
Bregman Divergence and Mirror Descent

1 Bregman Divergence

Motivation

• Generalize squared Euclidean distance to a class of distances that all share similar properties

• Lots of applications in machine learning, clustering, exponential family

Definition 1 (Bregman divergence) Let ψ : Ω→ R be a function that is: a) strictly convex, b) continuously
differentiable, c) defined on a closed convex set Ω. Then the Bregman divergence is defined as

∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 , ∀ x, y ∈ Ω. (1)

That is, the difference between the value of ψ at x and the first order Taylor expansion of ψ around y evaluated
at point x.

Examples

• Euclidean distance. Let ψ(x) = 1
2 ‖x‖

2. Then ∆ψ(x, y) = 1
2 ‖x− y‖

2.

• ψ(x) =
∑
i xi log xi and Ω =

{
x ∈ Rn+ : 1′x = 1

}
, where 1 = (1, 1, . . . , 1)′. Then ∆ψ(x, y) =∑

i xi log xi

yi
for x, y ∈ Ω. This is called relative entropy, or Kullback–Leibler divergence between

probability distributions x and y.

• Lp norm. Let p ≥ 1 and 1
p + 1

q = 1. ψ(x) = 1
2 ‖x‖

2
q . Then ∆ψ(x, y) = 1

2 ‖x‖
2
q + 1

2 ‖y‖
2
q −〈

x,∇ 1
2 ‖y‖

2
q

〉
. Note 1

2 ‖y‖
2
q is not necessarily continuously differentiable, which makes this case not

precisely consistent with our definition.

1.1 Properties of Bregman divergence
• Strict convexity in the first argument x. Trivial by the strict convexity of ψ.

• Nonnegativity: ∆ψ(x, y) ≥ 0 for all x, y. ∆ψ(x, y) = 0 if and only if x = y. Trivial by strict convexity.

• Asymmetry: in general, ∆ψ(x, y) 6= ∆ψ(y, x). Eg, KL-divergence. Symmetrization not always useful.

• Non-convexity in the second argument. Let Ω = [1,∞), ψ(x) = − log x. Then ∆ψ(x, y) = − log x+

log y + x−y
y . One can check its second order derivative in y is 1

y2 (2x
y − 1), which is negative when

2x < y.

• Linearity in ψ. For any a > 0, ∆ψ+aϕ(x, y) = ∆ψ(x, y) + a∆ϕ(x, y).

• Gradient in x: ∂
∂x∆ψ(x, y) = ∇ψ(x)−∇ψ(y). Gradient in y is trickier, and not commonly used.

• Generalized triangle inequality:

∆ψ(x, y) + ∆ψ(y, z) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉+ ψ(y)− ψ(z)− 〈∇ψ(z), y − z〉 (2)
= ∆ψ(x, z) + 〈x− y,∇ψ(z)−∇ψ(y)〉 . (3)

• Special case: ψ is called strongly convex with respect to some norm with modulus σ if

ψ(x) ≥ ψ(y) + 〈∇ψ(y), x− y〉+
σ

2
‖x− y‖2 . (4)

Note the norm here is not necessarily the Euclidean norm. When the norm is Euclidean, this condition is
equivalent toψ(x)−σ2 ‖x‖

2 being convex. For example, theψ(x) =
∑
i xi log xi used in KL-divergence

is 1-strongly convex over the simplex Ω =
{
x ∈ Rn+ : 1′x = 1

}
, with respect to the L1 norm (not so

trivial). When ψ is σ strongly convex, we have

∆ψ(x, y) ≥ σ

2
‖x− y‖2 . (5)

Proof: By definition ∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 ≥ σ
2 ‖x− y‖

2.

