 3.521 31619763.34 230008.725 
16 1 2 0 169.772 4.991 16732718.49 183719.05 
15 1 2 0 132.692 2.691 8940323.215 117265.276 
14 1 2 0 102.837 2.337 4807856.749 81899.904 
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13 1 2 0 70.127 1.916 3131084.288 71053.123 
12 1 2 0 41.236 1.931 2918028.031 737677.167 
11 1 2 0 24.933 0.264 3314056.278 523110.038 
10 1 2 0 19.363 0.796 4149873.43 250568.257 
9 1 2 0 17.199 1.136 4550593.055 228117.283 
8 1 2 0 14.096 0.481 3758240.471 118674.347 
7 1 2 0 10.463 0.463 2949211.73 42588.169 
6 1 2 0 7.756 0.362 2513267.792 40896.691 
5 1 2 0 6.256 0.377 1901078.027 77532.58 

21 1 3 0 265.262 4.414 199684343.4 7468818.212 
20 1 3 0 296.77 1.682 133274466.3 1366219.362 
19 1 3 0 294.193 2.314 92832158.88 574327.548 
18 1 3 0 259.561 2.207 57398983.78 249533.696 
17 1 3 0 210.228 3.894 31315760.46 290424.634 
16 1 3 0 171.007 2.464 16590856.54 333729.919 
15 1 3 0 133.238 1.655 9043464.201 152959.693 
14 1 3 0 102.363 2.097 4789679.141 70501.799 
13 1 3 0 68.799 1.66 3263554.472 68176.457 
12 1 3 0 41.952 0.812 2796851.13 81633.806 
11 1 3 0 24.405 1.378 3519281.432 768508.652 
10 1 3 0 19.434 1.013 4285503.26 397783.673 
9 1 3 0 17.385 1.334 4710003.484 272999.955 
8 1 3 0 14.669 0.286 3950009.379 188964.102 

21 1 4 0 266 3.273 200881711.6 7309829.236 
20 1 4 0 296.992 2.113 133419870.7 1229102.729 
19 1 4 0 292.927 2.508 92883316.93 229330.581 
18 1 4 0 257.964 5.649 57688070.44 1426735.889 
17 1 4 0 211.891 4.025 31475005.84 361711.042 
16 1 4 0 165.688 3.052 16768644.21 149272.382 
15 1 4 0 131.462 1.222 8905400.523 155797.718 
14 1 4 0 102.64 1.61 4776977.777 26544.413 
13 1 4 0 67.502 0.968 3159847.425 366031.919 
12 1 4 0 41.317 1.191 3572525.236 471813.232 
11 1 4 0 24.709 0.814 3547430.753 334499.955 
21 1 5 0 265.047 3.059 201178621.7 8274876.642 
20 1 5 0 296.934 3.088 133606854.8 666252.068 
19 1 5 0 292.911 4.067 92802440.8 920262.299 
18 1 5 0 260.374 4.093 57366672.28 220644.97 
17 1 5 0 214.567 2.777 31545974.96 189719.366 
16 1 5 0 168.595 4.15 17003736.79 318931.2 
15 1 5 0 131.737 1.697 9017893.049 309165.247 
14 1 5 0 102.002 2.825 4980801.951 316371.054 
21 1 6 0 266.969 1.374 199302577.7 7297633.83 
20 1 6 0 297.524 1.572 133976585.7 1177269.866 
19 1 6 0 292.98 1.61 93147551.45 627383.95 
18 1 6 0 257.031 6.869 57740320.65 559855.318 
17 1 6 0 217.06 3.138 31522824.11 460011.848 
21 1 7 0 266.117 1.682 200664295 6536290.811 
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20 1 7 0 300.143 1.94 132977548.1 609171.502 
21 1 0 1 265.572 2.172 199385330.5 5733065.957 
20 1 0 1 297.015 2.151 133627413.9 1255472.491 
19 1 0 1 294.224 3.016 92647415.64 665297.084 
18 1 0 1 255.241 1.876 57350700.07 422341.553 
17 1 0 1 208.725 5.344 31796454.76 460435.078 
16 1 0 1 168.918 4.693 16724094.66 99699.997 
15 1 0 1 132.915 2.042 8991897.849 133163.856 
14 1 0 1 99.754 2.007 4776551.37 125197.212 
13 1 0 1 70.186 1.208 3202758.981 36236.102 
12 1 0 1 40.987 0.853 2716972.14 33192.018 
11 1 0 1 24.418 0.263 3329010.302 31272.175 
10 1 0 1 19.422 0.301 4359067.714 115008.857 
9 1 0 1 16.275 0.262 4450664.645 85206.181 
8 1 0 1 13.609 0.742 3905100.304 89791.69 
7 1 0 1 11.101 0.359 2964917.13 37992.225 
6 1 0 1 8.498 0.226 2445427.197 57025.154 
5 1 0 1 6.005 0.461 2026803.782 72590.5 