• Duality. Suppose ψ is strongly convex. Then

(∇ψ∗)(∇ψ(x)) = x, ∆ψ(x, y) = ∆ψ∗ (∇ψ(y),∇ψ(x)) . (6)

Proof: (for the first equality only) Recall

ψ∗(y) = sup
z∈Ω
{〈z, y〉 − ψ(z)} . (7)

sup must be attainable because ψ is strongly convex and Ω is closed. x is a maximizer if and only if
y = ∇ψ(x). So

ψ∗(y) + ψ(x) = 〈x, y〉 ⇔ y = ∇ψ(x). (8)

Since ψ = ψ∗∗, so ψ∗(y) + ψ∗∗(x) = 〈x, y〉, which means y is the maximizer in

ψ∗∗(x) = sup
z
{〈x, z〉 − ψ∗(z)} . (9)

This means x = ∇ψ∗(y). To summarize, (∇ψ∗)(∇ψ(x)) = x.

• Mean of distribution. Suppose U is a random variable over an open set S with distribution µ. Then

min
x∈S

EU∼µ[∆ψ(U, x)] (10)

is optimized at ū := Eµ[U] =
∫
u∈S uµ(u).

Proof: For any x ∈ S, we have

EU∼µ[∆ψ(U, x)]− EU∼µ[∆ψ(U, ū)] (11)

= Eµ[ψ(U)− ψ(x)− (U − x)′∇ψ(x)− ψ(U) + ψ(ū) + (U − ū)′∇ψ(ū)] (12)

= ψ(ū)− ψ(x) + x′∇ψ(x)− ū′∇ψ(ū) + Eµ[−U ′∇ψ(x) + U ′∇ψ(ū)] (13)

= ψ(ū)− ψ(x)− (ū− x)′∇ψ(x) (14)
= ∆ψ(ū, x). (15)

This must be nonnegative, and is 0 if and only if x = ū.

• Pythagorean Theorem. If x∗ is the projection of x0 onto a convex set C ⊆ Ω:

x∗ = argmin
x∈C

∆ψ(x, x0). (16)

Then for all y ∈ C,

∆ψ(y, x0) ≥ ∆ψ(y, x∗) + ∆ψ(x∗, x0). (17)

In Euclidean case, it means the angle ∠yx∗x0 is obtuse. More generally

Lemma 2 Suppose L is a proper convex function whose domain is an open set containing C. L is not
necessarily differentiable. Let x∗ be

x∗ = argmin
x∈C

{L(x) + ∆ψ(x∗, x0)} . (18)

Then for any y ∈ C we have

L(y) + ∆ψ(y, x0) ≥ L(x∗) + ∆ψ(x∗, x0) + ∆ψ(y, x∗). (19)

2

The projection in (16) is just a special case of L = 0. This property is the key to the analysis of many
optimization algorithms using Bregman divergence.
Proof: Denote J(x) = L(x)+∆ψ(x, x0). Since x∗ minimizes J over C, there must exist a subgradient
d ∈ ∂J(x∗) such that

〈d, x− x∗〉 ≥ 0, ∀ x ∈ C. (20)

Since ∂J(x∗) = {g +∇x=x∗∆ψ(x, x0) : g ∈ ∂L(x∗)} = {g +∇ψ(x∗)−∇ψ(x0) : g ∈ ∂L(x∗)}.
So there must be a subgradient g ∈ L(x∗) such that

〈g +∇ψ(x∗)−∇ψ(x0), x− x∗〉 ≥ 0, ∀ x ∈ C. (21)

Therefore using the property of subgradient, we have for all y ∈ C that

L(y) ≥ L(x∗) + 〈g, y − x∗〉 (22)
≥ L(x∗) + 〈∇ψ(x0)−∇ψ(x∗), y − x∗〉 (23)
= L(x∗)− 〈∇ψ(x0), x∗ − x0〉+ ψ(x∗)− ψ(x0) (24)

+ 〈∇ψ(x0), y − x0〉 − ψ(y) + ψ(x0) (25)
− 〈∇ψ(x∗), y − x∗〉+ ψ(y)− ψ(x∗) (26)

= L(x∗) + ∆ψ(x∗, x0)−∆ψ(y, x0) + ∆ψ(y, x∗). (27)

Rearranging completes the proof.

2 Mirror Descent for Batch Optimization
Suppose we want to minimize a function f over a set C. Recall the subgradient descent rule

xk+ 1
2

= xk − ηkgk, where gk ∈ ∂f(xk) (28)

xk+1 = argmin
x∈C

1

2

∥∥∥x− xk+ 1
2

∥∥∥2

= argmin
x∈C

1

2
‖x− (xk − ηkgk)‖2 . (29)

This can be interpreted as follows. First approximate f around xk by a first-order Taylor expansion

f(x) ≈ f(xk) + 〈gk, x− xk〉 . (30)

Then penalize the displacement by 1
2ηk
‖x− xk‖2. So the update rule is to find a regularized minimizer of

the model

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+

1

2ηk
‖x− xk‖2

}
. (31)

It is trivial to see this is exactly equivalent to (29).

Mirror descent extension To generalize (31) beyond Euclidean distance, it is straightforward to use the
Bregman divergence as a measure of displacement:

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+

1

ηk
∆ψ(x, xk)

}
(32)

= argmin
x∈C

{ηkf(xk) + ηk 〈gk, x− xk〉+ ∆ψ(x, xk)} . (33)

It is again equivalent to two steps:

xk+ 1
2

= argmin
x

{
f(xk) + 〈gk, x− xk〉+

1

ηk
∆ψ(x, xk)

}
(34)

xk+1 = argmin
x∈C

∆ψ(x, xk+ 1
2
). (35)

The first order optimality condition for (34) is

gk +
1

ηk
(∇ψ(xk+ 1

2
)−∇ψ(xk)) = 0 (36)

⇐⇒ ∇ψ(xk+ 1
2
) = ∇ψ(xk)− ηkgk (37)

⇐⇒ xk+ 1
2

= (∇ψ)−1(∇ψ(xk)− ηkgk) = (∇ψ∗)(∇ψ(xk)− ηkgk). (38)

For example, in KL-divergence over simplex, the update rule becomes

xk+ 1
2
(i) = xk(i) exp(−ηkgk(i)). (39)

3

2.1 Rate of convergence for subgradient descent with Euclidean distance

We now analyze the rates of convergence of subgradient descent as in (31) and (33). It takes four steps.
1. Bounding on a single update

‖xk+1 − x∗‖22 ≤
∥∥∥xk+ 1

2
− x∗

∥∥∥2

= ‖xk − ηkgk − x∗‖22 (≤ by the Pythagorean theorem in (17)) (40)

= ‖xk − x∗‖22 − 2ηk 〈gk, xk − x∗〉+ η2
k ‖gk‖

2
2 (41)

≤ ‖xk − x∗‖22 − 2ηk (f(xk)− f(x∗)) + η2
k ‖gk‖

2
2 . (42)

2. Telescope over k = 1, . . . , T (summing them up):

‖xT+1 − x∗‖22 ≤ ‖x1 − x∗‖22 − 2

T∑
k=1

ηk (f(xk)− f(x∗)) +

T∑
k=1

η2
k ‖gk‖

2
2 . (43)

3. Bounding by ‖gk‖22 ≤ G2 and ‖x1 − x∗‖22 ≤ R2 := maxx∈C ‖x1 − x‖22:

2

T∑
k=1

ηk (f(xk)− f(x∗)) ≤ R2 +G2
T∑
k=1

η2
k. (44)

4. Denote εk = f(xk)− f(x∗) and rearrange

min
k∈{1,...,T}

εk ≤
R2 +G2

∑T
k=1 η

2
k

2
∑T
k=1 ηk

. (45)

Denote [T] := {1, 2, . . . , T}. By setting the step size ηk = R
G
√
k

, we can achieve

min
k∈[T]

εk ≤ RG
1 +

∑T
k=1

1
k

2
∑T
k=1

1√
k

≤ RG
2 +

∫ T
1

1
xdx

4
∫ T+1

1
1√
x

dx
≤ RG log T

2
√
T

. (46)