21 1 0 2 265.967 1.687 199600120.9 5273566.624 
20 1 0 2 295.156 3.415 134119309.3 884143.156 
19 1 0 2 292.187 1.405 92992569.53 297372.361 
18 1 0 2 257.205 4.534 57560594.59 613404.955 
17 1 0 2 212.226 1.638 31203823.75 323857.221 
16 1 0 2 168.068 3.747 16691231.79 135221.991 
15 1 0 2 133.163 1.653 8997325.64 93368.63 
14 1 0 2 102.299 1.638 4740069.734 68881.209 
13 1 0 2 69.697 1.967 3169418.418 59662.239 
12 1 0 2 40.487 0.353 2719432.101 51808.733 
11 1 0 2 24.952 0.37 3193031.031 38434.247 
10 1 0 2 19.666 0.898 4100552.058 364657.107 
9 1 0 2 16.683 0.834 4485865.045 279743.274 
8 1 0 2 13.677 0.194 3791233.691 76439.006 
7 1 0 2 10.696 0.207 3052559.3 48833.829 
6 1 0 2 8.305 0.469 2570836.011 40704.135 
5 1 0 2 6.449 0.497 2121097.91 39028.761 

21 1 0 3 264.61 2.163 199448640 5780222.65 
20 1 0 3 297.657 2.243 133299337.4 1238084.378 
19 1 0 3 293.128 2.175 93308591 800260.93 
18 1 0 3 256.248 1.703 57419114.64 340689.725 
17 1 0 3 212.189 1.858 31243565.65 389286.49 
16 1 0 3 173.482 6.424 16875165.17 156700.73 
15 1 0 3 132.887 0.998 9003571.707 187107.415 
14 1 0 3 101.812 2.216 4841758.091 117702.954 
13 1 0 3 68.596 1.659 3306859.903 66659.529 
12 1 0 3 41.719 1.012 2727866.412 60890.266 
11 1 0 3 24.598 0.615 3179344.055 42413.222 
10 1 0 3 19.421 0.267 3933510.969 118726.283 
9 1 0 3 16.637 0.377 4134940.935 122416.438 
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8 1 0 3 13.833 0.263 3769035.305 45632.055 
21 1 0 4 266.315 0.584 199320506.1 5795558.376 
20 1 0 4 297.983 4.193 133773502.2 1081045.327 
19 1 0 4 295.06 3.178 93237995.58 755807.748 
18 1 0 4 258.236 3.077 57144973 356155.614 
17 1 0 4 209.739 1.502 31286770.17 308067.937 
16 1 0 4 165.187 4.429 16766313.59 238018.662 
15 1 0 4 131.898 3.021 8947275.425 101865.77 
14 1 0 4 103.619 1.135 4751042.126 106725.325 
13 1 0 4 69.624 2.041 3144186.163 59149.646 
12 1 0 4 41.893 0.871 2719853.494 61261.43 
11 1 0 4 24.457 0.632 3222281.782 46398.769 
21 1 0 5 266.437 2.069 199165263 5403703.717 
20 1 0 5 296.127 3.09 133332157.9 334061.544 
19 1 0 5 293.935 3.089 93250037.55 2847316.239 
18 1 0 5 255.161 2.673 57278709.4 527434.724 
17 1 0 5 213.272 4.04 31349854.73 177993.277 
16 1 0 5 171.146 3.825 16690803.19 135721.406 
15 1 0 5 132.203 1.531 9027390.502 87184.27 
14 1 0 5 101.292 3.262 4846336.806 134941.318 
21 1 0 6 265.403 4.977 200817858.7 7238988.242 
20 1 0 6 295.625 3.309 133099205.8 912861.232 
19 1 0 6 293.273 1.718 92802155.01 772981.447 
18 1 0 6 256.141 2.614 57368258.19 394580.88 
17 1 0 6 213.501 2.389 31458945.42 98421.339 
21 1 0 7 266.257 1.361 199405100.1 6124989.436 
20 1 0 7 296.987 2.688 133764361.4 1793139.211 
5 4 0 0 6.996 0.208 3046390.319 127271.508 
6 5 0 0 10.093 0.383 4667176.013 95245.157 
7 6 0 0 13.31 0.416 6313704.597 131947.345 
8 7 0 0 15.935 1.056 6279516.186 166424.374 
9 8 0 0 27.196 0.252 7334754.301 74366.35 

10 9 0 0 44.961 0.776 13764698.95 190518.435 
11 10 0 0 70.103 0.567 28554984.68 345918.469 
12 11 0 0 106.431 1.369 58404606.18 527898.822 
13 12 0 0 148.386 1.39 111371365.7 455649.988 
14 13 0 0 170.444 2.784 193501166.9 1435244.624 
15 14 0 0 157.378 0.81 346341553.8 9767170.654 
5 4 1 0 6.939 0.349 2904603.881 159899.65 
6 5 1 0 10.773 0.199 4439517.649 48139.175 
7 6 1 0 14.148 0.707 6083592.593 126975.738 
8 7 1 0 16.516 0.345 6147552.167 177640.208 
9 8 1 0 27.989 0.69 7593261.941 308897.363 