Remark 1 The term log T in the bound can actually be removed by using the following simple fact. Given
c > 0, b ∈ Rd+, and D a positive definite matrix. Then

min
x∈Rd

+

c+ 1
2x
′Dx

b′x
=

√
2c

b′D−1b
, where the optimal x =

√
2c

b′D−1b
D−1b. (47)

One can prove it by writing out the KKT condition for the equivalent convex problem (with a perspective
function) infx,u

1
u (c + 1

2x
′Dx), s.t. x ∈ Rd+, u > 0, and b′x = u. Now apply this result to (45) with all

ηk = R
G
√
T

(k ∈ [T]), then we get

min
k∈[T]

εk ≤
RG√
T
. (48)

So to drive mink∈[T] εk below a threshold ε > 0, it suffices to take T steps where

T ≥ R2G2

ε2
. (49)

Note the method requires that the horizon T be specified a priori, because the step size ηk needs this infor-
mation. We next give a more intricate approach which does not require a pre-specified horizon.

Remark 2 The term log T in the bound can also be removed as follows. Here we redefineR2 as the diameter
square maxx,y∈C ‖x− y‖22. Instead of telescoping over k = 1, . . . , T , let us telescope from k = T/2 to T

4

(without loss of generality, let T be an even integer):

‖xT+1 − x∗‖22 ≤
∥∥xT/2 − x∗∥∥2

2
− 2

T∑
k=T/2

ηk (f(xk)− f(x∗)) +

T∑
k=T/2

η2
k ‖gk‖

2
2 (50)

=⇒ 2

T∑
k=T/2

ηk (f(xk)− f(x∗)) ≤ R2 +G2
T∑

k=T/2

η2
k (51)

=⇒ min
k∈{T/2,...,T}

εk ≤
R2 +G2

∑T
k=T/2 η

2
k

2
∑T
k=T/2 ηk

(52)

(plug in ηk =
R

G
√
k

) = RG
1 +

∑T
k=T/2

1
k

2
∑T
k=T/2

1√
k

≤ RG
1 +

∫ T
T/2−1

log xdx

4
∫ T+1

T/2

√
xdx

≤ 2RG√
T
. (53)

The trick is to exploit log T−log(T2−1) ≈ log 2 in the numerator. In step (51), we bounded
∥∥xT/2 − x∗∥∥2

2

by R2, because in general we cannot bound it by ‖x1 − x∗‖22. In the sequel, we will simply write

min
k∈[T]

εk ≤
RG√
T

ignoring the constants.

2.2 Rate of convergence for subgradient descent with mirror descent
The rate of convergence of subgradient descent often depends on R and G, which may depend unfortunately
on the dimension of the problem. For example, suppose C is the simplex. Then R ≤

√
2. If each coordinate

of each gradient gi is upper bounded by M , then G can be at most M
√
n, i.e. depends on the dimension of x.

We next see how this dependency can be removed by extending Euclidean distance to Bregman diver-
gence. Clearly the steps 2 to 4 above can be easily extended by replacing ‖xk+1 − x∗‖22 with ∆ψ(x∗, xk+1).
So the only challenge left is to extend step 1. This is actually possible via Lemma 2.

We further assume ψ is σ strongly convex on C. In (33), consider ηk(f(xk) + 〈gk, x− xk〉) as the L in
Lemma 2. Then

ηk (f(xk) + 〈gk, x∗ − xk〉) + ∆ψ(x∗, xk) ≥ ηk (f(xk) + 〈gk, xk+1 − xk〉) + ∆ψ(xk+1, xk) (54)
+ ∆ψ(x∗, xk+1). (55)

Canceling some terms can rearranging, we obtain

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + ηk 〈gk, x∗ − xk+1〉 −∆ψ(xk+1, xk) (56)
= ∆ψ(x∗, xk) + ηk 〈gk, x∗ − xk〉+ ηk 〈gk, xk − xk+1〉 −∆ψ(xk+1, xk) (57)