10 9 1 0 45.293 0.406 14064062.68 394192.369 
11 10 1 0 71.351 1.245 28428847.63 342288.559 
12 11 1 0 107.561 0.593 58121355.85 320391.082 
13 12 1 0 147.194 2.58 110715573.5 614928.394 
14 13 1 0 170.908 2.317 193452666.5 1099476.623 
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15 14 1 0 156.89 0.503 347934785.8 7977134.759 
5 4 2 0 7.189 0.207 2893658.421 107783.017 
6 5 2 0 10.406 0.411 4567365.966 83543.657 
7 6 2 0 13.807 1.585 6256001.046 170926.584 
8 7 2 0 15.898 0.542 6075238.647 147433.674 
9 8 2 0 27.457 1.021 7502926.896 133500.389 

10 9 2 0 45.088 0.416 14019681.22 137883.768 
11 10 2 0 70.579 1.045 28315185.56 149717.532 
12 11 2 0 106.924 1.485 58292679.22 328786.053 
13 12 2 0 148.029 1.38 111327053.7 123739.399 
14 13 2 0 170.767 2.733 192553922.8 1775080.445 
15 14 2 0 156.661 0.789 347418253.5 10375803.85 
5 4 3 0 7 0.146 2739784.172 179562.55 
6 5 3 0 10.665 0.251 4400795.826 89770.126 
7 6 3 0 16.063 1.793 6251088.944 390011.29 
8 7 3 0 16.259 3.022 6092019.233 808084.973 
9 8 3 0 28.104 0.257 7572503.963 140305.981 

10 9 3 0 44.47 0.773 14027080.82 116070.111 
11 10 3 0 71.918 1.28 28432228.07 195548.586 
12 11 3 0 105.119 1.716 58228688.11 187552.559 
13 12 3 0 149.372 2.081 111134159.2 865932.664 
14 13 3 0 171.05 1.752 193229950.5 1196041.28 
15 14 3 0 156.421 0.747 347456875.4 8350103.319 
5 4 4 0 7.492 0.3 2792660.961 131947.574 
6 5 4 0 10.757 0.161 4370231.437 87749.177 
7 6 4 0 13.838 1.904 6194980.013 164195.208 
8 7 4 0 16.788 0.626 6399213.129 221580.161 
9 8 4 0 27.473 0.41 7343743.137 236726.238 

10 9 4 0 45.447 0.877 13859678.23 186995.459 
11 10 4 0 71.262 1.336 28324951.07 248040.651 
12 11 4 0 106.25 0.681 58385494.3 278939.133 
13 12 4 0 147.661 1.159 111109710.4 385580.968 
14 13 4 0 171.331 2.636 193922825.4 1274647.738 
15 14 4 0 157.254 0.999 346514751.7 7540128.137 
6 5 5 0 10.775 0.274 4022610.738 223538.391 
7 6 5 0 16.318 1.305 6200325.815 212043.521 
8 7 5 0 17.534 1.932 6255143.692 534857.59 
9 8 5 0 28.289 4.289 7782234.333 1551388.438 

10 9 5 0 45.608 0.748 14100033.61 495740.525 
11 10 5 0 71.401 1.126 28462490.59 195105.138 
12 11 5 0 107.56 1.133 58157575.14 584658.02 
13 12 5 0 149.457 3.545 111132527.7 824398.498 
14 13 5 0 172.352 2.523 192788940.4 1433044.25 
15 14 5 0 156.837 0.678 347646415.8 9153185.065 
7 6 6 0 16.981 1.942 5859901.675 659189.695 
8 7 6 0 20.346 2.962 7299854.515 623134.316 
9 8 6 0 27.847 0.79 7509677.564 289007.292 

10 9 6 0 45.19 0.817 14015130.96 415881.124 
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11 10 6 0 70.997 1.519 28114803.2 675272.084 
12 11 6 0 107.201 0.585 58160213.51 149942.024 
13 12 6 0 148.688 2.72 110791288.8 562550.443 
14 13 6 0 172.595 3.356 192156973.4 2101961.334 
15 14 6 0 157.251 0.771 347672230.7 8394355.957 
8 7 7 0 21.603 4.586 6907788.422 1178227.283 
9 8 7 0 29.294 0.863 7596715.165 330899.676 

10 9 7 0 46.199 0.781 14087613.81 286269.539 
11 10 7 0 70.86 1.151 28641216.65 232329.467 
12 11 7 0 107.699 1.328 58192091.67 135172.158 
13 12 7 0 146.929 2.536 111165305.7 538515.66 
14 13 7 0 171.309 2.507 192740750.9 718702.298 
15 14 7 0 157.146 0.916 345187885.8 7408504.968 
9 8 8 0 28.74 0.399 7372820.282 272652.915 

10 9 8 0 45.26 0.865 13924882.68 138739.332 
11 10 8 0 71.335 0.927 28261354.27 254365.414 
12 11 8 0 107.097 1.4 57847402.81 622371.801 
13 12 8 0 147.411 1.618 110916538.3 775369.518 
14 13 8 0 171.457 2.965 192409636.3 2235970.311 
15 14 8 0 156.942 0.305 347539294.2 8850733.981 
10 9 9 0 46.399 1.053 13495376.2 287664.548 
11 10 9 0 71.391 0.721 28290302.93 294095.098 
12 11 9 0 107.919 1.427 58318546.74 245064.371 
13 12 9 0 149.891 4.269 110257451.3 637700.94 
14 13 9 0 170.507 3.169 193015906.2 2094651.531 
15 14 9 0 156.304 0.686 347221450 12457080.79 
11 10 10 0 71.69 1.367 28035602.92 624584.138 
12 11 10 0 108.578 2.393 58306790.31 652080.775 
13 12 10 0 148.736 3.193 110390844.1 823003.364 
14 13 10 0 171.153 2.205 192640297.3 903856.609 
15 14 10 0 156.025 1.468 344956233.7 9869207.002 
12 11 11 0 107.92 2.363 57798658.24 778117.187 
13 12 11 0 149.658 2.475 110765264.8 202992.59 
14 13 11 0 171.021 3.55 192151673.6 1964048.968 
15 14 11 0 156.872 1.548 346225642.4 11153337.19 
13 12 12 0 148.78 3.327 110570940 1236820.907 
14 13 12 0 171.908 2.281 192509583.2 1060578.947 
15 14 12 0 157.175 0.908 345023942.9 8548642.995 
14 13 13 0 172.762 2.749 192678761.5 1179273.101 
15 14 13 0 156.797 1.708 346159779.1 10638850.57 
15 14 14 0 156.487 0.671 347135456.5 1128675.143 
5 4 0 1 7.224 0.305 2976237.719 151923.069 
6 5 0 1 10.049 0.381 4649847.616 67300.762 
7 6 0 1 13.14 0.57 6067049.682 223415.446 
8 7 0 1 16.399 0.627 6270192.849 64958.029 
9 8 0 1 28.401 0.597 7323173.757 171772.214 

10 9 0 1 45.787 0.621 13785636 260939.184 
11 10 0 1 70.874 1.038 28360853.57 472101.182 
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12 11 0 1 106.394 2.2 58225078.46 225717.316 
13 12 0 1 147.892 2.882 111050144 525464.019 
14 13 0 1 171.819 4.282 193534296.8 1441738.331 
15 14 0 1 157.467 1.078 346726973.4 9821532.467 
5 4 0 2 6.903 0.573 2928395.078 144456.924 
6 5 0 2 11.119 0.419 4392884.992 108882.996 
7 6 0 2 14.671 1.044 5945086.41 179405.474 
8 7 0 2 17.436 0.769 6194750.304 277585.981 
9 8 0 2 27.958 0.352 7466378.595 288416.214 

10 9 0 2 45.471 0.263 14197258.9 156298.66 
11 10 0 2 71.116 0.981 28576008.4 105238.943 
12 11 0 2 107.04 1.04 58470547.31 332405.668 
13 12 0 2 148.784 1.678 111314290.1 278061.67 
14 13 0 2 172.054 4.119 193137404.7 1641426.254 
15 14 0 2 156.818 0.639 346402694.3 8773904.119 
5 4 0 3 7.317 0.359 3044738.527 142753.738 
6 5 0 3 10.151 0.184 4604233.797 78807.059 
7 6 0 3 12.778 0.82 6153807.814 87270.029 
8 7 0 3 16.028 0.373 6066570.649 195700.828 
9 8 0 3 27.438 0.338 7293597.319 125286.199 

10 9 0 3 45.65 0.375 13973645.07 139020.09 
11 10 0 3 70.903 1.051 28518298.2 170219.562 
12 11 0 3 106.446 1.566 58169500.68 417764.978 
13 12 0 3 147.888 1.495 111500054.5 401595.324 
14 13 0 3 170.517 1.65 193329573.4 487962.667 
15 14 0 3 157.265 1.261 347220229.2 8141063.129 
5 4 0 4 7.432 0.371 2996061.425 111059.02 
6 5 0 4 10.637 0.423 4459197.67 123195.448 
7 6 0 4 14.765 0.709 6163835.606 82880.013 
8 7 0 4 17.215 0.789 6214966.041 257967.745 
9 8 0 4 28.523 1.008 7575435.268 221482.715 

10 9 0 4 45.785 0.655 14191702.43 209666.025 
11 10 0 4 71.227 1.106 28566715.29 230027.908 
12 11 0 4 106.948 0.764 58129429.83 243867.414 
13 12 0 4 148.71 2.247 111498674.8 497863.165 
14 13 0 4 170.067 3.322 193548818.6 1522675.71 
15 14 0 4 157.36 1.827 346203141 10794851.4 
6 5 0 5 10.178 0.725 4159785.493 307999.688 
7 6 0 5 12.889 1.582 6314942.118 227088.176 
8 7 0 5 16.162 0.427 6229874.567 223950.713 
9 8 0 5 27.432 0.699 7214464.762 229529.685 

10 9 0 5 45.568 0.853 13848597.5 209301.952 
11 10 0 5 70.413 0.653 28475517.1 269055.332 
12 11 0 5 107.543 1.356 58242633.95 127149.111 
13 12 0 5 147.666 1.591 111302190.5 596135.33 
14 13 0 5 171.026 2.396 193525774.2 1358971.175 
15 14 0 5 156.921 1.657 348831834.4 10530220.86 
7 6 0 6 15.285 0.592 5484434.268 544077.969 
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8 7 0 6 17.182 0.835 6162744.09 307916.091 
9 8 0 6 28.49 0.584 7681289.709 188870.48 