≤ ∆ψ(x∗, xk)− ηk (f(xk)− f(x∗)) + ηk 〈gk, xk − xk+1〉 −
σ

2
‖xk − xk+1‖2 (58)

≤ ∆ψ(x∗, xk)− ηk (f(xk)− f(x∗)) + ηk ‖gk‖∗ ‖xk − xk+1‖ −
σ

2
‖xk − xk+1‖2 (59)

≤ ∆ψ(x∗, xk)− ηk (f(xk)− f(x∗)) +
η2
k

2σ
‖gk‖2∗ (60)

Now compare with (42), we have successfully replaced ‖xk+1 − x∗‖22 with ∆ψ(x∗, xi). Again upper
bound ∆ψ(x∗, x1) by R2 and ‖gk‖∗ by G, and we obtain

min
k∈[T]

εk ≤
RG√
σT

. (61)

Note the norm on gk is the dual norm. To see the advantage of mirror descent, suppose C is the n
dimensional simplex, and we use KL-divergence for which ψ is 1 strongly convex with respect to the L1

norm. The dual norm of the L1 norm is the L∞ norm. Then we can bound ∆ψ(x∗, x1) by using KL-
divergence, and it is at most log n if we set x1 = 1

n1 and x∗ lies in the probability simplex. G can be upper
bounded by M , and R by log n. So with regard to the value of RG, mirror descent yields M log n, which is
smaller than that of subgradient descent by an order of O(

√
n

logn). Note the saving of Θ(
√
n) is from the

norm of gradient (G) by replacing the L2 norm by the L∞ norm, at a slight cost of increasing R by log n.

5

Remark 4 Note R2 is an upper bound on ∆ψ(x∗, x1), rather than the real diameter maxx,y∈C ∆ψ(x, y).
This is important because for KL divergence defined on the probability simplex, the latter is actually infinity,
while maxx∈Ω ∆ψ(x, 1

n1) = log n.

2.3 Possibilities for accelerated rates
When the objective function has additional properties, the rates can be significantly improved. Here we see
two examples.

Acceleration 1: f is strongly convex. We say f is strongly convex with respect to another convex function
ψ with modulus λ if

f(x) ≥ f(y) + 〈g, x− y〉+ λ∆ψ(x, y) ∀ g ∈ ∂f(y). (62)

Note we do not assume f is differentiable. Now in the step from (57) to (58), we can plug in the definition of
strong convexity:

∆ψ(x∗, xk+1) = . . .+ ηk 〈gk, x∗ − xk〉+ . . . (copy of (57)) (63)
≤ . . .− ηk (f(xk)− f(x∗) + λ∆ψ(x∗, xk)) + . . . (64)
≤ . . . (65)

≤ (1− ληk)∆ψ(x∗, xk)− ηk (f(xk)− f(x∗)) +
η2
k

2σ
‖gk‖2∗ (66)

Denote δk = ∆ψ(x∗, xk). Set ηk = 1
λk . Then

δk+1 ≤
k − 1

k
δk −

1

λk
εk +

G2

2σλ2k2
=⇒ kδk+1 ≤ (k − 1)δk −

1

λ
εk +

G2

2σλ2k
(67)

Now telescope (sum up both sides from k = 1 to T)

TδT+1 ≤ −
1

λ

T∑
k=1

εk +
G2

2σλ2

T∑
k=1

1

k
=⇒ min

i∈[T]
εk ≤

G2

2σλ

1

T

T∑
k=1

1

k
≤ G2

2σλ

O(log T)

T
. (68)

Acceleration 2: f has Lipschitz continuous gradient. If the gradient of f is Lipschitz continuous, there
exists L > 0 such that

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , ∀ x, y. (69)

Sometimes we just directly say f is smooth. It is also known that this is equivalent to

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2 . (70)