10 9 0 6 45.802 0.461 14103017.62 265478.118 
11 10 0 6 71.168 1.429 28354888.59 123432.986 
12 11 0 6 106.456 2.491 58509059.51 577638.168 
13 12 0 6 149.148 2.139 110689261.8 422471.024 
14 13 0 6 170.871 2.231 194340436.2 1205155.304 
15 14 0 6 157.838 0.952 346974953.6 9151231.64 
8 7 0 7 17.177 0.441 5784399.355 388582.958 
9 8 0 7 27.658 0.367 7374922.631 824005.562 

10 9 0 7 45.039 0.899 14022578.19 215119.657 
11 10 0 7 70.793 0.275 28359340.44 232704.911 
12 11 0 7 106.793 1.472 57984436.07 337678.25 
13 12 0 7 148.855 0.938 111501156 3882276.469 
14 13 0 7 171.712 4.365 193775717.3 1646256.46 
15 14 0 7 156.456 0.658 347420505.1 7747460.256 
9 8 0 8 27.646 1.169 7198566.799 666937.619 

10 9 0 8 45.458 0.828 13949458.61 131589.539 
11 10 0 8 70.737 1.849 28315670.01 423897.943 
12 11 0 8 107.716 1.662 58459451.98 331545.658 
13 12 0 8 148.901 2.988 111752800 323325.79 
14 13 0 8 170.905 3.354 193222046.3 2115076.761 
15 14 0 8 156.792 1.755 348288594.8 11387147.18 
10 9 0 9 45.398 0.944 13827736.11 279760.033 
11 10 0 9 71.914 0.591 28658313.96 416963.472 
12 11 0 9 106.248 2.072 58090655.99 684261.11 
13 12 0 9 149.353 1.959 110968846.4 291893.08 
14 13 0 9 171.481 3.195 192688093.3 413870.59 
15 14 0 9 157.335 0.564 346845486.8 9060549.088 
11 10 0 10 71.419 0.968 28535022.93 582933.744 
12 11 0 10 106.797 1.458 58333715.82 200604.098 
13 12 0 10 146.616 2.117 111353300 499563.935 
14 13 0 10 170.562 2.535 192612127.9 1862913.429 
15 14 0 10 156.384 1.076 346119679.1 11757862.09 
12 11 0 11 106.627 2.371 58128060.98 326238.498 
13 12 0 11 147.524 2.227 110588975.1 2418652.134 
14 13 0 11 171.576 2.383 193255779.8 1807463.352 
15 14 0 11 156.645 0.864 347981099.6 8414212.546 
13 12 0 12 148.082 3.651 111212805.3 280511.406 
14 13 0 12 170.271 1.373 192453849 1198149.646 
15 14 0 12 156.938 0.79 347324557.3 8524685.337 
14 13 0 13 171.32 3.062 193543984.1 1997670.176 
15 14 0 13 156.49 2.153 348944051.6 12000917.35 
15 14 0 14 156.886 1.082 347372413.8 1332908.132 
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Collective data for Gaussian Cube )2,( αnGC .  Simulation duration is 60 seconds. 
 
 
 
Dimension alpha EN EL MALatency AL SD Mthroughput Throughput SD 

4 0 0 0 16.478 1.101 1014948.407 14421.665 
5 0 0 0 19.629 0.603 1642427.059 16317.775 
6 0 0 0 26.055 0.459 2564353.717 26780.176 
7 0 0 0 29.295 1.056 3137559.255 110083.552 
8 0 0 0 38.268 1.535 3663865.425 105516.024 
9 0 0 0 60.386 1.148 5817991.134 176886.629 

10 0 0 0 96.235 1.186 11200003.98 108042.277 
11 0 0 0 144.969 1.304 22498200.47 101143.502 
12 0 0 0 204.232 6.55 43263557.45 271537.391 
13 0 0 0 262.707 2.039 72886951.2 575698.986 
14 0 0 0 278.187 4.472 124317207.8 1644591.009 
14 1 0 0 360.481 3.602 131736072.6 378251.439 
14 2 0 0 474.811 22.763 130652414.8 333566.087 
14 3 0 0 556.398 1.752 109795726.5 265873.96 
14 4 0 0 729.073 23.195 80735616.85 343121.33 
14 5 0 0 728.018 21.316 67800669.19 167683.468 
14 6 0 0 685.395 9.742 56271109.76 73072.555 
14 7 0 0 712.927 1.135 41897420.08 153843.086 
14 8 0 0 730.201 5.548 28499073.51 39518.5 
14 9 0 0 849.952 5.03 19986746.05 55838.537 
14 10 0 0 828.24 11.1 11622718.54 247973.241 
14 11 0 0 869.195 13.273 8195355.179 188334.684 
14 12 0 0 812.87 6.632 5868188.759 202647.123 
14 13 0 0 799.375 10.811 5472558.749 251256.536 
4 0 1 0 16.056 1.27 973346.46 10773.785 
5 0 1 0 20.583 0.967 1605887.863 15965.111 
6 0 1 0 30.108 0.99 2573076.862 7615.069 
7 0 1 0 52.527 2.272 3741495.795 20390.439 
8 0 1 0 63.389 4.023 5086352.034 115188.064 
9 0 1 0 78.195 1.849 8114327.751 93044.31 

10 0 1 0 102.528 1.173 13346409.13 132200.752 
11 0 1 0 146.67 2.637 22852337.77 196863.149 
12 0 1 0 199 5.619 41285418.55 374940.42 
13 0 1 0 254.276 5.33 71762647.47 494324.092 
14 0 1 0 274.143 5.239 121477299.5 586216.824 
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APPENDIX VII  
A New Approach to Routing in Hypercube  

Based on Fuzzy Neural Network 
 
VII.1   Two architectures of decision-making using Fuzzy Neural Network 
 
There are two ways to use Fuzzy Neural Networks (FNNs) for decision-making.  The 

first is called implicit system, in which all possibly related information is fed into the 

FNN.  Then the FNN outputs the result of decision.  For example, in the area of financial 

market decision-making, the architecture of implicit trading is illustrated in Figure VII.1. 

 

 

 

 

 

 
 
 
 

The second architecture is called explicit processing.  Here FNN is used only as a 

component while traditional algorithms are also incorporated.  Figure VII.2 and VII.3 

show examples of this explicit processing system. 
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Here, I stands for the intermediate results produced by A, and inputted to B.  In this 

trading example, I may encompass the prediction of the price of one hour later or three 

days later. 

 
Actually, the mixed structure reflects a decomposition of the original problem.  Some 

tasks can be efficiently done by FNN, especially learning and predicting.  However, some 

other jobs maybe more suitable for traditional approaches.  A case in point is learning 

bitwise XOR operation, on which most existing routing algorithms depend.  It can be 

easily proven that for learning the XOR function between two n-bit binary numbers or 

two decimal numbers both ranging from 0 to 2n - 1, FNN must use O(2n) rules.  However, 

this function can be realized by hardware in one clock cycle.  So by carefully and 

properly dividing tasks into different functional components (A or B), the original 

problem can be solved far more efficiently than purely using FNN or traditional 

algorithms. 

 

VII.2    Design of input and output of FNN 
 
If the explicit architecture is to be adopted, then the first challenge lies in the 

decomposition of the task.  What is to be done by FNN and what is supposed to be done 

by traditional algorithms?  What is the proper interface?  From the angle of FNN, these 

questions are equivalent to what is the input and output of FNN. 
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As the space and time cost for gathering global information is too high and such 

information is too intractable for FNNs, it is more feasible to use local information.  One 

type of such strategy is to base the routing decision solely on the status of links incident 

to current node.  For binary hypercube, this simple strategy can achieve good 

performance [6].  A more far-sighted approach is to take into consideration the status of 

the links incident to all of the current node’s neighbors.  We call it 1-hop look-ahead.  For 

example, in Figure VII.4, the routing decision made at P not only incorporates the status 

of links from P to A, B, C, and D, but also considers the status of e1, e2, …, e10. 

 

 

 

 

 

 

 

 

 

 

So for each packet that arrives at P, say from A, P uses a new metric M to compare all the 

possible outlet ports.  This metric is based on B, C, and D’s link status, packet destination, 

and encoded history that helps to avoid deadlock and livelock.  M can be a tuple of 

several crisp values or fuzzy values, or combination.  If we view the crisp values as fuzzy 

values in the form of singleton, then M is actually a set of fuzzy values.  This process is 

also known as feature selection.  It helps to reduce the number of total factors that require 

to be considered in the next step of comparison.  The number of final rules will also be 

reduced significantly (possibly exponentially) with this horizontal reduction. 

 
With regard to comparison, as we are only interested in the best alternative, there is no 

need to rank all neighbors according to their corresponding M and pick up the highest one.  

That approach costs time complexity O(nlogn), where n is the network dimension.  

 P C 

B 
D 

A 

e1 

e2 

e3 

e4 
e5 

e10 

Figure VII.4   Illustration for 1-hop look-ahead approach 
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Instead, only O(n) comparisons are needed to derive the best one.  This comparison is 

suitable for FNN.  The mechanism is illustrated in Fig. VII.5.   

 

 

VII.3    Choice of M 
 
 

 

 

 

 

 

The choice of M is critical for the whole strategy.  It can not include any binary value (or 

its corresponding decimal value) related to node address.  Otherwise, the number of rules 

will inevitably grow exponentially with network dimension.   

 

It should also be applicable to all kinds of fault distributions.  It is our goal that one fuzzy 

neural network be used for evenly distributed faults, concentrated faults and other types 

of distribution.  So for different underlying fault distributions, different parts of the rule 

base in FNN are to be fired so that the system has adaptivity to fault distribution.  This 

requires that the input of FNN under different fault distribution types should also be 

sufficiently discriminable. 

 
Lastly, M should contain or encode enough information that can ‘deduce’ the result of 

comparison.  One possible design is to introduce three fuzzy variables called optimistic 

distance, pessimistic distance and neutral distance from respective neighbors to the 

destination.  Such fuzzy values are calculated based on the neighbors’ address, packet 

destination and the status of links incident to the neighbor.  For example, the membership 

function for the three fuzzy variables might be like Figure VII.6: 

 

 

 

 
 
   FNN 
 

. 