We bound the 〈gk, x∗ − xk+1〉 term in (56) as follows

〈gk, x∗ − xk+1〉 = 〈gk, x∗ − xk〉+ 〈gk, xk − xk+1〉 (71)

≤ f(x∗)− f(xk) + f(xk)− f(xk+1) +
L

2
‖xk − xk+1‖2 (72)

= f(x∗)− f(xk+1) +
L

2
‖xk − xk+1‖2 . (73)

Plug into (56), we get

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + ηk

(
f(x∗)− f(xk+1) +

L

2
‖xk − xk+1‖2

)
− σ

2
‖xk − xk+1‖2 . (74)

Set ηk = σ
L , we get

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk)− σ

L
(f(xk+1)− f(x∗)) . (75)

Telescope we get

min
k∈{2,...,T+1}

f(xk)− f(x∗) ≤ L∆(x∗, x1)

σT
≤ LR2

σT
. (76)

This gives O(1
T) convergence rate. But if we are smarter, like Nesterov, the rate can be improved to O(1

T 2).
We will not go into the details but the algorithm and proof are again based on Lemma 2. This is often called
accelerated proximal gradient method.

6

2.4 Composite Objective
Suppose the objective function is h(x) = f(x)+r(x), where f is smooth and r(x) is simple, like ‖x‖1. If we
directly apply the above rates for optimizing h, we get O(1√

T
) rate of convergence because h is not smooth.

It will be nice if we can enjoy the O(1
T) rate as in smooth optimization. Fortunately this is possible thanks to

the simplicity of r(x), and we only need to extend the proximal operator (33) as follows:

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+ r(x) +

1

ηk
∆ψ(x, xk)

}
(77)

= argmin
x∈C

{ηkf(xk) + ηk 〈gk, x− xk〉+ ηkr(x) + ∆ψ(x, xk)} . (78)

Here we use a first-order Taylor approximation of f around xk, but keep r(x) exact. Assuming this proximal
operator can be computed efficiently, then we can show all the above rates carry over. We here only show the
case of general f (not necessarily strongly convex or has Lipschitz continuous gradient), and leave the rest
two cases as an exercise. In fact we can again achieve O(1

T 2) rate when f has Lipschitz continuous gradient.
Consider ηk(f(xk) + 〈gk, x− xk〉+ r(x)) as the L in Lemma 2. Then

ηk (f(xk) + 〈gk, x∗ − xk〉+ r(x∗)) + ∆ψ(x∗, xk) (79)
≥ ηk (f(xk) + 〈gk, xk+1 − xk〉+ r(xk+1)) + ∆ψ(xk+1, xk) + ∆ψ(x∗, xk+1). (80)

Following exactly the derivations from (56) to (60), we obtain

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + ηk 〈gk, x∗ − xk+1〉+ ηk(r(x∗)− r(xk+1))−∆ψ(xk+1, xk) (81)
≤ . . . (82)

≤ ∆ψ(x∗, xk)− ηk (f(xk) + r(xk+1)− f(x∗)− r(x∗)) +
η2
k

2σ
‖gk‖2∗ . (83)

This is almost the same as (60), except that we want to have r(xk) here, not r(xk+1). Fortunately this is not
a problem as long as we use a slightly different way of telescoping. Denote δk = ∆ψ(x∗, xk) and then

f(xk) + r(xk+1)− f(x∗)− r(x∗) ≤ 1

ηk
(δk − δk+1) +

ηk
2σ
‖gk‖2∗ . (84)

Summing up from k = 1 to T we obtain

r(xT+1)− r(x1) +

T∑
k=1

(h(xk)− h(x∗)) ≤ δ1
η1

+

T∑
k=2

δk

(
1

ηk
− 1

ηk−1

)
− δT+1

ηT
+
G2

2σ

T∑
k=1

ηk (85)

≤ R2

(
1

η1
+

T∑
k=2

(
1

ηk
− 1

ηk−1

))
+
G2

2σ

T∑
k=1

ηk (86)

=
R2

ηT
+
G2

2σ

T∑
k=1

ηk. (87)

Suppose we choose x1 = argminx r(x), which ensures r(xT+1)− r(x1) ≥ 0. Setting ηk = R
G

√
σ
k , we get

T∑
k=1

(h(xk)− h(x∗)) ≤ RG√
σ

(
√
T +

1

2

T∑
k=1

1√
k

)
=
RG√
σ
O(
√
T). (88)

Therefore mink∈[T]{h(xk)− h(x∗)} decays at the rate of O(RG√
σT

).