. 

. 

. 

. 

. 

M for neighbor N1 

M for neighbor N2 

0 if N1 is preferred 

1 if N2 is preferred 

2 if N1 and N2 are equally preferred 

Figure VII.5  mechanism of comparison by FNN 
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VII.4 Generating training examples 
 
As the routing strategy is based only on the information of connectivity within 2 hops’ 

distance, there is no point in allocating a faulty component over 2 hops away from current 

node.  In other words, if we are focusing on node 0n (n straight 0’s) i.e. collecting training 

examples by examining routing decisions at 0n, then we can locate all faulty nodes in S = 

{ ]1,0[}1,0{|... 0121 −∈∈−− niforaaaaa inn  and 2
1

0
≤∑

−

=

n

i
ia } with all faulty links in SS × .  

Otherwise, the training example set will be inconsistent. 

 

Start off simulating the network communication and focus on the packets arriving at node 

0n.  In Figure 5, M for N1 and N2 are easily available.  Whether N1 or N2 is preferred is 

decided by applying Dijastra’s shortest path algorithm.  If they are not equally preferred, 

then we can exchange the M for N1 or N2 and exchange the result of preference.  Thus 

one example can be made use of twice. 

 

 
VII.5 Combining FNN and traditional algorithms 
 
The whole picture of the routing strategy is as follows.  Each node maintains an n-bit 

fault vector F that records the status of local links.  If the link on the corresponding 

dimension is faulty, then the corresponding bit in F is 0.  Otherwise it is 1.  The packet 

overhead is composed of the destination address and an n-bit traversal vector DT.  At the 

µ 

1 
optimistic neutral pessimistic 

Figure VII.6  membership function of possible fuzzy variables 

distance  
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source, DT is set to straight 1’s.  Whenever a preferred dimension is used, the 

corresponding bit in DT is masked to 0.  And all dimensions masked by 0 in DT can not 

be used as spare dimensions any more.  When a packet is received, the router calculates 

the optimistic, neutral and pessimistic distance from all neighbors to the packet’s 

destination, except those that are faulty (as is recorded in F) and those that are masked by 

DT.  Finally, FNN is used to determine the best outlet port.   

 
 

VII.6 Problems 
 
The major problem here is that there has already been saturated research in this area of 

network routing.  One algorithm uses the similar strategy [4].  It first examines non-faulty 

preferred dimensions.  If there are more than one preferred dimensions available, then it 

chooses a neighbor on a preferred dimension that has least faulty incident components.  If 

there is no non-faulty preferred dimension, then it chooses a neighbor on a spare 

dimension that has least faulty incident components.  Rigorous theoretical deduction is 

available to demonstrate that this algorithm generates deadlock and livelock free routes.  

It also has a route with strictly bounded length and the message overhead and time for 

making routing decision are both O(n).  It is very easy to be physically implemented.  So 

it has already provided a set of rules and choice of M that are applicable to hypercube and 

its symmetric variants with satisfactory performance. 

 

Let us go back to the motivation of using FNN.  We adopt it with an eye to deriving a 

unified or generalized routing strategy for as many variants of binary hypercube as 

possible.  However, without considering binary address, the current approach to using 

FNN is not suitable for asymmetric networks, which is the majority of hypercubic 

variants.  
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Appendix  VIII      User’s Guide 
 
 
This guide includes the usage of software simulation tool and introduces the source code 

of FPGA implementation written in Handel-C.   

  
VIII.1   Using software simulation tool 
 
The simulation tool is called SimuRt.  It can simulate three types of Fibonacci-class Cube 

and Gaussian Cube.  There are two things to be specified before running simulation: 

parameters in the code and testing cases in the input file.  

 

VIII.1.1    Setting parameters 

The following parameters must be set according to the computer platform and testing 

objective: 

 
#define PENTIUMSPEED 2048.0   

It is defined in file Structure.cpp.  It specifies the speed of CPU.  The unit is MHz. 

 
#define BUFFER_SIZE 10  

It is defined in Common.h.  The influence of BUFFER_SIZE on the simulation result is 

discussed in Chapter 8. 

 

#define NO_READINGS 5 

Defined in Common.h, it specifies how many rounds of test are carried out for each 

testing case. 

 

VIII.1.2     Input file 

It is driven by an input file, in which all the testing cases are enumerated and the 

simulation is run on a batch mode.  The input file is named as “input.txt”.  It should be 

placed in the same directory of the executable file.  If running under Visual C++, then it 

should be placed in the working directory (specified in Project:\\settings\Debug\Working  
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Directory).  For example, if the input file is as follows: 

    Begin 

1    15    2    3    1    500    60 

2    13    3    0    1    500    50 

3    11    10   5   2     1      500    60 

4    11    3     1    500   60 

0 

then 

‘Begin’ means the beginning of testing cases.  All characters before ‘Begin’ are filtered 

so that it is possible to add some comments at the beginning of the file as long as the 

string ‘Begin’ does not appear in the comments.  

 
Line 1: ‘1’ means the testing case is for regular Fibonacci Cube. ‘15’ means the 

dimension is 15 (strictly speaking, it means we are testing a regular Fibonacci Cube of 

order 17).  ‘2’ means that the number of faulty nodes is 2.  ‘3’ means that there are three 

faulty links.  ‘1’ means that packets are generated according to even distribution.  ‘500’ 

means that the hop time is 500ns.  ‘60’ means that the simulation runs as long as 60 

seconds. 

 

Line 2: ‘2’ means the testing case is for Enhanced Fibonacci Cube. ‘13’ means the 

dimension is 14 (strictly speaking, it means we are testing an Extended Fibonacci Cube 

of order 15).  ‘2’ means that the number of faulty nodes is 3.  ‘0’ means that there is no 

faulty link.  ‘1’ means that packets are generated according to even distribution.  ‘500’ 

means that the hop time is 500ns.  ‘50’ means that the simulation runs as long as 50 

seconds. 

 
Line 3: ‘3’ means the testing case is for Extended Fibonacci Cube. ‘11’ means the 

dimension is 11 (strictly speaking, it means we are testing an Extended Fibonacci Cube 

of order 13).  ‘10’ means that the subscription is 10.  So we are testing XFC10(11).  ‘5’ 

means that the number of faulty nodes is 5.  ‘2’ means that there are two faulty links.  ‘1’ 

means that packets are generated according to even distribution.  ‘500’ means that the 

hop time is 500ns.  ‘60’ means that the simulation runs as long as 60 seconds. 
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Line 4:  ‘4’ means that the testing case is for Gaussian Cube.  ‘11’ means that the 

dimension is 11.  ‘3’ means that the M = 23.  So we are testing GC(11, 8).  ‘0’ means that 

there is one faulty node.  ‘500’ means that the hop time is 500ns.  ‘60’ means that the 

simulation runs as long as 60 seconds.  Now we have only implemented having one 

faulty node and no faulty link (see: void CGaussianCube::BuildFault()).  The faulty node 

is fixed as 00…0, where n is the dimension of the Gaussian Cube.  The program has  

 

provided two functions to add faulty nodes and faulty links respectively:  

void CGaussianCube::AddFaultyNode(unsigned address) 

void CGaussianCube::AddFaultyLink(unsigned address1, unsigned address2). 

 

The only task left is to design and interface so that faulty links and over one faulty node 

can be added to the network. 

 

Line 5:  ‘0’ stands for the end of the input file.  The user can add comments after this line 

and these characters will not be processed.  

 

VIII.1.3     Output file 

There are two output files: 

Regular Fibonacci Cube     RegOutput.txt                RegTable.txt 

Enhanced Fibonacci Cube     EnhOutput.txt                EnhTable.txt 

Extended Fibonacci Cube     ExtOutput.txt                 ExtTable.txt 

Gaussian Cube     GaussianOutput.txt        GaussianTable.txt 

 

 

These files are automatically created.  If they exist before running the simulation, then the 

results will be appended to the file.  The XOutput.txt records the result for each reading 

of one testing case.  XTable.txt records the statistical result for each testing case by 

processing the result of all readings.  In the batch mode, this provides a succinct 

presentation of result.   

n 

Table VIII.1 output files of simulation 
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VIII.2   FPGA implementation with Handel-C 
 

Very detailed comment has been added to the source code of both programs.  Macros are 

extensively used in the programs so that it is very easy to change the dimension of the 

network, which is controlled by a macro called Num_Bits.  Some other macros also need 

to be modified if a new Num_Bits is used.   Please refer to the comments in the source 

code.  Equations of calculating these macros are given in detail. 

 

A useful programming skill is using conditional compiling.  This makes it possible to 

switch the source code between Debug mode and EDIF mode by only commenting out or 

releasing ‘#define MYDEBUG’.  If this macro definition is released, then the code is for 

Debug mode.  If it is commented out, then the code is for EDIF mode.  Likewise, if 

‘#define FINAL’ is released, then the router’s input and output are fixed and the router 

eliminates all the gates needed for controlling Flash Memory that stores testing cases and 

results.  However, with regards to fuzzy router, rules are stored in Flash Memory, it is 

impossible to completely exclude gates used for controlling Flash Memory.  Thus the 

comparison of number of gates between classical router and fuzzy router is not on a fair 

ground.  In other words, the comparison is not based only on the complexity of logic. 

 

In the Debug mode, the testing files are transferred to the Flash Memory of RC100 board 

beginning at address READ_START_ADDRESS.  The results are stored in the Flash 

Memory starting at address WRITE_START_ADDRESS.  The rules are stored from 

address RULE_BASE.   

 

To generate the circuit diagram, we need to use Schematic Editor.  It is a tool of Xilinx 

Project Manager.  Choose File: \\Generate from netlist.  Then choose the .edf file.  The 

Schematic Editor will automatically generate the circuit graph.  However, errors occur 

frequently because .edf file is generated by DK1, a product of Celoxica Ltd, while Xilinx 

is another company.  So there are some discrepancies and small modifications on .edf is 

necessary for successful conversion.  Some technical problems can be solved by posting 

them in Xilinx’s forum.  The circuit generated in put in the CD attached with the report. 