3 Online and Stochastic Learning
The protocol of online learning is shown in Algorithm 1. The player’s goal of online learning is to minimize
the regret, the minimal possible loss

∑
k fk(x) over all possible x:

Regret =

T∑
k=1

fk(xk)−min
x

T∑
k=1

fk(x). (89)

Note there is no assumption made on how the rival picks fk, and it can adversarial. After obtaining fk at
iteration k, let us update the model into xk+1 by using the mirror descent rule on function fk only:

xk+1 = argmin
x∈C

{
fk(xk) + 〈gk, x− xk〉+

1

ηk
∆ψ(x, xk)

}
, where gk ∈ ∂fk(xk). (90)

7

Algorithm 1: Protocol of online learning
1 The player initializes a model x1.
2 for k = 1, 2, . . . do
3 The player proposes a model xk.
4 The rival picks a function fk.
5 The player suffers a loss fk(xk).
6 The player gets access to fk and use it to update its model to xk+1.

Then it is easy to derive the regret bound. Using fk in step (60), we have

fk(xk)− fk(x∗) ≤ 1

ηk
(∆ψ(x∗, xk)−∆ψ(x∗, xk+1)) +

ηk
2σ
‖gk‖2∗ . (91)

Summing up from k = 1 to n and using the same process as in (85) to (88), we get
T∑
k=1

(fk(xk)− fk(x∗)) ≤ RG√
σ
O(
√
T). (92)

So the regret grows in the order of O(
√
T).

f is strongly convex. Exactly use (66) with fk in place of f , and we can derive the O(log T) regret bound
immediately.

f has Lipschitz continuous gradient. The result in (75) can NOT be extended to the online setting because
if we replace f by fk we will get fk(xk+1)−fk(x∗) on the right-hand side. Telescoping will not give a regret
bound. In fact, it is known that in the online setting, having a Lipschitz continuous gradient itself cannot
reduce the regret bound from O(

√
T) (as in nonsmooth objective) to O(log T).

Composite objective. In the online setting, both the player and the rival know r(x), and the rival changes
fk(x) at each iteration. The loss incurred at each iteration is hk(xk) = fk(xk) + r(xk). The update rule is

xk+1 = argmin
x∈C

{
fk(xk) + 〈gk, x− xk〉+ r(x) +

1

ηk
∆ψ(x, xk)

}
, where gk ∈ ∂fk(xk). (93)

Note in this setting, (84) becomes

fk(xk) + r(xk+1)− fk(x∗)− r(x∗) ≤ 1

ηk
(δk − δk+1) +

ηk
2σ
‖gk‖2∗ . (94)

Although we have r(xk+1) here rather than r(xk), it is fine because r does not change through iterations.
Choosing x1 = argminx r(x) and telescoping in the same way as from (85) to (88), we immediately obtain

T∑
k=1

(hk(xk)− hk(x∗)) ≤ G√
σ
O(
√
T). (95)

So the regret grows at O(
√
T).

When fk are strongly convex, we can getO(log T) regret for the composite case. But as expected, having
Lipschitz continuity of∇fk alone cannot reduce the regret from O(

√
T) to O(log T).

3.1 Stochastic optimization
Let us consider optimizing a function which takes a form of expectation

min
x

F (x) := E
ω∼p

[f(x;ω)], (96)

where p is a distribution of ω. This subsumes a lot of machine learning models. For example, the SVM
objective is

F (x) =
1

m

m∑
i=1

max{0, 1− ci 〈ai, x〉}+
λ

2
‖x‖2 . (97)

8

Algorithm 2: Protocol of online learning
1 The player initializes a model x1.
2 for k = 1, 2, . . . do
3 The player proposes a model xk.
4 The rival randomly draws a ωk from p, which defines a function fk(x) := f(x;ωk).
5 The player suffers a loss fk(xk).
6 The player gets access to fk and use it to update its model to xk+1 by, e.g., mirror descent (90).

It can be interpreted as (96) where ω is uniformly distributed in {1, 2, . . . ,m} (i.e. p(ω = i) = 1
m), and

f(x; i) = max{0, 1− ci 〈ai, x〉}+
λ

2
‖x‖2 . (98)

When m is large, it can be costly to calculate F and its subgradient. So a simple idea is to base the
updates on a single randomly chosen data point. It can be considered as a special case of online learning in
Algorithm 1, where the rival in step 4 now randomly picks fk as f(x;ωk) with ωk being drawn independently
from p. Ideally we hope that by using the mirror descent updates, xk will gradually approach the minimizer
of F (x). Intuitively this is quite reasonable, and by using fk we can compute an unbiased estimate of F (xk)
and a subgradient of F (xk) (because ωk are sampled iid from p). This is a particular case of stochastic
optimization, and we recap it in Algorithm 2.

In fact, the method is valid in a more general setting. For simplicity, let us just say the rival plays ωk
at iteration k. Then an online learning algorithm A is simply a deterministic mapping from an ordered set
{ω1, . . . , ωk} to xk+1. Denote as A(ω0) the initial model x1. Then the following theorem is the key for
online to batch conversion.

Theorem 3 Suppose an online learning algorithm A has regret bound Rk after running Algorithm 1 for k
iterations. Suppose ω1, . . . , ωT+1 are drawn iid from p. Define x̂ = A(ωj+1, . . . , ωT) where j is drawn
uniformly random from {0, . . . , T}. Then

E[F (x̂)]−min
x
F (x) ≤ RT+1

T + 1
, (99)

where the expectation is with respect to the randomness of ω1, . . . , ωT , and j.

Similarly we can have high probability bounds, which can be stated in the form like (not exactly true)

F (x̂)−min
x
F (x) ≤ RT+1

T + 1
log

1

δ
(100)

with probability 1− δ, where the probability is with respect to the randomness of ω1, . . . , ωT , and j.

Proof of Theorem 3.
E[F (x̂)] = E

j,ω1,...,ωT+1

[f(x̂;ωT+1)] = E
j,ω1,...,ωT+1

[f(A(ωj+1, . . . , ωT);ωT+1)] (101)

= E
ω1,...,ωT+1

 1

T + 1

T∑
j=0

f(A(ωj+1, . . . , ωT);ωT+1)

 (as j is drawn uniformly random) (102)

=
1

T + 1
E

ω1,...,ωT+1

 T∑
j=0

f(A(ω1, . . . , ωT−j);ωT+1−j)

 (shift iteration index by iid of wi)

(103)

=
1

T + 1
E

ω1,...,ωT+1

[
T+1∑
s=1

f(A(ω1, . . . , ωs−1);ωs)

]
(change of variable s = T − j + 1) (104)

≤ 1

T + 1
E

ω1,...,ωT+1

[
min
x

T+1∑
s=1

f(x;ωs) +RT+1

]
(apply regret bound) (105)

≤ min
x

E
ω

[f(x;ω] +
RT+1

T + 1
(expectation of min is smaller than min of expectation) (106)

= min
x
F (x) +

RT+1

T + 1
. (107)

9

	Bregman Divergence
	Properties of Bregman divergence

	Mirror Descent for Batch Optimization
	Rate of convergence for subgradient descent with Euclidean distance
	Rate of convergence for subgradient descent with mirror descent
	Possibilities for accelerated rates
	Composite Objective

	Online and Stochastic Learning
	Stochastic optimization

